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Abstract

Caveolae are plasma membrane invaginations with a distinct lipid composition. Membrane lipids 

cooperate with the structural components of caveolae to generate a metastable surface domain. 

Recent work has provided insights into the structure of essential caveolar components and how 

lipids are crucial for the formation, dynamics, and disassembly of caveolae. They also suggest new 

models for how caveolins, a major structural component of caveolae, insert into membranes and 

interact with lipids.

Introduction

Caveolae are an abundant feature of the plasma membrane of mammalian cells. These tiny 

invaginations of the cell surface, approximately 60-70nm in diameter, can occupy up to 50% 

of the surface area of certain cell types (Echarri and Del Pozo, 2015, Hansen and Nichols, 

2010, Lamaze et al., 2017, Parton, 2018, Parton et al., 2020a)(Figure 1). Caveolae can 

provide a reservoir of membrane to prevent membrane damage (Sinha et al., 2011, Dewulf 

et al., 2019, Lo et al., 2015) and also have been linked to signal transduction, stress sensing, 

mechanotransduction, lipid regulation, and transendothelial transport (Echarri and Del Pozo, 

2015, Hansen and Nichols, 2010, Lamaze et al., 2017, Parton, 2018, Parton et al., 2020a) 

(Figure 1).

It has long been known that caveolae are associated with specific membrane lipids. Early 

electron microscopic studies showed enrichment of sterols in caveolae (Montesano, 1979) 

and flattening of caveolae on cholesterol disruption (Rothberg et al., 1992). EM studies 

also showed that bacterial toxins that bind to surface gangliosides associated with caveolae 

(Montesano et al., 1982, Tran et al., 1987). These studies used cholera and tetanus toxins 

bound to gold particles and these multivalent particles were shown to drive clustering of the 
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gangliosides in caveolae (Parton, 1994). Interestingly, GPI-anchored proteins, linked to the 

plasma membrane through a lipid anchor, showed similar characteristics with concentration 

in caveolae only upon clustering with antibodies (Mayor et al., 1994, Parton et al., 1994).

It is now clear that an understanding of the membrane lipids associated with caveolae 

is essential for understanding their formation, dynamics, and function. With the recent 

elucidation of the structure of caveolin, the major membrane protein of caveolae, we are 

now in a position to gain new insights into the role of membrane lipids in caveola formation 

but also to use caveolae as a general paradigm for understanding the role of membrane 

lipid-protein interactions in microdomain formation.

Caveola formation and dynamics

Before discussing recent insights into the membrane lipids associated with caveolae we 

will present a brief consensus overview of the formation, trafficking, and disassembly of 

caveolae and introduce the major structural proteins of caveolae, the caveolins and cavins. 

For more extensive reviews the reader is directed to recent articles (Busija et al., 2017) 

(Lamaze et al., 2017) (Matthaeus and Taraska, 2020) (Hubert et al., 2020a, Parton et al., 

2020c, Parton et al., 2021).

Caveolae in vertebrate cells are formed by the cooperation of caveolins, small integral 

membrane proteins, and cavins, filamentous peripheral membrane proteins (Figure 1B, C). 

Both caveolins (1,2, and 3 in vertebrate cells) and cavins (Cavins1-3 in most cells and 

Cavin4 in striated muscle) form homooligomers and can also heter-oligomerise with other 

family members (Gambin et al., 2014, Hansen and Nichols, 2010, Kovtun et al., 2014, 

Ludwig et al., 2016).

Caveolins are embedded within the membrane with both N- and C-termini facing 

the cytoplasm. Like other integral membrane proteins, caveolins are synthesised 

cotranslationally in the endoplasmic reticulum and then traffic through the Golgi complex 

to the plasma membrane (Monier et al., 1995). This process is accompanied by the 

oligomerization of caveolin to the final mature state found in caveolae comprising multiple 

oligomeric complexes (8S comprising approximately 10-14 monomers) that come together 

to form a larger functional unit (Hayer et al., 2010). Formation of the higher order oligomers 

occurs via a cholesterol-dependent mechanism (Hayer et al., 2010) and is accelerated 

by cholesterol supplementation (Pol et al., 2005). Caveolins are also post-translationally 

modified by palmitoylation as they traverse the secretory pathway (Dietzen et al., 1995) 

(Parat and Fox, 2001).

At the plasma membrane, formation of caveolae is completed by the association of cavins 

forming characteristic surface invaginations of variable curvature (Matthaeus et al., 2022). 

Cavin1/PTRF is essential for caveola formation (Hayer et al., 2010, Hill et al., 2008). EHD2 

(Moren et al., 2012, Stoeber et al., 2012) and pacsin2 (Hansen et al., 2011, Senju et al., 

2011), as well as ROR1 in specific cell types (Yamaguchi et al., 2016) also associate with 

caveolae. Surface caveolae can bud from the plasma membrane, in a process negatively 

regulated by EHD2 (Moren et al., 2012, Stoeber et al., 2012), and fuse with early endosomes 
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before recycling back to the plasma membrane as a unit (Boucrot et al., 2011, Pelkmans et 

al., 2004). This cycle of budding, endosomal trafficking and recycling may not be crucial 

for endocytosis of many cargo proteins as membrane proteins are largely excluded from 

caveolae (Parton et al., 2020a, Shvets et al., 2015) but might be important in regulating 

surface levels of caveolae (Boucrot et al., 2011) and for lipid transport in specific cell types 

(Matthaeus et al., 2020).

Caveolae can also be disassembled in response to specific cellular conditions, such as 

increased membrane tension (Hetmanski et al., 2019, Sinha et al., 2011) (Del Pozo et 

al., 2021) and oxidative stress (Wu et al., 2023), suggesting that caveolae represent a 

metastable structure, built up by proteins and membrane lipids, ready to disassemble. 

Caveola disassembly can also influence plasma membrane lipid organization with increased 

clustering of phosphatidylserine (PS) and enhanced isoform-specific Ras signaling from 

lipid nanodomains upon loss of caveolae or experimental flattening of caveolae (Ariotti et 

al., 2014) or increased formin-dependent assembly of actin through increased availability of 

PI(4,5)P2 (Teo et al., 2020).

Caveolar proteins and membrane lipids

Recent work points towards an integral role of membrane lipids in both the formation and 

dynamics of caveolae. The major structural proteins of caveolae, the caveolins and cavins, 

both show association with specific membrane lipids and many of these interactions have 

now been mapped in some detail. Caveolin tightly binds cholesterol (Murata et al., 1995, 

Thiele et al., 2000) but can also associate with cholesterol through indirect mechanisms as 

shown by in vitro studies with isolated caveolin domains (Epand et al., 2005, Wanaski et al., 

2003) and by nanoscale mapping of caveolin-lipid association on plasma membrane sheets 

(Zhou et al., 2021). Caveolin can also be crosslinked to GM1 in the extracellular leaflet 

of the plasma membrane (Fra et al., 1995). Cavins, which have two basic helical regions 

(HR1 and HR2) flanked by acidic disordered regions (DR1, DR2 and DR3) (Kovtun et al., 

2015), have a positively-charged binding site for PI(4,5)P2 in the HR1 domain (Kovtun et 

al., 2014). This site is not essential for caveola formation but is ubiquitinated when cavins 

dissociate from the membrane leading to proteasomal degradation of the non-membrane 

bound cavin (Tillu et al., 2015). This ‘membrane-sensor’ domain can therefore ensure that 

cytosolic cavin levels are maintained at low levels.

The specific role of cavin1 in caveola formation has been linked to a conserved undecad 

repeat region in the HR2 region that binds PS in vitro (Tillu et al., 2018). This site regulates 

the stability of caveolae, with an increased number of repeats, as seen in particular cavin1 

family members in evolution, being associated with increased caveolar stability (Tillu et 

al., 2018). This suggests that cavin1 has two distinct sites that bind membrane lipids. In 

addition, cavin1 can bind to the N-terminus of CAV1 (Tillu et al., 2021) and to ROR1 

(Yamaguchi et al., 2016). These interactions are presumed to be of low affinity allowing 

disassembly of caveolae and release of cavins into the cytosol in response to changing 

cellular conditions.

Kenworthy et al. Page 3

Cold Spring Harb Perspect Biol. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Caveolae as a distinct lipid domain

These studies raise the question of the precise lipid composition of caveolae. As the majority 

of caveolae are attached to the plasma membrane at any point in time, the purification 

of caveolae is not trivial and current biochemical purification methods make isolation of 

caveolae with the neck region intact very challenging. However, lipidomic studies of purified 

caveolae have provided a quantitative picture of lipids in caveolae, showing enrichment 

of cholesterol, sphingomyelin, and GD3 (Ortegren et al., 2004). Two recent studies have 

provided more detailed insights into the association of specific lipids with caveolae and the 

role of those lipids in caveola formation and dynamics (Hubert et al., 2020b, Zhou et al., 

2021). Interestingly, despite different microscopic techniques and the difficulty in localizing 

lipids at this resolution, the results are in good agreement. Firstly, using a combination 

of quantitative immunogold electron microscopy and FLIM/FRET a distinct set of lipids 

were shown to associate with expressed CAV1 and cavin1. CAV1 showed association with 

cholesterol, PS and PI(3,4,5)P3 and cavin1 with PI(4,5)P2, PI(3,4,5)P3, and PA (Zhou et al., 

2021). Interestingly this profile was quantitatively changed when CAV1 and cavin1 were 

co-expressed, representative of native caveolae, with PI(3,4,5)P3 depleted but significant 

association with cholesterol, PI(4,5)P2, PS, and PA. This profile was also dramatically 

altered by mutation of the PI(4,5)P2 site in cavin1 with a significant decrease in association 

with all these lipids, not just PI(4,5)P2 . Similarly, mutation of the UC1 domain of cavin1 

caused large-scale changes in lipid association with reduced association with PI(4,5)P2, 

PI(3,4,5)P3 and PA (Zhou et al., 2021). This indicates that both CAV1 and cavin1 contribute 

to the lipid environment in caveolae and that this is not a simple result of direct binding 

of clustered lipids but complex synergistic interactions between the proteins and membrane 

lipids. A second study used a complementary approach in which the association fluorescent 

lipids with caveolae as well as the lipid dynamics, were monitored by light microscopy 

after their introduction by liposome fusion into the plasma membrane (Hubert et al., 2020b). 

Cholesterol, sphingomyelin, and glycosphingolipids were all shown to be concentrated in 

caveolae but whereas cholesterol and sphingomyelin were actively sequestered in caveolae, 

glycosphingolipids diffused freely. The role of the other structural components of caveolae 

and how they contribute to the unique lipid code is currently unknown, though there are 

hints at additional roles in fine-tuning caveolar lipid composition (discussed below). Studies 

looking into the lipidomic composition of model caveolae generated by Caveolin-2 (CAV2) 

in a prokaryotic system demonstrated a distinct profile compared to caveolae generated 

by CAV1 (Walser et al., 2012). This hints at the possibility that incorporation of CAV2 

into caveolin hetero-oligomers may represent an additional factor to alter caveolar lipid 

composition, though what these lipids represent in a mammalian cell membrane remains to 

be investigated. Together these studies are providing a glimpse of the complex nanoscale 

lipid environment of caveolae including the specific enrichment of particular membrane 

lipids.

Role of membrane lipids in formation and stability of caveolae

Recent studies point to the role of membrane lipids in regulating both the formation and 

dynamics of caveolae. Cholesterol and PS are required for caveola formation in mammalian 

cells (although in a model prokaryotic system they are not required for curvature generation 
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by CAV1 (Walser et al., 2012)). Cholesterol can regulate traffic of caveolins through 

the secretory pathway (Pol et al., 2005) and depletion of cholesterol from the plasma 

membrane causes flattening of the caveolar invagination and dissociation of cavins into 

the cytosol (Hill et al., 2008, Rothberg et al., 1992). Perturbation of cholesterol formation 

in cells accumulating desmosterol through inhibition of DHCR24 also caused structural 

heterogeneity and reduced curvature of caveolae (Jansen et al., 2008). Cells deficient in 

PS show reduced caveola formation which can be rescued by PS addition (Hirama et al., 

2017, Zhou et al., 2021). Caveola formation, as judged by CAV1/cavin1 association, could 

be driven by fully saturated PS (DSPS, di18:0) and monounsaturated PS (DOPS, di18:1) 

but not mixed chain PS (POPS, 16:0/18:1) (Zhou et al., 2021) implicating specific PS acyl 

chains in facilitating formation of the caveolar domain.

These studies show that while caveolins and cavins can directly interact, these interactions 

are presumably of low affinity as they are highly sensitive to the lipid environment. For 

example, depletion of PS or cholesterol leads to caveolar instability, as indicated by reduced 

caveolin-cavin interaction and disruption of caveolar morphology (Hill et al., 2008, Hirama 

et al., 2017, Rothberg et al., 1992, Zhou et al., 2021). This indicates that the caveolar 

domain is built up from multiple low affinity interactions - protein-protein, protein-lipid, and 

presumably lipid-lipid - to generate a metastable domain. Each of these interactions alone 

is not sufficient to make a stable caveolar domain meaning that perturbation of any of the 

components can cause caveola disassembly.

Role of membrane lipids in formation and budding of caveolae

Increasing evidence suggests a role for cholesterol and other membrane lipids in not only 

the formation of caveolae but also as a key regulator of their budding from the plasma 

membrane. In an elegant approach, fusion of liposomes with cultured cells allowed delivery 

of specific lipids into the plasma membrane (Hubert et al., 2020a, Hubert et al., 2020b). 

Cholesterol was shown to cause increased caveola curvature and caveolar budding. This 

process is negatively regulated by EHD2 (Hubert et al., 2020b) and by dynamin (Larsson et 

al., 2023) and therefore may represent a physiological process triggered by specific lipids. 

The stimulation of endocytic trafficking by cholesterol is consistent with earlier studies 

showing budding of caveolae in fibroblasts (Sharma et al., 2004) and cultured adipocytes 

in response to cholesterol addition (Le Lay et al., 2006). Similar results were obtained 

with the glycosphingolipid, LactosylCeramide (LacCer), again consistent with earlier studies 

using different approaches (Sharma et al., 2005, Sharma et al., 2004). These studies provide 

compelling evidence that caveola dynamics are regulated by the lipid composition. In this 

way caveolae can act as sensors of specific plasma membrane lipids, with lipids regulating 

their surface levels. There are further exciting implications of these studies. The fact that 

curvature and budding can be driven by changes in specific lipid species and that caveolin 

oligomerization alone appears to be sufficient for caveola formation and fission in a model 

system raises the possibility that the budding is driven by lipids through their effect on 

caveolin-induced membrane curvature. The role of accessory proteins such as EHD2 (Moren 

et al., 2012, Stoeber et al., 2012) and dynamin (Larsson et al., 2023) might be to regulate this 

lipid-driven process.
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Lipid interactions with the caveolin scaffolding domain

The conserved caveolin scaffolding domain (CSD) of CAV1 (amino acids 81-101 in 

mammalian CAV1) has been proposed to regulate signaling through interaction with 

proteins containing a caveolin binding domain (CBD) (Couet et al., 1997, Sargiacomo et 

al., 1993). However, this direct interaction model has been challenged in a number of studies 

(Byrne et al., 2012, Collins et al., 2012, Huang et al., 1997, Jung et al., 2018). This model 

also appears incompatible with the recent cryoEM structure of the caveolin oligomer that 

suggests that the CSD region is involved in stabilizing contacts beween Cav1 protomers 

((Porta et al., 2022), see below). Yet the profound effects of peptides corresponding to 

the CSD of CAV1, either linked to GFP or fused to a cellular penetrating peptide, are 

striking and highly specific. This includes specific inhibition of eNOS in cells and in vivo 
(Bucci et al., 2000) and inhibition of clathrin-independent endocytosis (Chaudhary et al., 

2014). An interesting possibility is that these effects are actually mediated through lipid 

modulation. The CSD region contains a putative cholesterol-binding CRAC domain (Yang et 

al., 2014, Hoop et al., 2012, Epand et al., 2005). When expressed in cells a CSD-GFP fusion 

protein associates with plasma membrane domains enriched in PI(4,5)P2, PI(3,4,5)P3 and 

cholesterol (Zhou et al., 2021). Moreover, expression of the CSD fusion protein increased 

the nanoscale clustering of PIP2 and cholesterol as shown by quantitative immunoelectron 

microscopy (Zhou et al., 2021). In vitro binding experiments also show that CSD-peptides 

bind to liposomes and promote the formation of cholesterol-rich domains that lead to 

cholesterol crystallization (Epand et al., 2005). This was not proposed to be through a direct 

interaction but through generation of a specific lipid domain. Similarly specific clustering of 

NBD-PS and NBD-cholesterol was observed upon addition of CSD peptides to liposomes 

(Wanaski et al., 2003), although it should also be noted that the insolubility of CSD peptides 

suggested that at least experiments using residues 83-101 should be treated with caution 

owing to the formation of micelles (Arbuzova et al., 2000) (as also observed by (Huang et 

al., 1997)).

In summary, while a number of studies suggest that peptides corresponding to the CSD of 

caveolin have very specific effects on cells and even in vivo, for example on regulation 

of eNOS or on clathrin-independent endocytosis, these effects might at least partially be 

driven by lipid interactions. Whether this reflects the properties of this region of caveolin 

when incorporated into the caveolin oligomer or is unrelated to the physiological function of 

caveolin remains unclear.

Disassembly of caveolae; possible role for lipid peroxidation

The metastable caveolar domain of caveolins, cavins and membrane lipids can disassemble 

in response to cellular stress. For example, UV treatment or oxidative stress causes loss 

of caveolae from the plasma membrane and dissociation of cavins into the cytosol. Recent 

work suggests that lipid peroxidation can trigger caveolar disassembly and cavin release 

in response to oxidative stress allowing cavins to regulate the oxidative stress response 

(Wu et al., 2023). As lipid peroxidation can change the physical properties of the target 

lipids, polyunsaturated omega 6 acyl chains such as arachidonate/C20:4 at the sn2 position 

of membrane glycerophospholipids, this raises the possibility that these lipids in the non-
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oxidized state, are essential for caveola stability. Unsaturated acyl chains are required 

in highly curved membranes and for a range of cellular processes, including vesicle 

formation and ion channel opening (Barelli and Antonny, 2016). It is therefore interesting 

to speculate that such lipids, through their specific biophysical properties, are required 

for caveola formation and as sites for regulation through peroxidation. Incorporation of 

C22:6 into cells poor in polyunsaturated phospholipids, for example, dramatically increases 

endocytosis, correlating with a decrease in plasma membrane rigidity. The high membrane 

curvature in caveolae, most notably in the neck region (Parton et al., 2020b) may require 

the high flexibility of polyunsaturated acyl chains, particularly in the z direction (normal 

to the bilayer) (for review see (Barelli and Antonny, 2016)) making the caveolar domain 

particularly susceptible to lipid peroxidation.

In this model omega6 acyl chains may be important for caveola formation. In contrast 

omega3 fatty acids (such as docosahexanoic acid C22:6) appear to disrupt caveolae (Chen 

et al., 2007, Li et al., 2007, Ma et al., 2004), possibly replacing the omega6 acyl chains 

required for caveola formation. Intriguingly, the Mfsd2a protein acts as a flippase for 

omega3 lipids such as DHA in the endothelial cells of the blood brain barrier and its 

knockout increases caveola formation (Andreone et al., 2017) consistent with an inhibitory 

effect of omega3 fatty acids on caveola formation.

The cryoEM structure of CAV1 suggests potential mechanisms of lipid 

sorting

Recent work has now uncovered a critical piece of the puzzle of how caveolins and caveolae 

sort lipids: a 3.5 Å resolution cryoEM structure of the human CAV1 8S complex (Porta et 

al., 2022). The CAV1 8S complex has a wheel-like appearance, consisting of an outer rim, 

inner spoke region, and central hub, with an overall diameter of ~14 nm (Figure 2). It is 

composed of 11 tightly packed CAV1 protomers symmetrically organized in a spiral pattern 

around a central beta barrel formed by the C-terminal most residues of each protomer 

(Figure 2). Consistent with CAV1’s monotopic topology, both the N- and C-terminal-most 

residues face the same side of the complex. The opposite side of the complex, corresponding 

to its membrane facing surface, is strikingly flat (Figure 2). This has important implications 

for how the complex likely associates with membranes, as discussed in more detail below.

The atomic model of the complex revealed residues 49-177 of the protein are ordered, 

allowing the locations of all of the previously described regions of the protein to be 

identified in the context of the multimeric complex (Figure 2). The signature motif, 

scaffolding domain, and oligomerization domain are all located in the outer rim of the 

complex. These regions contribute extensively to protomer-protomer interactions, explaining 

their role in oligomerization and the high degree of conservation of the signature motif. The 

scaffolding domain is helical and contains both a putative CRAC and putative CARC motif 

(Figure 3). However, it seems unlikely that they bind cholesterol in context of the intact 

complex, for reasons discussed further below.

The scaffolding domain is immediately followed by a region called the intramembrane 

domain. This domain is primarily helical as previously suggested (Lee and Glover, 2012). 
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In contrast to previous models, however, it does not adopt a hairpin structure. Instead, 

this region of Cav1, together with the newly-described helical spokes, contributes to 

the formation of a flat and expansive membrane facing surface of the complex. The 

intramembrane domain also has a second structural role: its helices lie underneath the 

oligomerization domain of the adjacent protomer, thus contributing to protomer-protomer 

interactions that exist across the entire length of each protomer. Indeed, with the exception 

of the central cavity created by the beta barrel, the protomers are so closely packed that there 

is essentially no free space within the complex (Figure 2). This strongly suggests that the 

outer rim and spoke region of the CAV1 complex exclude other proteins and lipids.

The raised hydrophobic outer rim, large flat hydrophobic membrane-facing surface, and the 

tightly packed nature of the protomers, strongly suggest the CAV1 complex associates with 

membranes in a manner that differs substantially from previous models (Figure 4) and from 

almost all previously characterized membrane proteins. In particular, the structure suggests 

CAV1 sits deeply in the bilayer, displacing a large patch of lipids from the cytosolic leaflet 

of the cytoplasmic leaflet of the plasma membrane. It thus predicts that CAV1 generates a 

unique, localized membrane nanodomain, consisting of a protein disc on the cytoplasmic 

leaflet of the membrane and a lipid monolayer on the other (Figure 4).

This new model raises several potential mechanisms for how CAV1 might sort lipids (Figure 

5). The patch of membrane that sits directly above the CAV1 complex is one obvious site 

where lipid sorting may occur. For example, to prevent hydrophobic mismatch, lipids with 

a particular chain length could be recruited to extracellular leaflet directly above the CAV1 

complex. The choice of lipids likely depends both on the composition of the surrounding 

membrane and how deeply the CAV1 complex sits in the bilayer. For example, if the CAV1 

complex is slightly thinner than the average width of the cytoplasmic leaflet, lipids with 

longer acyl chains may be selectively recruited to the extracellular leaflet to fully solvate 

the hydrophobic membrane facing surface of the complex. Furthermore, the model makes 

a strong prediction that the covalently attached palmitate chains would interdigitate across 

the center of the bilayer, inserting into the extracellular leaflet of the plasma membrane 

(Figures 4, 5). Each Cav1 protomer contains 3 palmitoylation sites, adding up to a total of 

33 for the entire 8S complex. The presence of these saturated fatty acids could in turn recruit 

raft-preferring lipids such as cholesterol and glycosphingolipids, as well as GPI-anchored 

proteins, which are also typically composed of saturated acyl chains (Benting et al., 1999, 

Maeda et al., 2007).

In addition to sorting lipids on the extracellular leaflet above the complex, CAV1 could 

also sort lipids via direct protein-lipid interactions on the outer rim of the membrane. One 

attractive possibility is that specific lipids could preferentially associate with the outer rim 

of the complex. It seems unlikely that CAV1’s putative CRAC motif is functional in this 

capacity, as cholesterol bound to this site on the 8S complex would be predicted to sit almost 

perpendicular to the plane of the membrane (Figure 3). The CARC motif is also not likely 

to bind cholesterol, due to a lack of accessibility for binding (Figure 3). It is nevertheless 

possible that either the CRAC motif or CARC motif that is located on the same stretch of 

the scaffolding domain (Figure 3) could interact with cholesterol when peptides comprising 

this region of the protein are studied in isolation (Yang et al., 2014, Hoop et al., 2012, 
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Epand et al., 2005). This could potentially explain the specific lipid sorting properties of 

peptides containing the CSD, including Cavtratin, discussed above. The hydrophobic cavity 

within the central beta barrel of the CAV1 8S complex is yet another potential binding 

site. It is open to the cytoplasm and is capped with a ring of charged residues that could 

potentially interact with lipid headgroups. The narrowest accessible diameter of the cavity is 

~15 angstrom, raising the possibility that it could accommodate several lipids.

Finally, we envision additional lipid sorting mechanisms that depend on synergistic 

interactions between caveolin complexes, or between CAV1 and other proteins. For 

example, interactions between 8S complexes that occur during 70S complex formation- 

a process known to be cholesterol dependent - could generate regions of specialized 

lipid composition between adjacent complexes. Direct or indirect interactions between 

CAV1 and cavin-1 within caveolae could lead to futher remodeling of these inter-complex 

membrane patches. For example, the ability of cavin1 to bind PS could potentially recruit 

PS to membrane patches between Cav1 8S complexes. This in turn could modulate local 

cholesterol levels as a consequence of the close interplay between the two lipids (Maekawa 

and Fairn, 2015). Clearly, much work remains to be done to test these and other possibilities.

Summary and Future Perspectives

These new advances allow us to propose a new working model for the formation of 

caveolae. In Figure 6 we provide a scheme of the major protein and lipid interactions 

involved in assembling caveolae, from synthesis of caveolin in the endoplasmic reticulum, 

caveolin oligomer assembly in the Golgi complex, delivery to the plasma membrane, and 

association with cavin proteins through protein-protein and protein-lipid interactions (Figure 

6). This complex pathway enables the formation of caveolae specifically at the plasma 

membrane where the metastable domains can rapidly disassemble in response to stress and 

modulate intracellular signalling.

Despite the rapid advances in our understanding of caveolin, caveolae, and lipid sorting over 

the past few years, many critical questions still remain unanswered. For example, although 

it is widely recognized that caveolae sequester cholesterol and cholesterol is critical for the 

integrity of caveolae, how and why this is the case is unknown. How different caveolin 

family members each contribute to lipid sorting, and how disease mutations of caveolins 

impact this process is also not yet clear. Relatedly, a frameshift mutation of CAV1 associated 

with pulmonary arterial hypertension and congenital generalized lipodystrophy, was found 

to exhibit reduced colocalization with cavin-1 in MEFs (Han et al., 2016). Whether this 

reflects decreased protein-protein interactions between CAV1 and cavin-1, decreased PS 

levels in mutant caveolae, or both has yet to be determined.

Another important question is how lipids influence the structure and assembly of the 

caveolin complex itself. The finding that the human Cav1 can assemble into 8S complexes 

in E. coli membrane emphasizes that its native lipid environment is not essential for 8S 

complex formation and rules out a requirement for cholesterol in this process. However, 

recent evidence suggests that assembly of 8S complexes may occur at the level of the Golgi 

complex rather than immediately following biosynthesis of the protein (Morales-Paytuvi et 
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al., 2022). This raises the possibility that in mammalian cells 8S complex assembly may 

depend on lipid composition, membrane thickness, and/or membrane mechanical properties 

in ways that are not yet understood.

Finally, very recent evidence now suggests that in cells lacking cavin-1, CAV1 can generate 

a newly described class of membrane invaginations, termed dolines (Lolo et al., 2022). 

These structures are significantly less regular in size and shape than caveolae; however, 

like caveolae, dolines flatten in response to increased membrane tension, albeit at lower 

tension than is necessary for caveolar flattening (Lolo et al., 2022). These structures could 

be relevant not only in mammalian cells where CAV1 is expressed without cavin-1, as 

sometimes is seen in cancer cells (Gould et al., 2010), but also in the many non-vertebrate 

organisms that express caveolins but naturally lack cavin-1 (Hansen and Nichols, 2010). For 

example, large invaginations observed in the Ascidian Ciona intestinalis that are dependent 

on caveolin but of distinct morphology to mammalian caveolae may represent doline-like 

structures (Bhattachan et al., 2020). In view of our increasing understanding of caveolin-

lipid interactions as summarised here, it will be interesting to test if dolines form in a 

lipid-dependent manner, show lipid sorting abilities, and if aspects of their function depend 

on specific membrane lipids.
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Figure 1. 
A) Electron micrographs showing single caveolae (red arrowheads) and interconnected 

groups of caveolae (blue arrowheads) in cultured adipocytes. The top panel shows the 

characteristic flask-shaped caveolae connected to the plasma membrane and the bottom 

panel shows a glancing section across the surface of the cell in which caveolae appear as 

vesicular profiles. Bars, 100nm. B) Schematic of the cavolar structure showing the potential 

organisation of Cavin1 trimers and 8S caveolin-1 oligomers. C) Cross-sectional depiction of 

caveolin, cavin and lipids in the plasma membrane.
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Figure 2. Organization of the Cav1 complex as revealed by the cryoEM structure of human 
CAV1.
(A-B) Atomic model of residues 49-177 of the CAV1 8S complex. (C-D) Structure of a 

single CAV1 protomer. Orientations match those in panels A and B. (E-G) Space filling 

model of the 8S complex. A, and H, cytoplasmic face; B, and F, side view; G and J, 

membrane facing surface. Color coding in A-G is as follows: red, signature motif; green, 

scaffolding domain; purple, intramembrane domain; gray, spoke region; cyan, beta strand. 

The oligomerization domain, which contains the scaffolding domain and signature motif, is 

highlighted with a dashed box. Adapted from Porta, JC, B Han, A Gulsevin, JM Chung, 

Y Peskova, S Connolly, HS McHaourab, J Meiler, E Karakas, AK Kenworthy and MD 

Ohi (2022). Molecular architecture of the human caveolin-1 complex. Sci Adv 8(19): 

eabn7232. © The Authors, some rights reserved; exclusive licensee AAAS. Distributed 

under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC) http://

creativecommons.org/licenses/by-nc/4.0/”
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Figure 3. Position of the CRAC motif in the structure of the Cav1 complex.
(A) The scaffolding domain of Cav1 contains a putative cholesterol-binding CRAC motif 

(yellow) and CARC motif (green). (B) Position of the putative CRAC and CARC motifs on 

the cryoEM structure of the 8S Cav1 complex. For simplicity, the α-helix they are located 

on is shown as a cylinder. (C) Zoomed in view of the CRAC and CARC motifs.
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Figure 4. The cryoEM structure of Cav1 suggests a new model for how Cav1 sits in the plasma 
membrane and potentially sorts lipids.
(A) Previous models typically suggested the intramembrane domain of CAV1 forms a wedge 

shape in the bilayer and the C-terminal domain forms a helix that sits at the membrane 

interface, as is characteristic of many amphipathic alpha helices. This model predicts that 

the lipids in the vicinity of Cav1 form a traditional bilayer structure and the bulk of the 

N-terminal domain of the protein resides in the cytoplasm. It also implies that palmitates 

bound to Cav1 insert into the cytoplasmic leaflet of the membrane. (B) The cryoEM 

structure paints a very different picture for how Cav1 associates with the plasma membrane 

than suggested by previous models. In particular, the raised, hydrophobic outer rim and 

flat hydrophobic membrane facing surface, combined with the tightly packed nature of the 

complex suggest it sits deeply in the bilayer, excluding a large patch of lipids from the 

cytosolic leaflet of the plasma membrane as a result. This model implies that bulk of the 

protein, including the scaffolding domain, is nearly completely embedded in the membrane 

bilayer and that the palmitates interdigitate into the extracellular leaflet. In both A and B, 

the signature motif (SM) is shown in red, the scaffolding domain (SD) in green, and the 

intramembrane domain (IMD) in magenta. In panel B, the spoke region (SR) is shown 

in gray and the C-terminal beta strand is cyan. NT, N-terminus; CT, C-terminus. Adapted 

from Porta, JC, B Han, A Gulsevin, JM Chung, Y Peskova, S Connolly, HS McHaourab, 

J Meiler, E Karakas, AK Kenworthy and MD Ohi (2022). Molecular architecture of 

the human caveolin-1 complex. Sci Adv 8(19): eabn7232. © The Authors, some rights 

reserved; exclusive licensee AAAS. Distributed under a Creative Commons Attribution 

NonCommercial License 4.0 (CC BY-NC) http://creativecommons.org/licenses/by-nc/4.0/”
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Figure 5. Potential mechanisms of lipid sorting by caveolin.
(A) Space filling model of the membrane facing surface of Cav1, color coded to depict 

electrostatic potential and highlight the position of palmitoylation sites (green *). (B) A 

cross section through the 8S complex embedded in a membrane bilayer showing the position 

of the palmitates and lipid species potentially enriched within the caveolin 8S domain. (C) 

The 8S complex (yellow) embedded in a membrane bilayer. The complex could potentially 

sort lipids in contact with its outer rim (blue), membrane-facing surface (pink), or bound 

palmitates (black). It could also potentially sequester lipids in the hydrophobic cavity of 

the beta barrel (light yellow). Panel A is adapted from Porta, JC, B Han, A Gulsevin, JM 

Chung, Y Peskova, S Connolly, HS McHaourab, J Meiler, E Karakas, AK Kenworthy and 

MD Ohi (2022). Molecular architecture of the human caveolin-1 complex. Sci Adv 8(19): 

eabn7232. © The Authors, some rights reserved; exclusive licensee AAAS. Distributed 

under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC) http://

creativecommons.org/licenses/by-nc/4.0/”
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Figure 6. Intracellular Trafficking of Caveolin; from synthesis to caveola formation and cellular 
stress response.
[1] Cav1 is synthesized in the rough endoplasmic reticulum (RER). [2] From the RER, 

Cav1 is trafficked to the Golgi complex via COPII-dependent vesicular transport as 

monomers or low molecular weight oligomers. [3-5] As Cav1 matures through the Golgi 

it is palmitoylated, associates with cholesterol and forms the 8S complex. [6-7] 8S 

complexes are transported to the PM where they recruit soluble Cavin1, Cavin1:Cavin2 

and Cavin1:Cavin3 trimers. The coalescence of both these protein families with specific 

lipids at the PM generates the metastable caveolar domain. (Inset: Top Left) Schematic of 

Cav1 8S complex, Cavin1 trimer and lipids in caveolae. The interaction between Cavin-1 

and Cav1 requires amino acids 330-345 in Disordered Region 3 (DR3) on Cavin1 that has 

been postulated to associate with the disordered N-terminal region of Cav1. Cav1 associates 

with cholesterol, PS and PI(4,5)P2 whereas Cavin1 binds PI(4,5)P2 via the Helical Region 

1 (HR1) domain, PS through the HR2 domain and sequesters PA within caveolae. These 
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proteins function together to recruit the distinct lipid profile that is observed in caveolae. 

[8] Caveolae flatten in response to stress stimuli such as lipid peroxidation or mechanical 

stretch. (Inset: Top Right) Stretch or lipid peroxidation results in the alteration in the lipid 

profile of caveolae, dissociation of the cavin-coat proteins and loss of the quintessential 

caveolar morphology. [9] Release of the cavin proteins from the plasma membrane mediates 

intracellular signaling.
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