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Abstract

Next-generation sequencing has led to an explosion of genetic findings for many rare dis-

eases. However, most of the variants identified are very rare and were also identified in

small pedigrees, which creates challenges in terms of penetrance estimation and translation

into genetic counselling in the setting of cascade testing. We use simulations to show that

for a rare (dominant) disorder where a variant is identified in a small number of small pedi-

grees, the penetrance estimate can both have large uncertainty and be drastically inflated,

due to underlying ascertainment bias. We have developed PenEst, an app that allows users

to investigate the phenomenon across ranges of parameter settings. We also illustrate

robust ascertainment corrections via the LOD (logarithm of the odds) score, and recom-

mend a LOD-based approach to assessing pathogenicity of rare variants in the presence of

reduced penetrance.

Introduction

Next-generation sequencing has led to an explosion in the number of genetic findings for many

rare diseases. For certain types of rare coding variants (e.g. missense, or protein truncating), if the

variant is sufficiently rare and has bioinformatic predictions that are severe, current algorithms

result in it being classified as pathogenic [1]. However, the analysis of large-scale sequencing from

cohorts, such as ExAC [2], gnomAD [3], and the UK Biobank [4], has shown that many such vari-

ants may often lack clinically significant impact. For example, ExAC estimated that individuals

from population cohorts carried a mean of 53 variants previously thought to be sufficient causes

of Mendelian diseases [2]. Additionally, 88% of such variants had MAF>1%, implying that they

are likely not sufficient causes. This may indicate that such variants are not causally related to dis-

ease, or perhaps, that they are causally related but with reduced penetrance.

Penetrance plays an important role in understanding disease pathology, in the appropriate

classification of pathogenic variants, and perhaps above all in the context of genetic counseling.
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However, most of the variants reported to date have been very rare and identified in small sets

of unrelated individuals (sometimes just one) or small pedigrees. Penetrance cannot be esti-

mated from a single case, or a single parent-offspring trio presenting with a de novo mutation

in the offspring. But even with multiple cases or families, determination of the penetrance can

present challenges. Here we focus on one such challenge: ascertainment.

Typically a variant of interest is first identified in one individual with a given phenotype.

Investigators may then sequence either additional relatives of the individual, or additional

individuals or families presenting with the same or closely related phenotypes, with the goal of

bolstering the case for pathogenicity. Thus, ascertainment of individuals to be sequenced typi-

cally proceeds in stages. The precise ascertainment process used to enroll individuals and/or

families is usually at least to some extent unsystematic, and may vary between families. Ascer-

tainment is therefore challenging to model when attempting to estimate the penetrance of a

variant.

One situation in which ascertainment can be easily handled is “single” ascertainment, in

which the probability of an affected individual being ascertained is proportional to the number

of affected individuals in the family [5]. In fact, much of the literature on inferring pathogenic-

ity or estimating penetrance tends to assume single ascertainment, e.g., [6], where ascertain-

ment is addressed by conditioning on “the proband,” a procedure which is strictly correct only

under true single ascertainment. While it is true that the typical study ascertains families

through one individual who may be designated as the single “proband”, this does not ensure

that the study meets the proportionality requirement of single ascertainment. This require-

ment would be violated, e.g., if families with four affected members were more than twice as

likely to be recruited as families with just two; or, if the probability of a second sibling being

ascertained were dependent on the ascertainment status of the first. And in general, if either (i)

ascertainment is not truly single, or (ii) even if it is, if an appropriate ascertainment correction

is not incorporated into the estimation method, then penetrance estimates will be biased. Here

we consider the magnitude of that bias, across a range of plausible ascertainment models and

varying amounts of available data.

Penetrance estimation also plays a role in the assessment of pathogenicity. Some approaches

to the interpretation of rare coding variants assume either full or high penetrance [7], for the

sake of simplicity. Extensive criteria have been proposed to claim a causal relationship between

variants and disease, and the authors have urged caution in presuming full penetrance for

pathogenic variants [8]. But in practice, penetrance remains an important consideration. For

instance, the ACMGG/AMP joint consensus recommendations [1] warns against ignoring the

possibility of reduced penetrance in establishing segregation of a VOI with a phenotype, but

also instructs that “lack of segregation. . .provides strong evidence against pathogenicity.”

(p. 15). And in practice, many laboratories will rule out candidate VOIs when they are found

among unaffected relatives. Particularly in the absence of a rigorous and accurate estimate of

the actual penetrance, this complicates the use of segregation information in assessments of

pathogenicity. Below we consider some implications for the assessment of pathogenicity in the

presence of reduced penetrance, and we propose a new metric for assessing co-segregation

between a VOI and disease.

Methods

Preliminaries and notation

We focus here on sibship data. The impact of ascertainment for more complex pedigrees can

be approximated by considering large sibship sizes. We assume a very rare variant of interest

(VOI), and an autosomal dominant disease D. Let a qualifying individual (QI) be anyone who
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is both heterozygous (HET) for the VOI and also affected (AFF) with D. Let r be the number

of QI sibs within a family, and let t be the number of AFF sibs regardless of VOI genotype. We

also assume that, regardless of VOI status, an individual might develop D due to other factors,

which might be genetic (involving one or more VOIs at other loci or other variants within the

same gene) and/or environmental (e.g., due to infections). Let γ be the combined penetrance

across all causes other than the VOI under study. Since we assume the VOI is very rare, γ is

effectively the population prevalence of D. Let s be the total number of siblings in a family

(regardless of phenotype), and let N be the number of s-sized sibships in a dataset.

Ascertainment model

In order to consider a range of plausible ascertainment scenarios, we employ the general fam-

ily-based k-model of ascertainment [9]. In its simplest form, this model stipulates that the

probability that a family is ascertained is proportional to rk, where k controls the model. For

example, when k = 1, the probability of ascertainment is strictly proportional to r: this is equiv-

alent to classical “single ascertainment”. Similarly, when k = 0, so that every family with r� 1

is ascertained, this model is equivalent to classical “complete” or “truncate” ascertainment. We

generalize this model in two ways. First, we assume that ascertainment requires r� 1, that is,

every ascertained family contains at least one QI, but we allow that there may be additional

preferential ascertainment of families based on t alone, that is, that investigators may preferen-

tially ascertain families with more affected individuals without knowing (or prior to knowing)

the VOI status of those additional individuals. Second, we allow that even an individual carry-

ing the VOI may develop disease due to any other independent causes at work in the general

population. With these two extensions in mind, our ascertainment model becomes

P[sibship is ascertained | r, t] = c(rk+t); for r�1, and 0 otherwisewhere c is a normalizing

constant.

Estimation methods

Let f be the attributable penetrance, or the penetrance due to the VOI for HET individuals.

(Note that when γ> 0, β = P[AFF|HET] = γ+f−γf. However, we focus here on estimation of f
itself rather than β.) In what follows, we estimate f in three ways, the first two of which are:

(i) ~f is obtained by counting the proportion of AFF individuals among all HET individuals in

the data set, after dropping one QI individual per family, that is, applying the correction for

single ascertainment;

(ii) ~f ∗ is obtained by counting the proportion of AFF individuals among all HET individuals in

the data set, that is, without applying any ascertainment correction.

~f ∗ is a naïve estimate, which would be correct if the families were not ascertained based on

either phenotype or genotype. It is clearly, however, incorrect under any of our ascertainment

models. Our interest in this estimate is to establish how biased it becomes under various ascer-

tainment scenarios. ~f by contrast, does apply the frequently employed single ascertainment

correction, and again, our interest in ~f is to establish how biased it will be under ascertainment

scenarios other than single ascertainment.

The third form of penetrance estimate we consider is based on an “ascertainment assump-

tion free” [10] approach, which involves conditioning on all of the phenotypic data. This is the

ascertainment correction implicit in the usual LOD score [11–13], and also the LOD score

allowing for linkage disequilibrium or LD-LOD [6, 14, 15], and in principle any program that

allows calculation of the LOD score will support this method. The calculation is done here
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assigning the VOI (which plays the role of the “marker”) and the disease allele the same (rare)

frequency (we have used 0.001 in the simulations), assuming complete linkage disequilibrium

between the two (D0 = 1), and also assuming 0 recombination between the marker and the dis-

ease allele. Free parameters in the model are then the 3 penetrances; in our calculations we also

include the admixture parameter α of Smith [16], representing the probability that any given

family is of the “linked” type, which adds robustness when phenocopy levels are high.

Maximizing the LD-LOD over the free parameters gives us the LD-MOD, which occurs at

the maximum likelihood estimate (m.l.e.) of f̂ of f [10–13], giving us our third estimate:

(iii) f̂ is obtained by maximizing the LD-LOD over the penetrance vector.

Assessment of pathogenicity

While maximizing the LD-LOD can be used to estimate f, the LD-MOD itself is not a good sta-

tistic for representing the strength of evidence for co-segregation between the VOI and disease,

because it is not additionally conditioned on ascertainment through the VOI. We note, how-

ever, that in nuclear families, once we ascertain so as to require the VOI to be present in the

family, there is no remaining LD information in the sibship, since LD information is conveyed

entirely by the marker allele frequencies in the parents. Therefore, assessments of co-segrega-

tion can be made using the ordinary (linkage equilibrium) LOD, or LE-LOD. Because maxi-

mizing the LE-LOD itself will not return true m.l.e.s of f under the LD model, we consider

evaluating the LE-LOD at the maximizing model obtained from the LD-MOD, for a statistic

we annotate as LE-LOD(max).

Thompson et al. [6], following Petersen et al. [15], proposed using a particular form of what

they refer to as a Bayes Factor (BF) for assessing the strength of evidence for co-segregation of

the VOI with disease. We refer to this statistic as the Thompson BF (TBF). The TBF is closely

related to the LD-LOD, but it incorporates an additional adjustment for single ascertainment

through a QI. As we illustrate below, unlike the LD-LOD, the TBF cannot be maximized to

obtain ascertainment-corrected estimates of the penetrances; and [6] did not recommend

using it for this purpose. However, this complicates application of the TBF, which requires

specifying a fixed set of pentrances (but see also [15]), which must be separately obtained or

estimated; furthermore, it is not clear whether the adjustment for single ascertainment incor-

porated into the TBF is strictly correct or robust to other ascertainment models.

In what follows we evaluate the behavior of the LE-LOD(max), and compare it with the

TBF, using the simulated data. For comparability with the LOD, we report TBF on the log10

scale. We also incorporate the admixture parameter α in order to afford comparability with

the LE- or LD-LOD in maintaining some degree of robustness to phenocopies.

Simulation methods

Expected values of ~f ; ~f ∗ and f̂ were obtained via simulation, by averaging each estimate’s value

across 1,000 replicates per generating condition, and standard errors were obtained by averag-

ing the standard deviation of each estimate across those same 1,000 replicates. (While the

expected values of ~f and ~f ∗ are easily calculated analytically, the standard errors are not.) We

note that, depending on the generating conditions, many sibships may end up with only the

QI being HET. In this case, the proportion of AFF out of all HET individuals cannot be scored

after dropping the QI, and therefore any such sibships do not contribute to ~f and ~f ∗, effectively

reducing the sample size. For simplicity, in computing ~f and ~f ∗ we assume all parents are
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phenotypically and genotypically unknown; when computing LODs and TBF, parents are

treated as genotypically known but phenotypically unknown. Including parental information

does not substantively affect results. Simulations and calculations were done in MATLAB

(2021.9.10.0.1739362 (R2021a), Natick, Massachusetts: The MathWorks Inc.); LE-LOD and

TBF calculations were done using KELVIN [17].

Results

Impact of ascertainment on penetrance estimates

Fig 1 shows results for true single ascertainment (k = 1), for s = 2, as a function of sample size

N. Here we assume that the true value of f = 0.5. As can be seen, in this case, the mean of ~f =

0.5, the generating value, as expected. But using ~f ∗ the estimates are seriously upwardly biased

in all data sets, regardless of N. Note that because each sibship contains at least one QI, by stip-

ulation, the minimum value of ~f ∗ is 0.50.

Note too that even the correct estimate ~f shows considerable sampling variability. For

instance, with N = 10, ~f will be>70% or <30% in approximately 40% of all data sets when

f = 50%. This variability remains appreciable even for N = 50.

For ascertainment models other than single, overall variability remains similar to what is

shown in Fig 1, but even ~f tends to be biased, with mean ~f = 0.60, 0.50, 0.43 and 0.38 for k = 2,

1, 0 and −1, respectively. In all cases, the uncorrected ~f ∗ will return even more biased estimates,

with mean ~f ∗ = 0.89, 0.88, 0.87 and 0.86, for k = 2, 1, 0 and −1, respectively.

Fig 2 shows the impact of the population prevalence γ on average penetrance estimates.

Focusing first on single ascertainment (k = 1) and f = 0.5, we can see that regardless of k, the

Fig 1. Swarm plots showing sampling distributions of penetrance estimates as a function of number of families N.

Distributions of (A) ~f~ and (B) ~f~∗ are shown for simulations of 1000 replicates, with true penetrance f = 0.5. The

number of sibs per family s = 2; phenocopy rate γ = 0. Users interested in varying the parameters can use the PenEst

app.

https://doi.org/10.1371/journal.pone.0290336.g001
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expected value of ~f is relatively independent of γ until γ becomes quite high. Note that for

f = 0.5 and γ = 0.5, the actual probability that a VOI carrier is affected under our generating

model is 0.5 + 0.5 − (0.5)(0.5) = 0.75, which is in line with the estimates returned by ~f : ~f ∗

might be said to be even more robust to γ, although this is because in this case ~f ∗ is already

close to the top of the scale for γ = 0. Moreover, ~f ∗ appears not only indifferent to γ, but also to

f itself, with estimates >70% even for f = 0.05, and>80% for f = 0.05 when γ = 0.5. These pat-

terns repeat for different values of k, with visible impact only on the magnitude of the bias for

any given (f, γ) combination. Ascertainment effects will be reduced as s increases. Users who

are interested in investigating penetrance estimates for other ascertainment models, other

combinations of parameter values or other sibship sizes are encouraged to download the Pen-

Est app: https://github.com/MathematicalMedicine/PenetranceEstimator.

Fig 3 shows results for f̂ for the same data used in Figs 1 and 2. As can be seen, f̂ behaves

very much like ~f when k = 1 (Fig 3A), but it retains almost complete robustness to ascertain-

ment, and also to γ at least until γ is quite large (Fig 3B). (As with ~f , as γ gets very large, f̂ cov-

ers both cases due to the VOI and those among variant carriers due to other causes.)

Comparing Fig 3A with Fig 1A, f̂ shows slightly greater sampling variability than ~f ; this is due

to the inherent ascertainment correction built in to f̂ . The slight but systematic over- or

under-estimation of f seen in Fig 3B is due to the small sample size; as N increases f̂ ! f

Fig 2. Expected values of penetrance estimates as a function of population prevalence γ and ascertainment

parameter k. Expected values of (A) ~f~ and (B) ~f~∗ when the true penetrance f = 0.5; expected values of (C) ~f~ and (D) ~f~∗
when f = 0.2 (lower line sets) or f = 0.8 (upper line sets). The number of sibs per family, s = 2. Users interested in

varying the parameters can use the PenEst app.

https://doi.org/10.1371/journal.pone.0290336.g002
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(results not shown). However, in small samples the upward bias can be appreciable particularly

when f is small; e.g., when f = 0.05 (γ = 0), for N = 20, the expected value of f̂ = 0.165.

For comparison purposes, Fig 3C shows the corresponding results based on maximizing

the TBF. As noted above, this procedure has never been proposed as a mechanism for estimat-

ing f, but the figure illustrates that the small differences in form between the LD-LOD and the

TBF fundamentally change the applicability of the ascertainment assumption free approach to

estimation. This becomes relevant when deciding how to set parameter values in calculating

the TBF for purposes of assessing pathogenicity. We note too that, particularly in the presence

of phenocopies, estimates obtained by maximizing the TBF remain highly biased even in very

large samples. For example, for s = 2, k = 1, N = 1000 and fDD = fDd = 0.05 or 0.5, when γ = 0.1,

maximizing the LD-LOD returns estimates of fDd of 0.07 (s.d. 0.05) and 0.50 (0.04), respec-

tively, while maximizing the TBF returns 0.74 (0.26) and 0.66 (0.12), respectively.

Assessment of pathogenicity

Fig 4A shows the distribution of the LE-MOD(max) as a function of γ and k, for f = 0.5, s = 2

and N = 20. Not surprisingly, as γ increases, evidence for co-segregation decreases; also notable

is that, while estimates of f are robust to ascertainment, the LE-LOD(max) itself increases as k
increases; but since there really is co-segregation, this is not in itself problematic. While values

of LE-MOD(max) are small (see also below), they are consistently positive until γ is quite

large, indicating evidence in favor of co-segregation. By contrast, results for the TBF(gen) (Fig

4B) become increasingly negative as γ increases, erroneously indicating evidence against co-

segregation for even small values of γ, with strikingly negative values for large γ. For

Fig 3. Sampling distributions and expected values of
^f^. (A) Swarm plots showing sampling distributions of

^f^, as obtained

from maximizing the LD-LOD, as a function of number of families N; (B) Expected values of
^f^ as a function of population

prevalence γ and ascertainment parameter k, for f = 0.2, 0.5 and 0.8, reading from bottom to top of the plot, respectively; (C)

Expected values of the estimate of f obtained by maximizing the TBF (denoted here as fTBF) as a function of population

prevalence γ and ascertainment parameter k, for f = 0.2, 0.5 and 0.8, reading from bottom to top of the plot, respectively. Data

are the same as used to generate Figs 1 and 2, respectively.

https://doi.org/10.1371/journal.pone.0290336.g003
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comparison we also show (Fig 4C) results for the TBF when it is evaluated at the same maxi-

mizing model used to calculate LE-LOD(max). While this ameliorates the problem somewhat,

especially for large γ, the basic pattern of results remains the same.

Fig 5 shows the distribution of LE-LOD(max), as a function of N, when data are generated

under the alternative hypothesis of (complete) disequilibrium (Fig 5A) and the null hypothesis

of no linkage and no disequilibrium (Fig 5B), for s = 2, k = 1, γ = 0, and f = .5. Notably, under

the alternative hypothesis, evidence of co-segregation of the VOI with disease tends to be quite

weak until N is at least 30, and even then the chance of obtaining a small LOD score remains

high. Under these generating conditions, it apparently requires closer to 50 2-child families

before there is a reasonable chance of obtaining a substantial LE-LOD(max). Under the null

distribution, even with N = 50 LE-LOD(max) scores are not consistently negative. However,

the maximum and minimum scores all remain small in magnitude, so that the distributions

under the alternative and the null are increasingly non-overlapping. For example, when

N = 50 and there is co-segregation, 480/1000 replicates return LE-LOD(max)� 3; however,

when there is no co-segregation, 0 out of 1000 replicates do so.

Discussion

In general, our simulations show that under unsystematic ascertainment schemes, or in cases

where appropriate ascertainment corrections are not included in the estimation procedure,

there is a high risk of over-estimating the penetrance of any given VOI. This finding is conso-

nant with, and may in large part explain, reports for specific variants. For example, multiple

coding variants in PRNP had been reported to cause rare dominant monogenic

Fig 4. Expected values of alternative co-segregation measures as a function of ascertainment model and phenocopy rate for N = 20. (A) Expected values of

LE-LOD(max) as a function of population prevalence γ and ascertainment parameter k, for f = 0.5, s = 2 and N = 20. (B) Expected values of the TBF(gen) for

the same data. (C) Expected values of the TBF evaluated at the same maximizing model used to evaluate LE-LOD in panel A. Note the different scales on the y-

axis across subplots.

https://doi.org/10.1371/journal.pone.0290336.g004
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neurodegenerative disease, but there was a 30-fold higher prevalence of variants previously

suggested to be causal in this gene in ExAC compared to the expected frequency calculated

from the estimated prevalence of the disorder [18]. Specifically for three variants the lifetime

risk of developing disease was <10%. Similarly, GWAS array data from the UK Biobank were

used to estimate pathogenicity, penetrance, and expressivity of putative disease-causing rare

variants (MAF<1%) that were directly genotyped and had good quality [19]. Focused on

maturity-onset diabetes of the young and developmental disorders, many specific variants

were found for which the penetrance—estimated either in families ascertained for the presence

of the VOI or in disease cohorts—was much higher than that obtained from a population-

based cohort. For example, previous studies had estimated the penetrance of HNF4A
rs137853336 (chr20:43042354C>T, p.Arg114Trp) to be up to 75% by age 40 years from a large

Maturity Onset Diabetes of the Young cohort, but data from the UK Biobank estimated pene-

trance to be<10% [19]. Similarly, in the same study, none of 6 protein truncating variants in 5

genes that had previously been related to disease via a haploinsufficiency mechanisms were

associated with development traits, casting doubt that such variants in these genes are a cause

of developmental delay.

In another study, the median penetrance was estimated to be 14% for 361 variants that were

observed in multiple individuals from genes in which some variants are related to either hyper-

trophic or dilated cardiomyopathy [20]. For example, MYBPC3:c.1504C>T:p.R502W, had

penetrance estimated of ~50% by age 45 years in the clinical setting. However, penetrance esti-

mates of 6.4% were obtained for this variant from two population-based sequencing cohorts.

The extent of coding variation in humans is astounding: gnomAD shows that on average each

individual harbours around 11,000 missense variants, about 200 of which are rare (allele

Fig 5. Sampling distributions of LE-LOD(max) as a function of number of families N. (A) Results when data are generated under the hypothesis of

(complete) disequilibrium, with s = 2, k = 1, γ = 0, and f = .5. (B) Corresponding results when data are generated under the null hypothesis of no linkage and no

linkage disequilibrium.

https://doi.org/10.1371/journal.pone.0290336.g005
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frequency<0.1%) [21]. Unique variants are also relatively common: each participant in gno-

mAD has a mean of 27 (±13) novel coding variants that were not observed in other individuals

in gnomAD [21]. These observations have implications for genetic counselling, including the

recommendation of invasive screening procedures and administration of preventative

treatment.

By contrast, maximizing the LD-LOD over the penetrances, which yields the LD-MOD, is a

valid method for obtaining ascertainment-adjusted maximum likelihood estimates. Variability

of these estimates remains a concern, however, even in reasonably large sample sizes (say,

N = 50 sibships). While the LD-MOD itself cannot be used as a measure of evidence for or

against co-segregation, because it is not properly conditioned on ascertainment through the

VOI, the penetrance estimates obtained from the LD-MOD can be used in conjunction with

the ordinary (linage equilibrium) LOD to give a statistic we called the LE-LOD(max). This sta-

tistic appears to perform more reliably than the Bayes factor proposed by Thompson et al. [6]

in application to sibship data under the conditions we have simulated in this paper. It reminds

us, however, that in the presence of reduced penetrance, attributions of co-segregation

between a VOI and a disease can be difficult to reliably establish, or rule out, without substan-

tial quantities of data.

Acknowledgments

Special thanks to Jo Valentine-Cooper for creation of the PenEst app.

Author Contributions

Conceptualization: Andrew D. Paterson, Veronica J. Vieland.

Formal analysis: Sang-Cheol Seok, Veronica J. Vieland.

Investigation: Andrew D. Paterson, Sang-Cheol Seok, Veronica J. Vieland.

Methodology: Sang-Cheol Seok, Veronica J. Vieland.

Software: Sang-Cheol Seok, Veronica J. Vieland.

Supervision: Andrew D. Paterson, Veronica J. Vieland.

Visualization: Sang-Cheol Seok.

Writing – original draft: Andrew D. Paterson, Veronica J. Vieland.

Writing – review & editing: Andrew D. Paterson, Sang-Cheol Seok, Veronica J. Vieland.

References
1. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the inter-

pretation of sequence variants: a joint consensus recommendation of the American College of Medical

Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015; 17(5):405–24.

https://doi.org/10.1038/gim.2015.30 PMID: 25741868; PubMed Central PMCID: PMC4544753.

2. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding

genetic variation in 60,706 humans. Nature. 2016; 536(7616):285–91. https://doi.org/10.1038/

nature19057 PMID: 27535533; PubMed Central PMCID: PMC5018207.

3. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint
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