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Abstract

BrainForge is a cloud-enabled, web-based analysis platform for neuroimaging research. This 

website allows users to archive data from a study and effortlessly process data on a high-

performance computing cluster. After analyses are completed, results can be quickly shared 

with colleagues. BrainForge solves multiple problems for researchers who want to analyze 

neuroimaging data, including issues related to software, reproducibility, computational resources, 

and data sharing. BrainForge can currently process structural, functional, diffusion, and arterial 

spin labeling MRI modalities, including preprocessing and group level analyses. Additional 

pipelines are currently being added, and the pipelines can accept the BIDS format. Analyses 

are conducted completely inside of Singularity containers and utilize popular software packages 

including Nipype, Statistical Parametric Mapping, the Group ICA of fMRI Toolbox, and 

FreeSurfer. BrainForge also features several interfaces for group analysis, including a fully 

automated adaptive ICA approach.
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I. Introduction

Over the past few decades, the neuroscience research community has witnessed a meteoric 

rise in the use of neuroimaging to understand neurodevelopment and aging, study the 

structure and function of the brain, and answer questions about mental disorders and 

brain pathologies1, 2. The advent of quality fast magnetic resonance imaging (MRI) to 

probe function and connectivity has resulted in an immense amount of high-resolution 

data collected across multiple modalities, including structural MRI (sMRI), functional MRI 

(fMRI), and diffusion MRI (dMRI). This imaging data is frequently used in conjunction 

with data from electroencephalography (EEG), magnetoencephalography (MEG), genomics, 

neuropsychological and behavioral testing, and others. This substantial increase in 
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information has led researchers toward novel discoveries that contribute to our knowledge 

of the brain. However, this advanced technology also requires immense computational 

resources, and neuroscientists must master complex software to effectively process their 

data. BrainForge3 offers a solution to these problems with a cloud-enabled, web-based 

analysis platform for neuroimaging research. BrainForge is a new and powerful platform 

that is already being used by many researchers. As of this writing, BrainForge has 47 users, 

who have run a total of 3865 analyses in 17 studies. These users are distributed over 16 

research groups across 10 sites.

II. Challenges and Motivation

There are several key challenges that researchers encounter when performing neuroimaging 

research, including issues with computing, software, reproducibility, and data sharing. These 

challenges motivated us to create BrainForge and are described below. In the next section, 

we cover how BrainForge addresses these challenges.

A. Computational Resource Issues

First, a researcher must gain access to computational resources that enable the timely 

processing of neuroimaging data for a study. Without sufficient computational resources 

such as parallel computing and GPUs, neuroimaging pipelines sometimes require up to a 

day or more to finish for a single subject. Additionally, the amount of data collected across 

all modalities can sum to more than 1 GB of raw data for a single subject, and derived 

data may be one hundred-fold greater. With hundreds or thousands of subjects needing to be 

processed, it is clear that a single workstation or even small computing cluster may not be 

sufficient even for a single study, let alone a research group.

B. Software Issues

Modern neuroimaging packages are ever-advancing, with multiple software dependencies 

that vary between platforms. Installing and using neuroimaging software can be difficult, 

as a moderate degree of computer literacy is required for complete and proper installation. 

Furthermore, to process subjects at scale, a researcher must be proficient in basic operating 

system programming and scripting to programmatically call the neuroimaging packages. In 

large neuroimaging analyses that utilize hundreds or thousands of subjects, the ability to 

analyze many sessions with minimal manual intervention is necessary. Finally, computer 

resources are often strictly controlled by IT in a university setting, which can add delays or 

make installation of some software impossible.

C. Reproducibility Issues

In addition to challenges related to software and computational resources, reproducibility in 

research has attracted significant attention in recent years4–6. It is important that researchers 

publish results that are transparent, correct, and replicable. A lack of disclosure about 

details of parameters, software versions, and operating systems can prevent results from 

being replicated and validated. Thus, it is important to track and organize the pipelines and 

analyses that have been run and be able to inspect them later.
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D. Data Sharing Issues

Because of the vast amounts of data involved, sharing data and results can be onerous. 

Typical file sharing systems, such as Google Drive, One Drive, and Dropbox, do not handle 

many large files well, as there are often problems with compression and transfer at the 

terabyte scale. Additionally, transferring large amounts of data both to and from one of these 

services requires considerable time.

III. Comparison

Given that there are several other major platforms built for neuroimaging data analysis, 

one might ask why build a new platform? When surveying the landscape of neuroimaging 

platforms, we did not find any platform that fulfilled all of our requirements. We wanted 

a platform that (1) integrated well with the Collaborative Informatics and Neuroimaging 

Suite (COINS)7 or some other study management and data acquisition platform, (2) 

performed a variety of group analyses, especially in the fMRI modality, and (3) was 

interoperable with our on-premise hardware using the Slurm Workload Manager8. Two 

other neuroimaging platforms, namely, Brainlife9 and Flywheel10, were examined. Both 

platforms can be utilized with on-premise or cloud resources and have general-purpose 

interfaces for numerous preprocessing pipelines in multiple MRI modalities. However, 

we found that they did not feature many group analyses. Each platform has a generic 

interface that is dynamically constructed based on the specifications of an analysis container, 

which allows their platform to scale well with increasing numbers of pipelines. However, 

this interface provides a constrained UI, which is noticeable for complicated pipelines 

and analyses. Modern web design frameworks offer many UI options to create intuitive 

and interactive interfaces, which offer flexibility, reduced errors, and time savings for 

neuroimaging researchers.

Because we could not find an option that satisfied our requirements at the Center for 

Translational Research in Neuroimaging and Data Science (TReNDS), we decided to build 

a new platform. Instead of a generic, dynamically generated interface that is specified by an 

analysis container, BrainForge has a dedicated and customizable interface for each pipeline. 

This allows for more design freedom on the front end, enhancing the user experience. 

Additionally, BrainForge features group analyses including SPM statistical models and 

GIFT analyses. As mentioned above, interoperability with COINS was a design requirement, 

so BrainForge procures metadata from COINS via a REST API and then downloads data 

from the COINS repository on the S3 service on Amazon Web Services (AWS). Finally, 

integration with our on-premise hardware was a requirement, so BrainForge controls our 

high-performance computing (HPC) cluster via Slurm.

IV. Solutions

To address these challenges, we have created a platform called BrainForge that connects 

researchers to large-scale computing resources behind a user-friendly web interface, offering 

complete standard and customized processing pipelines.
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A. Computing

BrainForge runs on the TReNDS HPC cluster at Georgia State University. As of this writing, 

this cluster includes 49 nodes with a total of 2448 cores, 32.5 TB of memory, and 60 

GPUs. A detailed breakdown is shown in Table 1. The computing resources at TReNDS 

enable simultaneous processing of thousands of subjects. BrainForge interfaces with Slurm 

to schedule jobs on the cluster. Furthermore, BrainForge will provide the option of running 

jobs on AWS if there is not sufficient capacity on the cluster to run all jobs by their 

deadlines. BrainForge can be adapted to other on-premise and cloud environments as well.

B. Software

BrainForge executes predesigned and customizable neuroimaging pre- and postprocessing 

pipelines, containerized using Singularity11. Containerization encapsulates the operating 

system, software libraries, and scripts, obviating the need to replicate or build specific 

software environments required for analysis. Singularity is similar to Docker12 but is 

designed to adhere to university HPC IT policies. BrainForge does not require programming 

expertise, allowing users to focus on their research. A web graphical user interface (GUI) 

provides all of the parameters as inputs to the pipelines, including those running industry-

standard packages, such as Statistical Parametric Mapping (SPM)13, the FMRIB Software 

Library (FSL)14, Analysis of Functional NeuroImages (AFNI)15, 16, and the Group ICA 

for fMRI Toolbox (GIFT)17. BrainForge is also planning to provide a generic, dynamically 

generated interface that can easily utilize new, user-created containers.

C. Reproducibility

Because BrainForge analyses are encapsulated within Singularity containers, they produce 

the same results on every platform, including HPC clusters. Of course, run time will depend 

on the underlying hardware and can be affected more strongly if the software uses MPI 

or hardware optimizations. However, even a worklflow that runs more slowly on some 

platforms is still reproduceable. Furthermore, these containers can be introspected and 

are located on DockerHub18, with their code located on GitHub19, in the corresponding 

“trendscenter” organizations. The repositories are currently private but can be made 

available to BrainForge users on request. Many of the workflows are programmed using 

the Neuroimaging in Python Pipelines and Interfaces (Nipype)20 software libraries, adding 

another layer of reproducibility. Provenance, complete lists of runtime parameters, input 

data, start and end times, computational resources, and user information are also retained.

D. Data Sharing

To solve the challenges of data sharing, BrainForge allows primary investigators (PIs) to 

share data and results with others. PIs can also share data and invite others to contribute 

data and run analyses. This eliminates the need for large data transfers to collaborators for 

the purpose examining results. A sensible and effective permissions scheme is key for data 

sharing. Permissions are centered around sites and studies, and include the super admin, site 

admin, study PI, and user roles. PIs have full control over their studies, and site admins have 

control over all studies within their sites. Data are organized using the Brain Imaging Data 

Structure (BIDS) standard21, which eases sharing and reuse. In addition, both raw data and 
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results are stored on the TReNDS cluster and can be downloaded for viewing and organizing 

offline using several different methods, including a web interface, a command-line interface 

(CLI), and Globus22, 23. Storage is included in the cost of analyzing data on BrainForge.

BrainForge can be operated standalone or optionally can interface with COINS, a 

neuroinformatics data management platform. COINS is a full study management system, 

able to pull DICOM files directly from a scanner, manage subjects, and store assessments, 

among other features. BrainForge procures data and associated metadata from COINS via 

a REST application programming interface (API), providing seamless integration of data 

acquisition, curation, and analysis.

V. Features

Brainforge offers many features that help a neuroimaging researcher analyze their data, 

including preprocessing and analysis pipelines and advanced analysis management features.

A. Analyses

Preprocessing pipelines and group-level analyses available in BrainForge operate in a 

wide range of modalities, including sMRI, fMRI, dMRI, and arterial spin labeling (ASL) 

modalities. These pipelines, designed and regularly utilized by TReNDS lab members and 

collaborators, have been validated through numerous publications24–26. Examples include:

• Analyses for sMRI include voxel-based morphometry (VBM)27 using SPM12 

and FreeSurfer (v6 and v7)28.

• dMRI workflows for generation of diffusion derivative images (FA, MD, RD, 

AD) using AFNI and diffusion kurtosis imaging (DKI) using Python. All 

diffusion data is corrected prior to analysis for artifacts such as susceptibility 

distortion, head movement, outlier detection, and slice-to-volume movement 

artifacts using FSL-6.014, 29–31. Many quality assurance (QA) measures provided 

by the FSL program eddy are plotted for quick review within BrainForge (Fig. 

1). A comprehensive QA report using FSL’s eddy_quad is generated for each 

subject and is available for download in PDF form. The DTI container utilizes 

GPUs via the Nvidia Container Toolkit, which is required to run the FSL 

eddy_quad program.

• Task and resting-state fMRI data can be processed using two different workflows

—the first using FSL-6.0 to correct echoplanar imaging (EPI) distortion followed 

by AFNI for realignment and registration of EPI to a standard space utilizing a 

T1 image. The second pipeline offers processing using SPM12, with optional 

features enabling registration to single band reference (SBRef) images and 

distortion correction using FSL-6.0. Plots of motion over time and frame 

displacement (FD) metrics are provided as QA measures.

• fMRI first-level analysis using SPM12, including event-related and block-design 

modeling of task fMRI data. A user-friendly GUI has been created to run this 

analysis.
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• fMRI second (group)-level analyses using SPM12 for results from any of the 

BrainForge pipelines or from other precompiled group data results, featuring the 

complete set of SPM12 statistical models. Input to this analysis is controlled by 

a GUI that includes group selection based on subject metadata, such as age and 

gender.

• A containerized version of GIFT, a MATLAB toolbox that implements 

multiple algorithms for independent component analysis (ICA) and blind 

source separation of group and single-subject fMRI data. This includes twenty 

group ICA (GICA)24 algorithms, dynamic functional network connectivity 

(dFNC)26, 32, and ICAstats25. There is also a fully automated group ICA 

pipeline, which simplifies the application of ICA to large studies and facilitates 

comparison across analyses33. An example of GICA results is shown in Fig. 2.

• White matter hyperintensity (WMH) lesion quantification using the BIANCA 

tool in FSL-6.034. A training dataset can be uploaded and incorporated into the 

pipeline.

• Arterial spin labeling (ASL) perfusion analysis using the BASIL tool in 

FSL-6.035. Output includes normalization to standard space.

• Magnetic resonance spectroscopy (MRS) is a noninvasive technique used to 

assess neurometabolites in vivo. Owing to their abundant concentrations in the 

CNS, the most commonly measured spectral peaks in the brain are N-acetyl 

aspartate, creatine, choline, glutamate, glutamine, and myoinositol. Brainforge 

uses the LCModel36 and Gannet37 software packages and offers the option 

to process MEGA-PRESS (edited spectroscopy) data to assess GABA and 

glutathione.

• Regression analyses for FreeSurfer results, written in Python.

• Ordinary least squares regression, written in Python.

• Polyssifier38, 39, a software tool to quickly benchmark multiple classification 

approaches on a single generic data set.

BrainForge is utilized by researchers from many institutions with different scanner vendors 

and software versions. To ensure accurate multistudy analyses, scanner signal quality is 

critical. BrainForge provides a QA pipeline that runs on phantom data and includes signal 

intensity, image signal-to-noise ratio (SNR), peak-to-peak signal percentage, and ghost 

levels, using methods similar to the TIM Trio EPI stability QA routine by Siemens40. These 

measures are derived from a common protocol across sites using an fMRI phantom and can 

be viewed interactively as longitudinal plots (Fig. 3).

BrainForge pipelines are streamlined for compatibility with NeuroMark33, an ICA-based 

framework designed to elucidate functional connectivity features and link brain changes 

among different datasets, studies, and disorders. NeuroMark leverages the benefits of 

a data-driven approach and provides comparability across multiple sites and analyses, 

making BrainForge among the first cloud-based data management platforms for integrative 

neuroimaging acquisition, analysis, and clinical phenotypes.

Verner et al. Page 6

Concurr Comput. Author manuscript; available in PMC 2024 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



B. Analysis Management

BrainForge provides multiple features to aid in large-scale processing of neuroimaging data, 

including parameter set reuse, analysis plans, preprocessing summaries, and group selection. 

For each pipeline or analysis, BrainForge provides a GUI exposing a variety of parameters 

to customize the process to suit the data and task at hand. These parameter sets can be 

saved, versioned, reused, and shared with others, contributing to reproducibility. An analysis 

plan associates the data collected via a protocol within a study with an analysis using a 

specific container and parameter set. This analysis plan can either be executed manually, 

queued in batch mode, or made automatic for ongoing analysis as acquisitions are added to 

a study, The automatic plans immediately execute the analysis on all acquisitions within the 

study with a matching protocol, as well. The status of preprocessing across all sessions in a 

study is displayed on a preprocessing summary page, providing an overview of the status of 

analysis for each subject. An example of the preprocessing summary page in shown in Fig. 

4. Each row is a session, and each column is a combination of an analysis, parameter set, 

and acquisition protocol. Cells in the table are color-coded according to the analysis status 

(set up = white, complete = green, error = red, and no data = gray) and contain a link leading 

to the analysis result. Near the top, there is also a row showing the number of analyses 

successfully completed against the total number of sessions present in the study. Results can 

further be grouped according to demographic data or imaging protocol. Additional features 

visually flag outliers, annotate data, remove or archive errors, and set rules for how data can 

be shared or used.

VI. Implementation

A. Architecture

The BrainForge architecture (Fig. 5) is divided into a back end written in Python Django 

and a front end written in React.js using the Ant Design framework. The back end uses 

the Django Rest Framework to expose an API that is accessed by the front end. Django 

was chosen because it is easy to work with, feature rich, and scalable. Many high-profile, 

high-traffic websites have used Django, including Instagram, Pinterest, and Bitbucket41. 

Additionally, nginx is used as a reverse proxy server, and Redis is used for web socket 

communication and as a queue. Jobs are executed via a service account on an HPC 

architecture using the Slurm Workload Manager, a cluster management and job scheduling 

system for Linux, or in the cloud on AWS. Slurm is controlled via PySlurm42, a low-level 

Python wrapper around the Slurm C-API. A Postgres database is used to store metadata, 

analysis provenance, and user information. A relational database structure is primarily 

employed, utilizing JSON fields to store parameters and analysis information, as this type 

of information varies too widely to be practically encoded in database columns. Tables are 

normalized with some exceptions to improve performance, and database backups are saved 

daily.

BrainForge runs on a CentOS 7 virtual machine (VM) in the TReNDS cluster. The VM 

has 4 virtual CPU cores and 16 GB of memory. The code for the BrainForge back end 

and the Singularity containers reside on a 200-GB volume on a network file system. 

Postgres, nginx, and Redis are deployed using Docker Compose. The back end resides 

Verner et al. Page 7

Concurr Comput. Author manuscript; available in PMC 2024 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



on the host system so that it can run as a non-root user when interacting with Slurm, which 

is a security requirement at TReNDS. The code for the JavaScript front end is bundled 

using GitHub Actions and served from an AWS S3 bucket. The promotional website is at 

brainforge.trendscenter.org, and the platform can be accessed at https://brainforge.rs.gsu.edu. 

BrainForge is currently proprietary software.

B. Security

BrainForge uses best practices in its security. This includes protection against cross 

site scripting (XSS), cross site request forgery (CSRF), SQL injection, and clickjacking. 

Additionally, all interactions with the website are encrypted via HTTPS. User passwords are 

also hashed with the password-based key derivation function 2 (PBKDF2) algorithm43 with 

an SHA256 hash, as recommended by the National Institute of Standards and Technology 

(NIST)44. Furthermore, BrainForge uses JSON web tokens (JWTs) for authenticated 

sessions.

VII. Future Work

There are many future endeavors in line for BrainForge. We plan to allow users to compare 

their scans against the NeuroMark database using relevant imaging biomarkers derived by 

our algorithms. This feature can be used to help select subjects for clinical trials or to 

test future clinical decision support tools. Additional neuroimaging pipelines for genetics, 

electroencephalography (EEG), and magnetoencephalography (MEG) will be incorporated. 

Furthermore, we will add approaches for additional advanced analysis including data fusion 

(joint ICA and multivariate canonical correlation analysis with joint ICA45), and deep 

learning. We will also create a public collection of containers, such as MRIQC46 and 

fMRIPrep47, that are compatible with BrainForge, with built-in interfaces to accept them 

on the platform. The platform will also allow users to use and share their own pipelines on 

BrainForge. We also plan to allow the option of running analyses using the CLI. This will 

be important for users who want to programmatically run analyses and integrate them with 

other scripts or who simply feel more comfortable using a CLI rather than a GUI. To further 

serve users who are strong programmers, we will implement the ability to spawn Jupyter 

notebooks48 on our servers with access to study data. In the near term, we will create a 

feature to dynamically generate a text file describing analysis methods based on workflow 

parameters. This will be useful for researchers who want to publish analyses performed on 

BrainForge in scientific journals.

Recently, the neuroimaging research community has been moving towards adoption of the 

FAIR Data Principles, namely, findability, accessibility, interoperability, and reusability49. 

We plan to move BrainForge in this direction as well. To improve findability and 

accessibility to study results, we plan to create public pages with digital object identifiers 

(DOIs) for analyses and datasets and annotation with metadata according to Schema.org50. 

Additionally, we are working to link BrainForge with the Collaborative Informatics and 

Neuroimaging Suite Toolkit for Anonymous Computation (COINSTAC)51, a platform for 

federated analysis of neuroimaging data to promote reusability for data that cannot be 

shared.
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VIII. Conclusion

BrainForge is a cloud-enabled web-based platform designed for neuroimaging research 

that addresses several urgent needs in the scientific community. Standard and customizable 

processing pipelines, implemented with industry-standard neuroimaging software, provide 

trusted outcomes. These pipelines are containerized, ensuring reproducibility and 

transparency, and are executed on an HPC grid, providing timely results. Flexible data 

management allows independent researchers to upload data, share their data selectively with 

other PIs, or to merge multistudy data for postprocessing analyses. Data analyses can be 

small in scale or batched to process thousands of subjects. BrainForge is built with modern 

web development tools, resulting in an intuitive and user-friendly neuroinformatics suite 

that enables prospective management, sharing, and analysis of studies, assessments, and 

neuroimaging data.
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Figure 1: 
QA measures produced by DTI pipeline related to movement as provided by FSL eddy 

program.
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Figure 2: 
Sample components in group ICA results, including timecourses, spectra, montage, and 

ortho slices.
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Figure 3: 
Longitudinal plots of scanner fMRI quality metrics derived from phantom scans.
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Figure 4: 
Preprocessing summary page for Dev-Cog study. Rows represent each session, and columns 

represent each combination of analysis, parameter set, and protocol.
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Figure 5: 
BrainForge architecture diagram showing on-premise components and COINS integration.
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Table 1:

Computing resources currently available on the TReNDS cluster available to BrainForge. The total number of 

cores, amount of memory, and number of GPUs on the entire cluster are shown on the bottom row. Cluster 

resources are expanding every year.

Manufacturer Number Cores Per Node Memory Per Node GPUs

Intel 20 32 768 GB

Intel 3 96 1.5 TB

AMD 20 64 512 GB 1xNvidia 2080

Nvidia DGX-1 4 40 512 GB 8xNvidia V100

Dell 2 40 192 GB 4xNvidia V100

Total 49 2448 32.5 TB 60
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