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Abstract

We have developed Simulation-based Reconstructed Diffusion (SbRD) to determine diffu-

sion coefficients corrected for confinement effects and for the bias introduced by two-dimen-

sional models describing a three-dimensional motion. We validate the method on simulated

diffusion data in three-dimensional cell-shaped compartments. We use SbRD, combined

with a new cell detection method, to determine the diffusion coefficients of a set of native

proteins in Escherichia coli. We observe slower diffusion at the cell poles than in the nucle-

oid region of exponentially growing cells, which is independent of the presence of poly-

somes. Furthermore, we show that the newly formed pole of dividing cells exhibits a faster

diffusion than the old one. We hypothesize that the observed slowdown at the cell poles is

caused by the accumulation of aggregated or damaged proteins, and that the effect is asym-

metric due to cell aging.

Author summary

Knowledge of the location and mobility of molecules in living cells is paramount to under-

stand cellular processes, protein interactions, folding and function. However, accurately

measuring protein mobility in small compartments, such as bacterial cells, is challenging

due to various factors. These include the effects of boundaries and compartment geome-

try, as well as technical limitations like the properties of fluorophores, the diffraction limit

of light, and the camera speed. In Escherichia coli cells, the poles are important regions

where most of the cellular proteins are synthesized by ribosomes organized in polysomes.

At the same time, aggregated or misfolded proteins accumulate at the cell poles, increasing

the local macromolecular crowding. We have developed Simulation-based Reconstructed

Diffusion to separate the boundary and geometry effects from crowding effects on the

observed protein diffusion. Using this method, we investigated how the accumulation of

misfolded or damaged proteins at the poles affects the lateral diffusion of various native

proteins. We also observed an increase in apparent crowding in the older pole of dividing
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cells. We related differences in macromolecular crowding in the pole regions of E. coli to

aging of the cells, which may impact cellular functions like they do in eukaryotic cells.

Introduction

Diffusion of molecules inside cells plays a crucial role in the functioning of biochemical pro-

cesses. In prokaryotic cells, which lack membrane-bound compartments, except for the peri-

plasm in Gram-negative bacteria, the majority of cellular processes take place in the

cytoplasm. Here, the random motion of (macro)molecules allows for highly sophisticated

functions, such as the localization of the septation ring in Escherichia coli and the triggering of

cell division, which is governed by a reaction-diffusion mechanism [1], the signal transduction

that leads to chemotaxis [2], or the translation of mRNA into proteins by polysomes, ribo-

somes-mRNA assemblies [3].

The cytoplasm of bacteria is an extremely crowded environment, where the concentration

of macromolecules, mainly proteins and RNAs, can reach values up to a volume fraction of

15–20% in growing cells [4–6] and even higher in osmotically stressed cells [7–10]. The molec-

ular composition of the cytoplasm is diverse, with molecules spanning in size over more than

three orders of magnitudes, from sub-nanometric for ions and metabolites, to micrometric for

the chromosome [11,12]. Despite this variation in size and surface properties of the molecules,

many cellular components are uniformly distributed throughout the cell [13–15]. Notable

exceptions are the chromosome and nucleoid-binding proteins, which localize in the cell cen-

ter [16,17]; the polysomes, which localize at the poles and cytoplasmic periphery [13,16,18];

and aggregated or misfolded proteins, which localize at the cell poles [19–21] (Fig 1). In addi-

tion, there is increasing evidence for the formation of phase-separated liquid droplets or bio-

molecular condensates in the cytoplasm of microorganisms [22–24], which are metastable

structures where certain proteins partition.

Diffusion of spherical particles in aqueous solutions can be described by the Einstein-Stokes

equation [25]. However, motion of particles in the highly crowded and inhomogeneous cyto-

plasm of bacterial cells deviates from the Einstein-Stokes model [14,15,26,27]. We have shown

that the apparent diffusion coefficient is solely dependent on the complex mass, that is, the

molecular weight of the fluorescently-tagged protein times the oligomeric state [14] (Fig 1).

The same conclusion was recently obtained in another study, using a different method [15].

Diffusion of proteins can be influenced by interaction with cell components, provided the

interaction strength is high (dissociation constant, KD, is small) and the mass of the interacting

species is large (e.g. the cell membrane, the nucleoid, the ribosome or the proteasome complex)

[15,28]. The deviation from the Einstein-Stokes equation suggests that protein diffusion

depends on the composition and physical state of the cytoplasm. This, in turn, is dependent of

(fluidization by) metabolism [29,30], possibly by catalysis-induced enzyme movement [31,32]

and environmental stresses [8,33]. Importantly, under given conditions, the macromolecular

crowding a protein experiences depends on its own molecular weight, that is, smaller mole-

cules will be less affected by the crowded cytoplasmic environment than bigger ones

[14,15,26,27,34] (Fig 1). We have shown that this so-called perceived macromolecular viscosity

is not spatially uniform in the cell [14].

Despite the advancements in single molecule fluorescence microscopy [14,15,35–39], diffu-

sion measurements are highly influenced by the effect of confinement, especially in small com-

partments such as the bacterial cytoplasm [14] and periplasm [40,41], and eukaryotic

organelles [42]. Diffusion coefficients near the cell boundaries always appear lower than in the

cell center [14,38], which is due to technical and analytical limitations. The time that elapses
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between two subsequent localization events of a particle in a single molecule experiment is too

long to precisely know the particle’s trajectory. Therefore, when a particle is diffusing close to

a boundary, it is not known whether its trajectory has been affected by the bouncing off the

boundary, and so its trajectory is longer than inferred from the localizations. In addition, the

diffusion coefficients are obtained from models that do not take the confinement into account.

This does not allow to properly separate the effect of confinement from possible physiological

slowdown in diffusion of the analyzed species [14] (Fig 1). Moreover, techniques such as Single

Particle Tracking (SPT) and Single Molecule displacement Mapping (SMdM) produce a two-

dimensional output of a three-dimensional motion, which leads to obvious shortcomings in

the estimation of diffusion coefficients of particles moving in the cell cytoplasm.

Some methods to resolve confined diffusion have been developed. Bickel [43] proposed a

mathematical solution to obtain the mean square displacement in disks and spheres for parti-

cles. Bellotto et al. [15] derived a Ornstein-Uhlenbeck model for fitting of Fluorescence Corre-

lation Spectroscopy (FCS) data acquired in a confined cylinder of infinite length, but they did

not consider the geometry of the cell pole regions, where the confinement affects the observed

diffusion the most [14]. Finally, diffusion can also be hindered by membraneless structures

such as protein aggregates. A study that followed repeated divisions of E. coli suggests that cells

Fig 1. Lateral diffusion in the cytoplasm of E. coli. A diffusion map obtained with SMdM is overlayed with a schematic of the cytoplasm of the cell. The top

panel highlights the effect of confinement on the measured diffusion, leading to lower diffusion coefficients near the boundaries of the cell. The bottom panel

represents the effect of the perceived viscosity by diffusing proteins. Since diffusion scales with the complex mass, bigger particles will be affected more by the

crowding of the cytoplasm than smaller molecules and move relatively more slowly, leading to the deviation from the Einstein-Stokes equation. The left panel

represents our current hypothesis on the observed slowdown at the cell poles compared to the cell center, with accumulation of aggregated or misfolded

proteins impairing the diffusion in these regions.

https://doi.org/10.1371/journal.pcbi.1011093.g001
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that inherit the old pole exhibit a diminished growth rate, decreased offspring production, and

an increased incidence of death [44], which is indicative of a locally different composition or

structure of the cytoplasm. Asymmetry in the doubling time of old and new pole daughter

cells has also been observed in a more recent study in E. coli [45]. The underlying mechanisms

of aging of bacteria are at best poorly understood.

In this study, we set out to solve the shortcomings of previous methods for analyzing con-

fined diffusion in small compartments, and we apply the new tools to investigate the mobility

of proteins in the cytoplasm of E. coli. The new method yields diffusion coefficients that are

not affected by the effect of confinement or motion along the third dimension. We present a

simulation-based analysis, which we named Simulation-based Reconstructed Diffusion

(SbRD). We use the method, in combination with a new cell detection tool, to re-analyze a pre-

viously acquired dataset [14] and obtain confinement-corrected values for the diffusion of

molecules in the E. coli cytoplasm. Further, we investigate diffusion near the cell boundaries

and at the cell poles to determine how much confinement influences the slowdown in these

regions. We test the effect of antibiotics that disrupt the polysome structure in the apparent

slowdown of diffusion at the cell poles. Finally, we make observations about asymmetry in dif-

fusion in the bacterial cell, which we associate with aging.

Results

A simulation-based solution to the limitations of confined diffusion

Different mathematical approaches have been attempted to measure the values of diffusion

near the boundaries of confined compartments (S1 Text), but they are generally limited by the

trajectory of a freely diffusing particle and the model to describing the shape of the compart-

ment [15,43]. We therefore developed a simulation-based approach in which the number of

bounces against the surface or the shape of the compartment would not be constraining the

outcome. In brief, we developed a method to recursively estimate the diffusion coefficient with

an algorithm that makes use of Smoldyn [46] and the SMdM technique [14,35] (Fig 2A). Smol-

dyn allows the simulation of the motion of particles within a compartment. The compartment

can be either mathematically described, or an input of triangulated coordinates of any desired

shape. Confinement is accounted for in the motion of the particles, which reflect off the

boundaries without losing velocity. We generated diffusion simulations with Smoldyn inside a

spherocylinder. As anticipated, the apparent diffusion is underestimated, especially in regions

close to the boundaries (S1A, S1E, S3C Figs). The extent of the underestimation is proportional

to the diffusion coefficient, and inversely proportional to the size of the confined space and to

the acquisition time. Our new algorithm, named Simulation-based Reconstructed Diffusion

(SbRD), yields a diffusion coefficient that is homogenous throughout the whole compartment

and matches the predefined value used to create the diffusion simulations.

The main steps for the operation of the algorithm are: (i) For simulations, an input diffu-

sion coefficient (Dinput
0) is used to simulate the diffusion of particles in a spherocylinder, as

previously described [14]. For in vivo datasets, diffusing particles are measured via strobo-

scopic illumination microscopy, as previously described. The diffusion map is experimentally

obtained by SMdM [14,35]; (ii) The diffusion map yields the total number of displacements

per cell and the measured diffusion coefficient (Doutput
0) for every position; (iii) The starting

(x,y) coordinates of all the observed particles are used to place them inside a simulated sphero-

cylinder, and their z coordinates are randomly assigned. This is done by taking a value from a

uniform random distribution ranging from the lowest to the highest z value that a particle can

have at that specific (x,y) position inside the spherocylinder; (iv) The starting positions (x,y,z)

of the particles that belong to a specific pixel of the original diffusion map are selected; (v)
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Fig 2. Simulation-based Reconstructed Diffusion. (A) Algorithm representation of SbRD. (B) Diffusion maps of a spherocylinder obtained by

analyzing a Smoldyn simulation created with an input diffusion coefficient of 20 μm2/s. Maps are obtained via SMdM analysis (top) and via

SbRD (center). The difference between the SbRD map and the SMdM map is depicted in the bottom panel. (C) Comparison of the dependence

of the ratio of Doutput / Dinput in a simulated spherocylinder when analyzing the centermos 100 nm2 area (top) and the cell pole (bottom) with

SMdM and SbRD. The gray dotted line represents the ideal case in which the ratio of Doutput over Dinput is one. The relevant range of diffusion

coefficients for proteins in the cytoplasm is highlighted in green.

https://doi.org/10.1371/journal.pcbi.1011093.g002
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Diffusion simulations are run, using as input diffusion coefficient the Doutput
0 value obtained via

SMdM; (vi) The diffusion observed by SMdM is analyzed to obtain a new diffusion coefficient

for the specific pixel (Doutput
1); (vii) The absolute difference (ε) between Doutput

0 and Doutput
1 is

calculated; (viii) The diffusion simulation process (and subsequent SMdM analysis) is repeated

recursively, every time using a different input diffusion coefficient (Dinput
i). (ix) The difference

(ε) between Doutput
0 and the one obtained through the last simulation (Doutput

i+1) is calculated;

(x) The recursion is run until the difference between Doutput
N and Doutput

0 reaches a minimum;

(xi) The input value (Dinput
N-1) that led to the minimal difference between Doutput

N and Doutput
0

is then used to create a new map, which carries Dinput
N-1 in the position of the analyzed pixel;

(xii) The process is repeated for every pixel, until a map is obtained in which the diffusion coef-

ficients represent the unbiased diffusion values, that is, diffusion coefficients that are corrected

for the effect of confinement and for the underestimation caused by a two-dimensional repre-

sentation of a three-dimensional motion. (xiii) The whole routine is repeated ten times for each

cell. The output maps obtained in each iteration are averaged to account for the randomness

introduced when assigning the z starting position to all particles and for the randomness intro-

duced by Smoldyn in simulating the diffusion of particles [46] (Fig 2A).

Simulation-based Reconstructed Diffusion overcomes limitations of

confinement caused by cell boundaries

SbRD together with SMdM allows obtaining more accurate diffusion maps. It is possible to

retrieve the actual diffusion coefficient also for the regions close to the cell boundaries (Fig

2B). We also simulated scenarios of a cell displaying slower diffusion at one cell pole, and

observed that SbRD is correctly identifying the regions with slower diffusion and faster diffu-

sion coefficients in the cell (S4 Fig).

We then benchmarked SbRD against SMdM data by varying Dinput from 0.01 to 110 μm2/s

and analyzing Doutput in the innermost 100 nm2 square of the simulated spherocylinder and in

the cell pole region, which are the areas least and most affected by the effect of confinement,

respectively. We observe for the innermost region that, as expected, Doutput obtained via

SMdM decreases to 90% of its input value already for Dinput of 10 μm2/s, and that the deviation

increases with Dinput (Fig 2C, top panel). The decrease is more pronounced when the cell pole

is analyzed (Fig 2C, bottom panel), with Doutput obtained via SMdM decreasing to 90% of its

input value for Dinput of 1 μm2/s. Importantly, the output of SbRD remains stable throughout

the whole set of measurements, with diffusion coefficients near 100% of Dinput (Fig 2C).

Billiard fitting of rod-shaped bacteria

We acquired single-molecule displacement data from fluorescent images of E. coli cells, which we

analyzed by SbRD to obtain the diffusion coefficients of a diverse set of fluorescently labelled pro-

teins [14,35]. Briefly, proteins differing in molecular weight and surface charge have been tagged

with the photoconvertible fluorescent protein mEos3.2, using 3’ gene fusions. mEos3.2 is a green

fluorescent protein that can be excited in the range from 450 nm to 530 nm, but the protein can

also be photoconverted by a 405 nm fluorescent pulse into a red fluorescent protein with an exci-

tation wavelength maximum of 570 nm. We exploited the photophysics of mEos3.2 to acquire

microscopy images of cells expressing the fluorescently tagged protein of interest, using a strobo-

scopic laser pattern. First, a short low energy 405 nm laser pulse was used to photoconvert on

average one protein per cell. Then, two short high-energy 561 nm laser pulses separated by 1.5 ms

were used to obtain the initial and final position of the photoconverted protein. The intensity of

the 561 nm laser pulses is chosen to photobleach mEos3.2 after the 2nd 561 nm pulse. The

sequence of photoactivation, localization and photobleaching of mEos3.2-tagged proteins was
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typically repeated a hundred thousand times, allowing to obtain a displacement map of every cell.

For a more detailed description we refer to our previous work [14].

The shape of E. coli cells is generally assumed to be a spherocylinder [47–51]. Software is avail-

able to determine the shape of E. coli cells from two-dimensional images [52–54], but estimation

and subsequent triangularization of their three-dimensional shape does not necessarily lead to the

correct dimension of a cell. For instance, invaginations or protuberances observed on the xy plane

may not be observed on the xz plane. By analyzing our microscopy data, we observed that the vast

majority of cells had a shape that could be very well approximated by a two-dimensional projec-

tion of a spherocylinder. Therefore, we decided to use this shape for cell detection and modeling,

which at the same time allowed for an easy implementation in Smoldyn. To apply SbRD to

microscopy data, we developed an algorithm to automatically detect cells as billiards in micros-

copy images (Fig 3A). Firstly, each field of view was filtered for background noise, yielding clusters

of points representing cells. Point clouds were rotated so that their major axis was aligned to the

x-axis, and subsequently clustered using the equation of a billiard (Eq 1).

ðx � cxleftÞ
2
þ ðy � cyÞ2 ¼ r2; x < cxleft

jy � cyj ¼ r; cxleft � x � cxright

ðx � cxrightÞ
2
þ ðy � cyÞ2 ¼ r2; x > cxright

ð1Þ

8
>><

>>:

We refine the cell selections via Maximum Likelihood Estimation using the following

assumptions (see Methods –cell clustering and detection): (i) fluorescent points are uniformly

distributed throughout the cell; (ii) the cells, here E. coli, are modeled as spherocylinders;

therefore the 2D projection of their fluorescence (shape of a billiard) appears more populated

in the center than near the cell boundary; (iii) all the fluorescent spots observed in a cell have

the same probability of being noise; and (iv) every fluorescent point is equally likely to be noise

or to be a photoconverted mEos3.2. We then filtered the selected cells for a minimal length of

0.65 μm and a maximal width of 1.5 μm (see methods –cell clustering and detection). If the

length of the final billiard describing the shape of the cell was bigger than 3 μm, the algorithm

separates the cluster in two billiards, each having half the length of the original one. The refine-

ment step was then repeated for every cluster of two-billiards. This allowed the accurate detec-

tion of newly divided cells (Fig 3B), which is often not possible with standard clustering

methods, such as Voronoi (Fig 3C). In our previous work [14] we acquired a dataset of diffus-

ing proteins of different complex mass (S1 Table) using SMdM. Here, each cell was clustered

using Voronoi clustering. We re-analyzed the full dataset from our previous work with the

new clustering method. Importantly, we observe no significant difference between the two

datasets, both in the number of detected cells and the diffusion coefficients obtained via

SMdM analyses for the cell center (Fig 3D, top) and for the cell poles (Fig 3D, bottom). We

then used the information of each cluster to recreate a spherocylinder in Smoldyn [46] having

the shape of the corresponding cell, to which we applied the SbRD algorithm (see “A simula-

tion-based solution to the limitation of confined diffusion” from point iii to point xi) to recon-

struct diffusion maps, corrected for the confinement effect and bias by 2D models to describe

a 3D motion, from the single-molecule fluorescent microscopy data.

SbRD correlates the confinement-corrected diffusion coefficient with the

perceived viscosity of the cytoplasm

An advantage of our clustering method is the possibility to precisely identify the cell poles and

the cell center by using the radius of the billiard (Fig 3B, bottom), allowing us to analyze these
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Fig 3. Maximum likelihood-based detection method. (A) Field of view and fitting of billiards around the identified cells, using a maximum likelihood

estimation method. The cell indicated by a red arrow was discarded because it has too many displacements. (B) Details of the fitting process. In the top panel,

the initial guess used for fitting, encompassing all the points clustered as a single cell, is represented in grey, while the final fitting is colored. For cells that just

completed division, the initial guess encompasses both cells. Due to the abnormal length of the cell, the fitting routine is automatically performed with two

billiards to detect both cells. Using the fitting information, it is possible to identify the newly formed cell pole (white dots) and the old one (red dots). The

bottom panel shows the billiard used to describe the shape of cell 7. Since cells are represented as billiards, it is possible to obtain accurate estimates of their

length and radius, which allow distinguishing the cell poles and cell center for every cell. For cells that just divided and two billiards overlapping, the

intersection points are calculated (green dots) and used to draw a line (green line), which is then used to properly model the spherocylinder in the SbRD
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regions separately for every cell. We then compared the results obtained via SbRD with the

results obtained via SMdM on our previous dataset [14] (S1 Table), and using the new cluster-

ing method for cell detection (Table 1, Fig 4). We observe a significant difference in the

observed diffusion values for faster diffusing proteins, while for the slower diffusing particles

the differences are less or not significant. Notably, we observe a higher statistical significance

in the difference between the diffusion coefficient observed at the two cell poles. These results

are in line with the observations made via simulations, which indicate that (i) given the fast

acquisition time used in SMdM, the effect of confinement on the measured diffusion is less

pronounced for slower diffusing particles; and (ii) that the confinement effect is more pro-

nounced in the cell pole regions than in the center of the cell.

We find a correlation between the diffusion coefficient and the complex mass, while we do

not observe any correlation between the diffusion coefficient and the number of interactions of

the analyzed proteins (S5 Fig). However, since SbRD yields diffusion values corrected for con-

finement effects, we obtain a new and improved correlation between diffusion and complex

mass, with the diffusion coefficient scaling as D = αM-0.6. Consequently, the proposed correla-

tion between diffusion and perceived viscosity (η) [14] changes to η = αMcomplex
0.27 (S5 Fig).

SbRD versus SMdM analysis of the diffusion coefficient at the cell poles

Diffusion measured near the cell boundary and in the cell pole regions of rod-shaped bacteria

appears slower than in the cell center due to confinement effects [14,38,55–57]. We recently

showed [14] that the ratio between the diffusion coefficient at the cell poles and cell center is

lower for SMdM data than for simulated data, where particles are treated as mathematical

points that move randomly. This indicates that the slowdown observed in cells must be due to

some physiological effect, such as increased crowding in the polar region, possibly due to

routine. (C) Comparison of Maximum likelihood method and Voronoi clustering for cell detection. Voronoi clustering cannot properly distinguish cells that

are too close to each other. (D) Comparison of the apparent diffusion coefficients obtained with SMdM by analyzing the central region (top) and the poles

(bottom) of cells identified with Voronoi clustering and with our maximum likelihood method, from images acquired in our previous work [14]. Curves are

obtained via kernel density estimation.

https://doi.org/10.1371/journal.pcbi.1011093.g003

Table 1. Lateral diffusion coefficients of cell center and cell poles obtained via SMdM and SbRD for constructs fused to mEos3.2. The columns show the name of the

protein, their complex mass, their diffusion values obtained via SMdM (Dapp) for cell center and cell poles, and the confinement-corrected diffusion values obtained via

SbRD (Dcc). The Uniprot ID is provided for every protein, except for mEos3.2, for which the Fpbase ID is given.

Protein

name

UNIPROT ID complex mass

(kDa)

Dapp
center (μm2/s) Dapp

poles (μm2/s) Dcc
center (μm2/s) Dcc

poles (μm2/s)

mean standard

deviation

mean standard

deviation

mean standard

deviation

mean standard

deviation

mEos3.2 VUXFR* 25.7 11.8 1.9 8.7 1.4 14.2 2.7 11.6 1.9

ThrC P00934 72.8 7.5 1.2 5.3 1.5 8.5 1.5 6.4 2.0

GrxC 90AC62 34.8 9.9 1.3 7.8 1.3 11.6 1.7 10.1 2.0

IlvC P05793 318.9 2.8 0.4 2.1 0.4 3.0 0.4 2.4 0.5

AceB P08997 85.9 7.0 1.3 5.8 1.4 7.9 1.4 7.2 1.8

AcpP P0A6A8 34.3 9.5 1.7 7.5 1.3 11.2 2.7 9.6 1.9

ErpA P0ACC3 75.5 7.5 0.7 5.5 0.9 8.5 1.0 6.7 1.4

TrxA P0AA25 37.5 8.3 1.5 6.2 1.3 9.4 1.9 7.8 1.8

LeuS P07813 122.9 3.9 0.8 2.4 0.5 4.2 0.9 2.7 0.7

Icd P08200 142.8 5.0 0.9 3.8 0.7 5.5 1.1 4.5 0.9

TrxA2_hvo A0A558GCJ2 37.8 8.2 1.3 6.0 1.0 9.3 1.7 7.4 1.3

TrxA_lla A0A089XQE8 37.4 6.4 1.1 4.6 1.1 7.2 1.5 5.6 1.6

https://doi.org/10.1371/journal.pcbi.1011093.t001
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aggregation of misfolded or damaged proteins, the presence of the translation machinery, or

dynamic structures generating over- and undercrowded regions [14]. One of the key unan-

swered questions about the diffusion measured at the cell poles is: how much of the observed

slowdown is due to confinement and how much is due to physiological effects? It is not possi-

ble to decouple these effects by SMdM or other single molecule microscopy techniques. The

ratio between the diffusion coefficient at the cell poles and the cell center obtained by SbRD

correlates linearly with the ratio obtained by SMdM (S1 Table). This is not observed in simu-

lated cells (Fig 5A). Therefore, the slowdown observed at the poles cannot be attributed solely

to the effect of confinement. We compared the ratio between the diffusion at the cell poles and

the diffusion at the cell center obtained via SbRD with the one obtained via SMdM for all the

analyzed cells clustered as billiards. We observe a Dpole/Dcenter ratio of 0.74 ± 0.13 for SMdM

and 0.80 ± 0.16 for SbRD (Fig 5B). We analyzed the difference with a Mann-Whitney U rank

test for non-normally distributed data and obtained a p-value<< 0.01. We therefore conclude

that about 20% of the previously observed slowdown at the cell poles can be attributed to con-

finement effects.

Fig 4. Comparison of the diffusion values obtained via SMdM and via SbRD. Comparison of the apparent diffusion coefficient obtained via SMdM and of

the confinement-corrected diffusion coefficient for both the cell center (top) and the cell poles (bottom) for the dataset of proteins tagged with mEos3.2 [14].

Asterisks indicate statistical significance obtained via a Mann-Whitney U test for non-normally distributed data.

https://doi.org/10.1371/journal.pcbi.1011093.g004
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Fig 5. Cell pole analysis of diffusion. (A) Comparison of the ratios of the diffusion coefficients at the poles and center of the cell for data

analyzed by SbRD and SMdM. The black dotted line shows the case when the diffusion at the poles and center is equal. For simulated

data (orange) the ratio obtained with SbRD is equal to 1 for each protein. For microscopy data (blue) we find a positive correlation

between the ratio obtained by SMdM and SbRD. (B) Ratios of diffusion at the poles and the cell center obtained by SMdM and SbRD. (C)

Ratios of diffusion at the poles and cell center by SbRD for control cells, and cells treated with 250 μg/ml of erythromycin or 500 μg/ml
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Effect of Rifampicin and Erythromycin on diffusion at the cell poles

The slowdown in diffusion at the cell poles observed via SbRD can be due to: (i) the presence

of polysomes, large structures composed of several ribosomes bound to the same mRNA mole-

cule; (ii) clusters of misfolded or damaged proteins that hinder the mobility of other molecules;

(iii) or the presence of unknown substructures. To test the first hypothesis, we treated E. coli
cells expressing mEos3.2 with the antibiotics rifampicin and erythromycin, which disrupt the

polysomes via different mode of actions. Rifampicin inhibits DNA-dependent RNA biosynthe-

sis by inhibiting the bacterial RNA-polymerase [58,59], which leads to rapid RNA depletion,

particularly of mRNA [60,61], while erythromycin inhibits the assembly of the large ribosomal

subunits 50S [62]. Hence, the use of these antibiotics should make the diffusion coefficients at

the poles and middle of the cell similar if the polysomes would form a major hindrance for the

mobility of mEos3.2. However, we do not observe a significant change in ratio of the diffusion

coefficients (Fig 5C), with values of 0.84 ± 0.12, 0.86 ± 0.12 and 0.82 ± 0.12 for untreated cells,

cells treated with erythromycin and cells treated with rifampicin, respectively. This is con-

firmed by the Mann-Whitney U rank test for non-normally distributed data. To further inves-

tigate the effect of the antibiotics, we analyzed the absolute values of diffusion. For cells treated

with erythromycin, the diffusion at the cell center and at the cell poles show a moderate

increase compared to the control sample, while for cells treated with rifampicin the increase is

much larger (Fig 5D). For the cell center region we observe diffusion coefficients of

14.76 ± 2.30 μm2/s, 16.99 ± 2.04 μm2/s and 20.65 ± 3.61 μm2/s, and for the poles

12.31 ± 1.87 μm2/s, 14.62 ± 2.35 μm2/s and 16.98 ± 3.99 μm2/s for cells untreated, treated with

erythromycin and treated with rifampicin, respectively; the Mann-Whitney U rank confirms

these findings (p-values<< 0.01). We tentatively conclude that the overall faster diffusion in

the presence of the antibiotics is the result of a lower viscosity due to the depletion of mRNA,

which is most pronounce upon rifampicin treatment.

Analysis of diffusion at the cell poles indicates asymmetry that correlates

with aging

We then analyzed the microscopy data for differences between the cell poles (S6 Fig). We rea-

soned that differences in aging of the two poles could lead to differences in diffusion, especially

because misfolded and aggregated proteins tend to accumulate at the old pole [19–21]. We

acquired SMdM data of newly divided cells by selecting fields of view with cells that had just

completed the division process (Fig 3B, 3C), and we subsequently applied SbRD to the data-

sets. We determined the diffusion coefficient corrected for confinement effects of mEos3.2 in

each cell individually and find that the diffusion at the old pole is significantly slower than at

the new pole. The ratio between the diffusion at the new cell pole and the cell center is

0.86 ± 0.15, while Dold-pole/Dcenter is 0.80 ± 0.13 (S7 Fig). With the assumption that the new cell

pole enables on average faster diffusion than the old cell pole, we subtracted Dold-pole from

Dnew-pole for each cell. We obtained a distribution of residual diffusion coefficients with a mean

higher than zero (Fig 5E). We performed a one-sided Wilcoxon signed-rank test to confirm

whether the observed difference was significant, and obtained a p-value< 0.05. These findings

confirm the hypothesis that aging influences the structure of the cytoplasm at the poles of E.

coli, causing macromolecules at the older cell pole to diffuse slower than at the new one.

rifampicin. (D) Diffusion coefficients at the cell center (blue) and poles (orange) for control, erythromycin- and rifampicin-treated cells.

(E) Distribution of differences in diffusion coefficients between the newly formed cell pole and the old cell pole. The orange line

represents the average of the distribution, the black dashed line is the zero. All curves are obtained via kernel density estimation.

Statistical significance is indicated with asterisks.

https://doi.org/10.1371/journal.pcbi.1011093.g005
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Discussion

We developed a new method to obtain diffusion coefficients that are not affected by confine-

ment effects and bias by 2D modeling of a 3D motion. This method is key not only for measur-

ing lateral diffusion in small compartments, but also for diffusion in proximity of boundaries,

such as the plasma or organellar membranes. Despite the enormous advancements offered by

SMdM in probing molecule motion compared to other methods, the values obtained near

boundaries are affected by the effect of confinement. Our newly developed method SbRD

allows examining more precisely regions of the cell that are small and or geometrically more

complex.

A method to reconstruct confinement-corrected diffusion coefficients in

small cells

The main advantage of the SbRD method is that the shape of the analyzed compartment does

not limit the analysis. In fact, compartments of any shape, visualized and reconstructed via tri-

angularization, can be used to recreate an identical virtual compartment. In this way, our

method allows reconstructing unbiased diffusion in heterogeneous compartments such as

those in eukaryotic cells.

We show by simulations that lateral diffusion measurements performed in small compart-

ments, such as the prokaryotic cell, are bound to underestimate the diffusion coefficient, not

only in the regions near the boundary but also in the cell center. The confinement effect in the

cell center is mostly due to the 2D observation of a motion in 3D. Using the here developed

tool for cell clustering, we precisely detect spatial information such as radius, length, center

and orientation angle of a cell. We use this information to reconstruct cells with an assumed

spherocylindrical shape in Smoldyn [46]. Recursive diffusion simulations then yield the diffu-

sion coefficient corrected for the confinement effect and the spatial component of motion.

This approach led us to (more precisely) estimate the dependence of the diffusion coefficient

on the complex mass of the diffusing species and infer from the data the viscosity perceived by

a molecule of given molecular mass. We also find that the ratios between the diffusion at the

cell poles and the cell center for data acquired via SbRD and via SMdM correlate linearly, as

shown in Fig 5A, indicating that the observed slowdown in diffusion at the cell poles can be

attributed to physiological effects rather than solely to confinement.

Asymmetric diffusion at the cell poles correlates with aging

We previously obtained indications that the diffusion at the cell poles is slower than in the cen-

ter of E. coli cells [14]. We now determine precisely how much slower the diffusion is at the

cell poles, and we show that disassembly of polysomes and depletion of mRNA by antibiotic

treatment do not affect the differences in diffusion between the poles and the center of cell. In

fact, the diffusion coefficient increases by a similar percentage in each region of the cell, sug-

gesting that the antibiotic treatment has decreased the overall viscosity of the cytoplasm.

Moreover, we were able to precisely detect dividing cells and discriminate new from old cell

poles. We show that the poles at the division site exhibit a faster diffusion than the distant

poles. The diffusion coefficients at the new and old pole are 86% and 80%, respectively, of the

value measured at the cell center. In eukaryotic cells aging is accompanied by an increased

cytosolic crowding [63]. Here, we hypothesize that relative slowdown of diffusion at the old

pole is consistent with an increase in crowding and an indication of aging in E. coli.
Previous studies suggested the possibility of accumulation of aggregated proteins at the cell

poles of E. coli as a possible cause for the observed aging effects [19]. Łapińska et al. [45],
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however, do not observe protein aggregation in the form of inclusion bodies and they argue

that proper techniques for the investigation of the structure of cell poles are lacking. We also

do not see protein aggregation in the form of inclusion bodies in our dataset but observe a

slowdown in the diffusion at the poles. Importantly, we developed a method to more precisely

assess the structure of the cytoplasm in the cell pole regions. We conclude that the slower diffu-

sion observed at the old cell pole is an indication of the presence of small clusters of aggregated

macromolecules.

The E. coli cell cycle is divided in three different phases: the B period, which goes from the

cell birth to the beginning of DNA replication; the C period, which goes from the beginning to

the termination of DNA replication; and the D period, which represents the time between the

termination of DNA replication and cell division [64,65]. During the D period, the two chro-

mosomes segregate to two different parts of the cell, and a period of protein synthesis is neces-

sary for completing the cell division process. If accumulation of static or semi-static structure

is a sole characteristic of the cell poles, then the newly formed cell pole should exhibit a diffu-

sion value close to the one measured at the cell center. Since we observe a slower diffusion at

the new cell pole (albeit less slow than at the old pole) compared to the one measured at the

Fig 6. Accumulation of aggregated structures at the cell poles and correlation with aging. A cell with an old pole, with slower

diffusion, and a new cell pole, with faster diffusion is shown at the top. As the cell cycle progresses this difference is maintained.

When the cell divides and the septation ring forms (red), the two daughter cells will inherit the two cell poles. One of the cells will

have the oldest pole as its old pole, while the other will have the new pole of the mother as its old pole.

https://doi.org/10.1371/journal.pcbi.1011093.g006
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cell center, we conclude that the accumulation of damaged or aggregated protein is not a spe-

cific characteristic of the cell pole, rather it is a consequence of steric hindrance exerted by the

nucleoid, which causes accumulation of structures in nucleoid-free regions of the cell. Based

on the currently available literature [19,44,45,66], and on our observations of asymmetry in

the diffusion measured at the cell poles of already divided cells, we hypothesize that the

observed slowdown is maintained throughout the cell cycle, and that it is possibly passed on

from mother cell to daughter cells, where one of the daughter cells will inherit the “slow pole”

from the mother, while the other will inherit the “fast pole” (Fig 6).

Concluding remarks

We developed Simulation-based Reconstructed Diffusion (SbRD) to determine diffusion coef-

ficients in diverse compartments, corrected for confinement effects and by the motion of parti-

cles along the z-axis. We applied the technique to a previously recorded dataset of single-

molecule displacements. Using SbRD, we obtain a more precise correlation between the diffu-

sion coefficients and the complex mass of the diffusing species, from which we infer the per-

ceived viscosity for proteins diffusing in the cytoplasm. We recorded new single-molecule

displacement datasets to characterize the slower diffusion at the cell poles, and to determine

differences in confinement-corrected diffusion at the old and new pole. We correlate slower

diffusion at the old poles with aging of the cells. We argue that our new method and analyses

tools provide new possibilities for investigating the mechanism of aging of bacteria and other

types of cells.

Materials and methods

Live-cell single-molecule microscopy

Media preparation, cell culturing, measurements setup and live-cell imaging was performed as

described [14]. Briefly, for each experiment we started a pre-culture of E. coli, bearing a pBAD

plasmid for the expression of mEos3.2, by scratching a glycerol stock with a sterile inoculation

loop and dipping it in a 14-mL plastic culturing tube containing 3 mL of LB medium, prepared

following the formula of 10/10/5% (w/v) in MilliQ of NaCl, tryptone (Formedium), and pep-

tone (Formedium), respectively, and supplemented with ampicillin (100 μg/mL). We incu-

bated the pre-culture overnight at 30˚C, with shaking at 200 rpm. On the following day we

transferred 30 μL of the LB pre-culture into 3 mL of MOPS-buffered minimal medium

(MBM), prepared following the formula in [67], supplemented with 0.1% (v/v) glycerol and

ampicillin (100 μg/mL). Cultures were incubated overnight at 30˚C, with shaking at 200 rpm.

The next day cells were diluted to a final OD600 of 0.05 to 0.08 into prewarmed MBM contain-

ing 0.1% (v/v) glycerol, ampicillin (100 μg/mL) and 0.1% (w/v) L-arabinose, and incubated the

at 30˚C, with shaking at 200 rpm for 4 to 6 hours before microscopy experiments. Right before

the measurements, the cultures were spun down in a tabletop centrifuge and concentrated

three times in the growth medium.

To ensure a constant temperature of the microscope during the imaging process, the instru-

mentation was turned on 4 to 5 hours before the measurement, to minimize the xy drift of the

samples. Cells were imaged on a clean, non-functionalized high-precision glass slide {specs,

manufacturer}, previously sonicated in 5M KOH for 45 minutes and then rinsed 10 times with

MilliQ, followed by a drying process via pressurized air. Immobilization of the samples was

achieved by depositing 5 μL of concentrated cell suspension on the glass slied and then press-

ing the cells against the glass surface with solidified agarose pads having the same composition

of the MBM medium with a final concentration of agarose of 0.75% (w/v), formed inside a

polydimethylsiloxane (PDMS) chamber.
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Once the cells settled, we selected an area of our field of view to perform the measurements.

We adjusted the focus and the laser beam angle to obtain the highest number of foci, which

resulted in the beam angle slightly below that of the critical angle for total internal reflection

[highly inclined and laminated optical sheet microscopy [68]]. The camera and the laser were

then synchronized in the stroboscopy mode, with illumination pulses necessary to first photo-

convert and then detect mEos3.2 every 1.5 ms [14,35]. For a detailed overview of the scripts

used for managing the microscope, we refer to our code [69].

Erythromycin treatment was performed for 1 hour after cells reached an OD600 of 0.12–

0.15 on the day of measurement, by adding erythromycin to the cell culture to a final concen-

tration of 250 ng/μL. Agarose pads were supplemented with the same erythromycin

concentration.

Rifampicin treatment was performed as described for erythromycin, using a final concen-

tration of rifampicin of 500 ng/μL. Agarose pads were not supplemented with rifampicin, as

this influenced the photoconversion of mEos3.2.

To analyze dividing cells, we visually inspected different fields of view in every sample, and

selected areas in which a pair of obviously dividing cells were observed. Dividing cells were

then analyzed separately during data analysis.

Cell clustering and detection

The first step in our data analysis pipeline is represented by the detection and clustering of the

cells in the imaged field of view. First, the whole analyzed field of view was converted into a 2D

histogram in which every bin represents a certain number of fluorescent points. The back-

ground value was calculated by taking the median value of the bins. Only the fluorescent points

belonging to bins having a value higher than the background value plus one standard deviation

were kept and used to create point clouds. For each point cloud the eigenvectors were obtained

through the calculation of the covariance matrix, which allowed calculating the angle between

the first eigenvector and the x axis. From this, an appropriate rotational matrix was applied to

the xy coordinates of the point cloud, to align its major axis parallel to the x-axis. This allowed

obtaining a first set of features of the point cloud, namely the length, the width, the rotation

angle and the center, which we used to describe a billiard encompassing the point cloud. Shape

refinement was obtained by fitting an improved billiard around the point cloud via maximum

likelihood estimation. The fitting was performed with the following assumptions: (i) the fluo-

rescent molecules are uniformly distributed throughout the cells. Since the cells are spherocy-

linders imaged in two dimensions, the number of molecules observed is directly proportional

to the thickness of the cells; therefore the boundary areas are less populated than the center;

(ii) every observed point is equally likely as any other to be due to random noise; (iii) the prob-

ability of a point being random noise is equal to the probability of a point being a fluorescent

molecule. From these three assumptions we obtain the following probability mass function for

each particle (Eq 2):

pi x; yð Þ ¼
hiðx; yÞ
VðX;YÞ

þ
1

NðX;YÞ

� �

=2 ð2Þ

Where N is the number of particles (X,Y) inside the spherocylinder, V is the volume of the

spherocylinder, which is modeled based on all the points (X,Y) within the spherocylinder, and

hx,y is the thickness of the spherocylinder at the xy coordinate of the detected point. All these

parameters depend on the size of the spherocylinder, which is described by its length, its

radius, its center and its rotation angle. Therefore, these are used as fitting parameters to iden-

tify the best spherocylinder describing the detected point cloud.
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The identified cells are then filtered based on their shape, discarding cells that are shorter

than 0.65 μm (possibly cells that are partially out of the field of view), or wider than 1.5 μm

(possibly noise or drift). Cells having a length bigger than 3 μm were automatically reanalyzed

as dividing cells. In case of overlapping billiards for dividing cells, the intersection points were

identified by calculating the intersection of the two semicircles describing the two adjacent cell

poles. From this, it was possible to calculate the volume of the two spherical sections of the

neighboring cell poles. Since any of the observed points could belong to either cell, the final

volume used to calculate the probability density had to be adjusted by adding the intersection

volume (Eq 3):

pi x; yð Þ ¼
hi;1ðx; yÞ þ hi;2ðx; yÞ

VðX1;Y1Þ þ VðX2;Y2Þ þ VðXint;YintÞ
þ

1

NðX;YÞ

� �

=2 ð3Þ

Where N is the number of particles (X,Y) inside the two spherocylinders, V(X1,Y1) is the

volume of the first spherocylinder, V(X2,Y2) is the volume of the second spherocylinder, V
(Xint,Yint) is the volume of the intersection between the two spherocylinders, h1 is the thickness

of the first spherocylinder at the xy coordinate of the detected point, and h2 is the thickness of

the second spherocylinder at the xy coordinate of the detected point.

Finally, the identified cells are visually inspected and discarded if not suitable for analysis

(e.g. dividing cells not correctly identified, for which the total length is shorter than 3 μm).

The fitted spherocylinders are then used to create clusters from the point clouds. The data

analysis is then performed on each cluster separately, ignoring the points that are not included

in the cluster. More information on the cell detection and clustering can be found on our code

[69].

SMdM analysis

SMdM analysis was performed as described previously [14], with the exception that cell clus-

tering was performed prior to peak pairing. Briefly, we recorded several consecutive movies

for each field of view and paired the observed localizations from the two consecutive frames of

the stroboscopic illumination pattern. For single-molecule analysis, we used the STORM-anal-

ysis package developed by the Zhuang laboratory, which is included in the 3D-DAOSTORM

program for peak detection [70]. After a full movie was analyzed, the localizations were cor-

rected for xy drift.

All the detected peaks in each field of view were used for clustering and for finding the

shape of the spherocylinder that best describes the shape of the cell, as reported in the section

above.

Displacements were obtained from all the peaks belonging to a single cell, by pairing locali-

zations from the two consecutive frames of the stroboscopic illumination pattern. We set a

maximum distance of 600 nm between any two peaks to be paired: the distance is then used to

find all possible peak pairs for each couple of frames. To obtain a displacement, we match each

peak in the first frame of the couple with all the peaks falling within a radius of 600 nm in the

second frame. This procedure is repeated for all frame couples of each field of view. A hard fil-

ter based on the number of detected displacements was then applied, discarding cells with less

than 2000 or more than 20000 displacements, as described [14].

A pixel map with pixel size of 100 nm2 was obtained for each cell, with every pixel contain-

ing the information of all the peak pairs for which the starting position is located inside the

pixel itself. Each pixel of the map containing a minimum number of displacements (set to 10

in our study) was then fitted using a modified two-dimensional probability density function

(PDF), which accounts for a linear background effect k, which can be caused by an ambiguity
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in the assignment of peak pairs [14] (Eq 4):

p r; tð Þ ¼
1

1 � e�
r2max
4Dt þ k

2
r2
max

2r
4Dt

e� r2
4Dt þ kr

� �

ð4Þ

Since t is known, as it represents the time between two stroboscopic laser pulses, the PDF

was fitted on the detected displacements r, using the diffusion coefficient D and the background

value k as fitting parameters. Displacements were detected using the MLE clustering method

(see section above) for SbRD. Displacements were detected both using the MLE clustering

method and Voronoi clustering when comparing the two clustering methods using SMdM.

Given our advanced cell detection method, we could perform an accurate identification

of the different cell regions, namely the cell poles and the cell center. Fitting a billiard to

detect the shape of the cells allows obtaining precise information about their length and

their radius, which in turn allow identifying the cell pole regions and the central region of

the cell. All the displacements belonging to the same region were then used to perform the

fitting using Eq 10, yielding information about the diffusion coefficient in the different

regions of the cell [14].

The dependence of the diffusion coefficient on the complex mass was fitted using a power law

relationship D = αMcomplex
β, where Mcomplex is the complex mass and α and β are fitting parame-

ters [14]. Fitting was performed using the function curve_fit included in the SciPy library [71].

Smoldyn simulations

Simulations were performed using the software Smoldyn [46], as described [14]. A diffusion

coefficient and a time-step length are used as input for the simulations, together with the

total simulation time. At every time step, Smoldyn randomly selects a step length from a

normal distribution having as mean the squared mean squared displacement calculated

from the input diffusion coefficient, as well as a random direction in the xyz space for each

particle. These values are used to simulate the motion of every particle in the system at

every time step, until the total simulation time is reached. In our simulations we used a time

step of 0.1 ms and a total simulation time of 2 seconds. Particles every 15 steps (1.5 ms)

were then paired together in displacements, the results were benchmarked against the

microscopy data.

We used Smoldyn to generate two separate datasets. First, we simulated the motion of parti-

cles using input diffusion coefficients ranging from 0.01 to 110 μm2/s in a spherocylinder hav-

ing length and width of 2.25 and 0.9 μm, respectively, as these reflect the average cell size

observed in our previous work [14]. We then generated a second dataset using input diffusion

coefficients ranging from 1 to 20 μm2/s in a spherocylinder with a length ranging from 1.4 to

2.9 μm and width ranging from 0.6 to 1.5 μm, always keeping the ratio between length and

width higher than 2 and lower than 4 to reproduce actual dimensions of E. coli.
We analyzed the output of our simulation using the same approach adopted for SMdM mea-

surements and compared the results with those obtained by SbRD (see section SbRD analysis).
The equation used for simulated data does not account for linear background correction (Eq 5):

p r; tð Þ ¼
2r

4Dt
e� r2

4Dt ð5Þ

More information about the simulations can be found on our code [69].
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SbRD analysis

Simulation-based Reconstructed Diffusion (SbRD) was applied by using Smoldyn simulations

on SMdM analyses. A collection of points representing a cell, either coming from a Smoldyn

simulation or from a microscopy experiment, is analyzed using SMdM (see section SMdM
analysis). This analysis provides a pixel map of the cell, in which for each pixel the diffusion

coefficient, as well as the xy start and end positions of each displacement, are known. For

microscopy measurements, the new cell clustering method allowed us to determine the length

and radius of the spherocylinder in which the diffusing particles are confined, which could be

modeled in Smoldyn. In the case of dividing cells, the septum is modeled as a reflecting wall

passing through the intersection points of the two billiards, encompassing two separate cells,

and parallel to the z axis. In the case of data from Smoldyn simulations, the length and radius

of the spherocylinder are known. This information was then used to start a recursive simula-

tion in Smoldyn by placing a number of particles equal to the number of displacements in

their respective xy starting position inside the pixel, with the z position randomly assigned to

each particle inside the spherocylinder, which in the case of microscopy data was modeled as

described in Cell clustering and detection. A simulation lasting for 1.5 ms, with simulation

steps of 0.1 ms is started, using as input diffusion coefficient the value of the pixel obtained via

SMdM (see section Smoldyn simulations). The output of this simulation is then used to per-

form a fitting using equation 12, with D as fitting parameter. The squared difference between

the output diffusion obtained via simulations and the diffusion obtained via SMdM is then cal-

culated. The program then recursively iterates the simulation process until such squared differ-

ence reaches a minimum. We utilize a gradient descent method that is included in the

minimize method of the Scipy [71] library as minimization procedure. The input diffusion

coefficient used to obtain the output diffusion coefficient that minimizes the squared differ-

ence is then regarded as the real diffusion coefficient of the pixel. This process is then repeated

10 times for each pixel to account for the randomness introduced by Smoldyn [46] in the

choice of the step length and the direction of motion, as well as for the randomness introduced

in the placing the particle along the z-axis. The process is then repeated for every pixel of the

original SMdM map, from which an SbRD map is obtained. The pixel-by-pixel differences

between the SbRD map and the SMdM map are used to construct a difference map. More

information about the SbRD analysis can be found on our code [69].

Statistical analysis

All statistical analyses were performed using the Python package stats from the SciPy library

[71]. Shapiro-Wilk test for normality [72] was used to check whether the data are normally dis-

tributed, using a level of confidence of 5%. The test assumes the null hypothesis for data that

are normally distributed. Therefore, if the obtained p-value is lower than 0.05 the null hypothe-

sis is rejected and the data are assumed to be non-normally distributed. Non-normally distrib-

uted datasets are visualized via kernel density estimation.

The Mann-Whitney U rank test [73] was used to test whether the means of two non-nor-

mally distributed datasets are equal. In the case of comparing means of datasets, i.e. when no

prior assumptions are made and no precise outcome is expected, such as in the case of com-

paring the diffusion coefficients of cells treated with antibiotics, a two sided test was per-

formed. In the case of comparing means of datasets in which a specific outcome was expected,

such as in the case of comparing the diffusion coefficient of the two different cell poles, a one-

sided test was performed.

The Wilcoxon signed-rank test [74] was used to test whether the median of a dataset com-

ing from paired measurements is significantly different from zero. This test was used to assess
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whether the difference in diffusion between the new cell pole and the old cell pole was signifi-

cantly higher than zero, therefore it was conducted as a one sided test. Statistical significance

in pictures are indicated with 1 asterisk (*) for p-value< 0.05, 2 asterisks (**) for p-
value< 0.01 and 3 asterisks (***) for p-value< 0.001.

Supporting information

S1 Text. A mathematical solution to confined diffusion: Exploration of a folding approach

to solve confined diffusion mathematically and overview of its limitations.

(PDF)

S2 Text. Diffusion on a closed interval: Mathematical demonstration of Eq 3 from S1 Text.

(PDF)

S1 Algorithm. General algorithm used to estimate the diffusion coefficient from the bil-

liard approach. We assume that the coordinate system is located at the center of the billiard.

(PDF)

S1 Fig. Mathematical solution to confinement. (A) Effect of confinement on diffusion. Diffu-

sion simulations performed in a billiard at different input diffusion coefficients. The position

of the particles was measured every 1.5 ms. The higher the diffusion coefficient used for the

simulation, the more pronounced the confinement effect is. (B). Sketch of the (random)

motion of a particle in a 1 dimensional closed interval. The point x0 stands for the initial posi-

tion of the particle at t = 0. The point x(t) represents the position of the particle at time t > 0.

In this scenario, and for fixed t> 0, there are several possibilities for measuring a particle’s

position at x(t). The first scenario is that the particle travels to its measured position without

bouncing. Another scenario is that the particle arrives at its measured position after bouncing

(on the boundaries) once. In this way, there are infinitely many ways in which the particle can

reach its measured position, depending on the number of bounces the particle made. However,

the probability of each case is inversely proportional to the total distance traveled (Eq 3, Sup-

porting Information–Diffusion on a closed interval). In B we show the distances traveled for 0

and 1 bounce (against each boundary). (C) Solutions of the diffusion equation on a bounded

interval with length L = 2 μm, D = 2 μm2/s, and t = {0.05, 0.1, 0.5} seconds, shown in blue, red,

and purple respectively. The solid lines correspond to the analytical solution [3], while the

dashed curves correspond to [5]. From top to bottom we show comparisons for 0, 1, and 2

bounces. Notice that, in this example, accounting for two bounces already gives a sufficiently

good approximation of the analytical solution (bottom panel). (D) A few trajectories of a bil-

liard in the Bunimovich stadium. We show one 0-bounce (solid line) and four 1-bounce bil-

liard trajectories (dashed lines). The bouncing points (xc1, yc1) and (xc2, yc2) are solutions of

the system of equations shown under [7]. (E) Diffusion maps of a billiard obtained by analyz-

ing a Smoldyn simulation created with an input diffusion coefficient of 20 μm2/s, with parti-

cles’ position measured every 1.5 ms. Maps are obtained via SMdM analysis (left) and via

mathematical method analysis (right). The difference between the mathematical map and the

SMdM map is depicted in the bottom panel.

(TIF)

S2 Fig. Two-dimensional diffusion in confined space with bouncing. (A) Example of a rect-

angular billiard. We show all possible billiard trajectories that take the particle from p0 = (x0,

y0) to pf = (x1, y1) after 0 (solid line) and 1 bounce (dashed lines), and we show one trajectory

with 2 bounces (dash-dot lines). The solution of the diffusion equation in this scenario can be

computed by adding all the “boundary-less” densities accounting for the different lengths of
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the billiard trajectories that take the particle from p0 to pf. (B) Comparison of the density ρ for

a square of sides 2, with D = 2, ρ(x, y, 0) = δ2(x, y), and Neumann boundary conditions. In all

figures the blue surface corresponds to the analytical solution, the green surface indicates the

density without accounting for any bounce, and the red surface shows the density accounting

for one bounce. Left for t = 0.01, center for t = 0.1, and right for t = 0.25. Notice that, as

expected, the more bounces, the better the approximation.

(TIF)

S3 Fig. Limitation of the mathematical model for confined diffusion. (A) Schematic of Pen-

rose unilluminable room. A ray (vector) starting from the center of the room can never reach

the regions colored in yellow, regardless of the number of bounces against the perimeter. A

particle moving by random motion (dashed line) can reach any region in the room. (B) Limi-

tations of using a 2D model to describe a 3D motion. Left panel: the motion of a particle mov-

ing in 3D space (blue arrow) is projected on a 2D surface (orange arrow). The observed

distance is shorter than the actual travelled distance, leading to an underestimation of the dif-

fusion coefficient. Right panel: the effect of the overestimation of the billiard perimeter. By

observing the projection of a 3D spherocylinder in 2D, we use as billiard’s perimeter its largest

xy projection. When displacements are binned in a pixel close to the boundaries, the bouncing

of particles will likely occur against a different section of the spherocylinder, where the circum-

ference of the billiard is smaller. In this way, the calculated bouncing path (orange arrow) over-

estimates the actual path (blue arrow), leading to an overestimation of the diffusion coefficient

near the boundaries. (C) Diffusion maps of a spherocylinder obtained by analyzing a Smoldyn

simulation created with an input diffusion coefficient of 20 μm2/s. Maps are obtained via

SMdM analysis (left) and via mathematical method analysis (right). The difference between

the mathematical map and the SMdM map is depicted in the bottom panel.

(TIF)

S4 Fig. SbRD applied to simulated multiple-component diffusion. We simulated multiple

component diffusion in a spherocylinder (using Smoldyn) with an input diffusion coefficient

of 20 μm2/s for the first component. The second component was simulated with different

dynamics. (A) Aggregation is simulated by defining a spherical region in the cell pole with

input diffusion coefficient of 2 μm2/s. Particles diffusing outside of the aggregation region

could not enter the sphere, and vice versa particles confined in the aggregation region could

not diffuse outside of the sphere (B) Interaction with a cellular component located at the cell

pole is simulated by defining a spherical region in the cell pole, in which particles change their

diffusion coefficient from 20 μm2/s to 16 μm2/s upon entering the region and retrieve their

original diffusion coefficient (20 μm2/s) after exiting the region. (C) Diffusion of two different

species is simulated by defining a spherical region at the cell pole in which a species diffuses

with D is 10 μm2/s, while the other species freely diffuse in the whole spherocylinder, including

the spherical region, with a diffusion coefficient of 20 μm2/s. SbRD allows in all cases to

retrieve information about the genuine diffusion coefficient in the cell and near the bound-

aries, without masking the effect of aggregation, interaction or multiple diffusing species. An

advanced method using SbRD together with recursive recognition of slower or faster diffusing

regions could allow detecting anomalies in cells.

(TIF)

S5 Fig. Correlation of Diffusion and perceived viscosity with the Complex Mass as revealed

by SbRD. (A) Dependence of the Dcenter measured with SbRD on the complex mass of a set

of cytoplasmic proteins [14] (S1 Table). Native proteins are indicated in blue, mEos3.2 is indi-

cated in red. The gray trendline is obtained by calculating the dependence of the diffusion
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coefficient on the complex mass. (B) Intracellular perceived viscosity as a function of the

molecular weight of protein complexes. The trendline is obtained by fitting the formula η =

αM0.27, obtained by the difference between the Einstein-Stokes equation and our model for

the relationship between diffusion and complex mass [14].

(TIF)

S6 Fig. Difference in diffusion between fast and slow cell poles. A previously acquired data-

set [14] was re-analyzed with SbRD. The ratios between the diffusion values obtained at the

cell poles and at the cell center were labeled as faster pole and slower pole for each cell. All

faster poles were clustered together, and their value was compared with the clustered slower

poles. The faster cell pole cluster has a value of 0.89 ± 0.17, while the slower cell pole cluster

has a value of 0.72 ± 0.17. The difference in values between the two clusters is significant, with

a p-value << 0.01, calculated from a Mann-Whitney U rank test for non-normally distributed

samples.

(TIF)

S7 Fig. Difference in diffusion between old and new cell pole. The acquired dataset of divid-

ing cells was analyzed with SbRD. The presented data are averages of the whole dataset. The

average of the ratios between the diffusion at the old cell pole and the diffusion at the cell cen-

ter was compared with the average of the ratios between the diffusion at the new cell pole and

at the diffusion at the cell center. The old cell pole cluster has a value of 0.80 ± 0.13, while the

new cell pole cluster has a value of 0.86 ± 0.15. The difference in values between the two clus-

ters is significant, with a p-value < 0.05, calculated from a Mann-Whitney U rank test for non-

normally distributed samples.

(TIF)

S1 Table. Dataset from (14). The cell numbers represent single, non-dividing cells without

visible aggregation of the expressed protein. The columns show the target protein, number of

analyzed cells, abundance, loneliness, molecular weight, oligomeric state (1—monomer, 2—

homodimer, 4—homotetramer), and complex mass. The complex mass is the sum of the

molecular weight of the monomeric protein plus mEos3.2 and multiplied by the oligomeric

state number. The mean and SD of Dapp center are shown in the last two columns. The Uni-

Prot ID is reported for all proteins, except for mEos3.2, for which the Fpbase ID is given.

(PDF)
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