Skip to main content
. 2023 Sep 21;12:RP88143. doi: 10.7554/eLife.88143

Figure 1. Interoceptive subesophageal zone neurons (ISNs) relay information to the pars intercerebralis.

(A) Temporal consumption assay screen for water ingestion using RNAi targeting different neurotransmitter pathways. UAS-RNAi+ or - ISN-Gal4. RNAi against: nSynaptobrevin (nSyb), tryptophan hydroxylase (TRH), choline acetyltransferase (ChAT), tyrosine beta-hydroxylase (TBH), histamine decarboxylase (HDC), vesicular monoamine transporter (VMAT), glutamic acid decarboxylase 1 (GAD1), dopa decarboxylase (DDC), Drosophila vesicular glutamate transporter (DVGlut), short neuropeptide F (sNPF), vesicular GABA transporter (VGAT), tyrosine decarboxylase 2 (TDC2), Drosophila insulin-like peptide 1 (dILP1), Drosophila insulin-like peptide 2 (dILP2), Drosophila insulin-like peptide 3 (dILP3), Drosophila insulin-like peptide 4 (dILP4), Drosophila insulin-like peptide 5 (dILP5), Drosophila insulin-like peptide 6 (dILP6), Drosophila insulin-like peptide 7 (dILP7). Represented are the mean, and the 10–90 percentile; data was analyzed using Kruskal-Wallis test, followed by multiple comparisons against the RNAi control; p-values were adjusted using false discovery rate. n=8–39 animals/genotype except nSyb positive control (70–72). (B) Temporal consumption assay for 1 M sucrose or water using RNAi targeting dILP3 or amontillado in ISNs. Sucrose assay: Kruskal-Wallis test followed by Dunn’s multiple comparison tests against ISN control and respective RNAi control. Water assay: ANOVA, Šídák’s multiple comparison test to ISN control and respective RNAi control. n=48–52 animals/genotype. (C) ISNs reconstruction from full adult fly brain (FAFB) volume. (D) Light microscopy image of ISN-Gal4 registered to JFRC2010. (E) ISN postsynaptic neurons based on synapse predictions using FAFB volume (Zheng et al., 2018) and connectome annotation versioning engine (CAVE, Buhmann et al., 2021; Ida et al., 2012). Left: 10 postsynaptic neurons, right: postsynaptic neurons bilateral T-shaped neuron (BiT), Cowboy, Handshake, and DSOG1. *p<0.05, ***p<0.001.

Figure 1—source data 1. ISN neurotransmitter screen.

Figure 1.

Figure 1—figure supplement 1. Interoceptive subesophageal zone neuron (ISN) postsynaptic partners labeled by trans-Tango and EM.

Figure 1—figure supplement 1.

(A) Expression of trans-Tango ligand in the ISNs (green) and postsynaptic partners (PSPs) (magenta). nc82 staining in blue. (B) Distribution of synaptic output from the ISNs divided by cell class or brain region. Total of 4050 synapses from the ISNs and 104 postsynaptic partners. FLAa2 (46 neurons) receive 26.77% of all ISN output, Handshake (4 neurons) 17.9%, Cowboy (2 neurons) 11.4%, neurons located in the subesophageal zone (SEZ) (14 neurons) 9.04%, DSOG1 (4 neurons) 8.18%, neurons with neurites in the subesophageal zone and superior medial protocerebrum (SEZ and SMP) (11 neurons) 7.91%, bilateral T-shaped neuron (BiT) (1 neuron) 7.46%, ascending neurons (ANs) (10 neurons) 4.41%, descending neurons (DNs) (8 neurons) 3.07%, and ISNs (4 neurons) 0.5%. Only postsynaptic partners with five or more synapses were considered for this analysis. Reconstruction of FLAa2 neurons (C), Handshake neurons (D), Cowboy neurons (E), neurons innervating the SEZ (F), DSOG1 neurons (G), neurons innervating the SEZ and SMP (H), BiT (I), ascending neurons (J), descending neurons (K).