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ABSTRACT

The spatiotemporal organization of networks of dynamical units can break down resulting in diseases (e.g., in the brain) or large-scale
malfunctions (e.g., power grid blackouts). Re-establishment of function then requires identification of the optimal intervention site from
which the network behavior is most efficiently re-stabilized. Here, we consider one such scenario with a network of units with oscillatory
dynamics, which can be suppressed by sufficiently strong coupling and stabilizing a single unit, i.e., pinning control. We analyze the stability
of the network with hyperbolas in the control gain vs coupling strength state space and identify the most influential node (MIN) as the node
that requires the weakest coupling to stabilize the network in the limit of very strong control gain. A computationally efficient method, based
on the Moore–Penrose pseudoinverse of the network Laplacian matrix, was found to be efficient in identifying the MIN. In addition, we have
found that in some networks, the MIN relocates when the control gain is changed, and thus, different nodes are the most influential ones for
weakly and strongly coupled networks. A control theoretic measure is proposed to identify networks with unique or relocating MINs. We
have identified real-world networks with relocating MINs, such as social and power grid networks. The results were confirmed in experiments
with networks of chemical reactions, where oscillations in the networks were effectively suppressed through the pinning of a single reaction
site determined by the computational method.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0163899

In a network, the units influence each other by coupling—the
most influential node in the network can enforce the entire net-
work to follow its dynamics as long as the coupling is sufficiently
strong. However, even in a relatively small network (e.g., ten
nodes), finding the most influential node (MIN) is a challenging
task without extensive modeling. Here, we carefully tested mathe-
matical measures that can predict the location of the MIN by per-
forming experiments with coupled chemical oscillators, where the
most influential unit was selected to suppress wild fluctuations in
the network. In particular, we found that in some networks, the
MIN can relocate for weakly or strongly coupled networks with-
out any rewiring; for example, in such a social network, the leader

could change without making new connections but instead by
strengthening the existing connections throughout the network.

I. INTRODUCTION

Complex systems constituted by a network of coupled nonlin-
ear dynamical units are prevalent in nature and human society. Such
networks have their properties tuned for normal functioning that
generates specific spatiotemporal patterns. A disruption of the net-
work properties can lead to malfunction, which in biological systems
can result in diseases, e.g., Parkinson’s disease and epilepsy, which
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are linked to excessive synchronization of neural activities.1,2 Under
these circumstances, a control policy—intervention on dynamic
properties using exogenous inputs—can be applied to re-establish
the normal functioning of the system.2 For large networks, the
application of exogenous inputs is often limited to a single or a
small number of sites due to physical or cost constraints, e.g.,
for secondary frequency control of microgrids,3 and an important
intervention task is to stabilize the network behavior at a certain
state.4

The feedback strategy, referred to as pinning control, can
achieve network stabilization by propagating the stabilizing effect
of the feedback site through couplings between nodes to the entire
network. One compelling application of such an approach is the
suppression of wild fluctuations in a network in order to retrieve
normal stationary behavior. Prominent examples include the use
of neurostimulation to mediate epileptic seizures5–7 and the appli-
cation of medications to the infected nodes in a high-risk con-
tact network to preclude the spread of disease, such as HIV.8

Notions of pinning control have also been extensively introduced
to analyze dynamic structures in a complex network, such as
synchronization,9,10 stabilization,11–13 and consensus.14,15

The question of interest is to determine the site (node) in the
network that has the most influence on the network dynamics.
While many definitions for measuring influence are possible and
can depend on the underlying node dynamics, here, we consider
a particular example where the nodes exhibit (stable) oscillatory
dynamics and an unstable fixed point. It is assumed that this fixed
point can be stabilized with external local feedback at a sufficiently
large feedback gain (K). It is also assumed that there is a bidirec-
tional coupling in the network such that with strong coupling (σ ),
a nearly uniform state can be achieved. Within this framework, the
most influential node (MIN) can be defined as the node that can
stabilize the network to the global steady state with minimum cou-
pling strength. The choice of this definition was motivated by our
experiments with electrochemical oscillator networks where cou-
pling strength can be changed and individual nodes can be stabilized
with external feedbacks.16,17 We note, however, that similar experi-
ments with synchronization and control can be achieved in a wide
range of systems, e.g., with mechano-chemical oscillators18 or BZ
systems.19 The location of MIN depends upon the network topology,
which has been the primary method of investigation for the existing
methods; several methods leveraging measures defined on the net-
work topology, such as eigenratio, degree, and distance, have been
proposed.20,21

A fundamental challenge is to accurately and efficiently iden-
tify the most influential site for establishing stable behavior in the
network and to reveal the impact of network properties on the site
location and its uniqueness. When the strength of the coupled ele-
ments is uniform throughout, one can represent the network with an
adjacency matrix, whose elements are 1 when coupled or zero oth-
erwise. From linear algebra and graph theory, we know that the cou-
pling strength will simply rescale (e.g., multiply) network properties,
in particular, its eigenvalues. Therefore, if λ1,a < λ1,b are the small-
est eigenvalues of the network when the feedback is applied at nodes
a and b, respectively, one would expect this relationship to remain
unchanged with uniformly increasing the coupling. Extensive works
have been developed for identifying influential nodes in pinning

control20,21 based on the adjacency matrix alone. In these previous
studies, particular measures, e.g., eigenratio, degree, and distance,
were employed, and hence, the interaction between the feedback
and the coupling was not considered, and thus, a unique MIN was
assumed, which is independent of the feedback gain (K) and other
system parameters.

In this report, we explore the properties of network stabiliza-
tion through the non-trivial interactions between the coupling (i.e.,
overall strength and topology) and the local feedback. The central
concept of our approach is developing phase diagrams in the K vs.
σ parameter space using “stability hyperbolas,” identifying the MIN
for a given network, and determining whether the MIN can relocate
in the given network by changing K or σ values.

This paper is structured as follows. In Sec. II, we introduce the
mathematical model and the assumptions. In Sec. III, phase dia-
grams are constructed in which the stability boundary is described
by a shifted hyperbola. The limiting values of the hyperbola are
determined by network measures related to the number of nodes
and the smallest eigenvalue of the Laplacian matrix of the system
under infinitely strong feedback. As the latter is difficult to deter-
mine (especially, for large networks), in Sec. IV, we show the use
of the diagonal values of the Moore–Penrose pseudoinverse of the
coupling Laplacian matrix (without feedback) for selection of the
most influential nodes. In Sec. V, by analyzing a wide variety of
networks (random, small-world, scale-free, tree), the fundamental
hyperbola properties (shifts and steepness) are applied for the clas-
sification of the networks into those with unique optimal pinning
locations (most influential nodes) and those whose locations can
relocate. These results then enable the identification of real-world
networks whose structure could support the relocation of the most
influential site as shown in Sec. VI; the numerical and theoretical
findings are demonstrated with the network stabilization experi-
ments with chemical oscillators. Finally, the main findings of this
paper are discussed in Sec. VII.

II. ASSUMPTIONS AND DESCRIPTIONS OF NETWORK

DYNAMICS

We aim to identify the node that, by propagating its influence
throughout the network, can most effectively stabilize the network to
an otherwise unstable steady state. We assume that a single isolated
node can be stabilized using state feedback, and there is a coupling
mechanism between nodes such that strong coupling σ leads to
uniform behavior. With these assumptions, we focus on the more
complex task of stabilizing the entire network by pinning a single
site.

Here, we consider an undirected network consisting of n iden-
tical dynamic units, diffusively coupled (i.e., the interaction strength
between two nodes is proportional to the difference of their states),
in which each unit has an unstable fixed point. The network of
coupled oscillators can be written in the general form as

żk(t) = f(zk, t) − σ

n
∑

l=1

aklH(zk, zl) + uk, (1)

where zk and f(zk, t) are the state and the dynamics of the kth oscilla-
tor, respectively, with k = 1, 2, . . . , n. The term H(zk, zl) = zk − zl
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represents the diffusive coupling function with uniform coupling
strength σ , while the akl’s are the entries of the adjacency matrix
A ∈ R

n×n associated with the graph (network) G, with akl = 1
(for k 6= l), if the elements k and l are coupled; otherwise, akl = 0.
Last, the control is the form uk = δkK(s(t) − zk), where δk = 1 if
the kth node is pinned; otherwise, δk = 0. It is important to note
that the topology of the networks is considered fixed and that
is reinforced by restricting the coupling strength in a finite set
σ ∈ (0 < σmin, σmax < ∞). Therefore, at no time, the topology
changes due to the value of the coupling strength.

As a prototype model, Stuart–Landau (SL) oscillators are con-
sidered. A network of n elements with coupling in both x and y state
variables stimulated by external inputs is modeled by

ẋk = f1(xk, yk) + σ

n
∑

l=1

akl(xl − xk) + uk,

ẏk = f2(xk, yk) + σ

n
∑

l=1

akl(yl − yk) + vk,

(2)

where f1(x, y) = αx − ωy −
(

x2 + y2
)

x, f2(x, y) = ωx + αy

−
(

x2 + y2
)

y (with α = 1 and ω = 1 real parameters), and uk(t) and
vk(t) are the pinning inputs applied to the oscillator k. A difference-
based control is applied to stabilize the desired behavior, s(t),

uk(t) = K(s(t) − xk(t)),

vk(t) = K(s(t) − yk(t)).
(3)

In the given examples, unstable stationary states satisfying
ṡ(t) = f(s(t), t) = 0 are considered.

III. STABILITY HYPERBOLA-BASED NETWORK

ANALYSIS

A. Stability boundary

To evaluate the node influence, the stability of the node is estab-
lished with a given feedback gain K in Eq. (3), while the coupling
strength (σ ) is increased until the entire network gains stability.
With the Stuart–Landau system, the stable limit cycle is converted
into a stable equilibrium point (the origin) that was originally unsta-
ble through amplitude death.22–24 The most influential node can
achieve this task at the weakest coupling strength.

The stability boundary of the network at different coupling
strengths and feedback gains can be represented in a phase diagram
as shown in Fig. 1 for the simplest network with two oscillators. The
figure shows that the stability boundary is a hyperbola with horizon-
tal and vertical shifts. At strong feedback (K → ∞), there is a critical
coupling strength, σc, above which the entire network has a stable
stationary point; this σc = α/µ(G) (see Sec. 1.3 in the supplemen-
tary material) results in a vertical shift of the hyperbola. Similarly,
for strong coupling strength (σ → ∞), there is a minimal feedback
gain, Kc = αn required for the stability, resulting in a horizontal shift
of the hyperbola.

In Sec. 1 of the supplementary material, a linear stability analy-
sis was performed for a complex network; in general, we found that
a complex network with a given pinning node will exhibit a simi-
lar stability hyperbola to that with two oscillators. In Sec. 2 of the

FIG. 1. Stability hyperbola of a two-node network. The stable (white) and unsta-
ble (green) operating regions are separated by a hyperbola with asymptotes given
by the critical feedback Kc = 2α and critical coupling σc = α, where α = 1.
The dotted black line, given by K = σ , defines the steepness of the hyperbola.

supplementary material, an analytical formula is obtained for the
stability hyperbola as

σ =
(σ ∗ − σc)(K

∗ − Kc)

K − Kc

+ σc. (4)

Equation (4) is characterized by three main quantities: the critical
gain (Kc), the coupling strength (σc), and the steepness of the hyper-
bola [determined at a point (K∗, σ ∗) on the hyperbola]. The analysis
of the properties of the derived stability hyperbola provides a con-
venient and unified framework to evaluate the node influence and
ultimately to select the most influential site.

B. Strong coupling limit

At sufficiently strong coupling, the entire system synchronizes,
hence, behaves like a large unit, and the network properties play a
negligible role in the dynamics. Therefore, independent of the net-
work topology, the critical feedback gain Kc (the horizontal shift
in the phase diagram) is a constant that is proportional to the net-
work size but inversely proportional to the number of control sites
(see Sec. 1.3 in the supplementary material), i.e.,

Kc ∝
n

q
, (5)

where n and q are the network size and number of pinned nodes,
respectively. Figure 2(a) illustrates how the stability hyperbolas shift
upward toward the right as the network size increases with a chain
network. As the hyperbola shifts horizontally to the right, the critical
gain increases, which means that larger networks are increasingly
difficult to control and require higher feedback gain and coupling
values to achieve network stability. The illustration in Fig. 2(a) was
generated using chain networks; however, complex networks also
follow a similar trend.
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FIG. 2. Dependence of the stability hyperbola on the network size (top) and the
location of the pinning node (bottom) and for a chain network. (a) Dependence on
the size of the network. The critical gain increases with the size of the network,
Kc = 3, 4 and Kc = 5, for n = 3, 4 and n = 5, respectively. (b) Dependence on
the control site. For the nine-node network shown in the inset, with color-coded
node influences (where dark red represents the most influential node), the critical
coupling increases as follows: σc,m=5 = 8.29, σc,m=4 = 12.34, σc,m=3 = 17.21,
σc,m=2 = 22.88, and σc,m=1 = 29.37, where m denotes the node number.

C. Weak coupling limit

In the more realistic weak coupling limit, the critical coupling
σc (the vertical shift in the phase diagram) is determined by the net-
work topology and the position of the control site. This is illustrated
in Fig. 2(b), where for a fixed-size chain network, the stability hyper-
bola progressively shifts upward as the control site moves away from
the center node.

In general, for many complex networks, we observe a similar
upward shift where the central node is the most influential site. For
each control site in a given network, σc can be calculated, and it is
inversely proportional to the smallest positive eigenvalue (µ1) of the
Laplacian matrix in the limit of infinity feedback gain (see Sec. 1.3 in
the supplementary material), i.e.,

σc ∝
1

µ1(G)
, (6)

where G = σL + Kdiag(δ1, . . . , δn) is the control matrix. The deriva-
tion of the expression of the critical coupling shows the dependence
of σc on the network structure through the eigenvalue of the matrix
G of the pinned network.

Figure 2(b) shows that in a chain network, the central node cor-
responds to the smallest vertical shift (σc) and, thus, the largest stable
area in the phase diagram. Therefore, in our definition, this is the
most influential site for any feedback gain. However, the properties
of the stability hyperbolas make the selection of the most influential
node a relatively simple procedure. For each node, one can calculate
the 1/µ1(G) quantity and select the node with the smallest value, as
this corresponds to the smallest σc according to Eq. (6). The inset
of Fig. 2(b) shows that indeed the central node has the smallest
1/µ1(G) value.

D. σ c and the eigenvalue ratio

Note that estimation of σc to identify the most influential node
using Eq. (6) is a computationally extensive process. To address the
challenges of applying network centrality measures to find MIN, we
demonstrate the effectiveness of one such measure, the eigenvalue
ratio (R).

The eigenratio (R) has been shown to be an effective measure
for determining the optimal site for network synchronization.20,21,25

However, it does not always yield the MIN for network stabiliza-
tion due to its sensitivity to feedback gain. We illustrate this through
a numerical simulation on three different network topologies (100
different network realizations for each topology) where we employ
R to identify the control site for three different feedback gains. The
sensitivity of R to the feedback K is evaluated by the ratio σc/σc−min,
where σc is the critical coupling at the MIN that was selected by
computing R and σc−min is the smallest critical coupling of the net-
work. Note that the selected node is the MIN only if σc/σc−min = 1.
Figure 3 shows that when the feedback gain is small (K = 1), uti-
lizing R to evaluate MIN results in a high σc/σc−min ratio, and the
performance improves as the value of K increases for three distinct
network topologies, emphasizing the sensitivity of R to the feedback
K. We have explored using different centrality measures in order to
reliably identify MIN at a relatively small computational expense.

IV. IDENTIFICATION OF THE MOST INFLUENTIAL

NODE

Here, we present a computationally efficient technique for
selecting MIN and a theoretical analysis on the uniqueness of MIN
with different coupling strengths.

A. Moore–Penrose pseudoinverse centrality for

identifying the MIN

The identification of the MIN, i.e., the node j at which the feed-
back gain K will have the most stabilizing impact, can be tackled
using the notion of a geometric measure of modal controllability.26

In linear dynamical systems, this technique allows one to quantify
the influence of each input (i.e., each pinning site, in the context of
this paper) on a particular eigenvalue of the system. However, extra
care must be taken when this method is applied to systems with
repeated eigenvalues.27 In addition, this method also requires the
computation of eigenvalues for each possible control site in the net-
work, which is impractical for very large networks or time-varying
networks.
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FIG. 3. A comparison of the performance of eigenratio cen-
trality and the proposed technique (M1) for identification of
MIN with different feedback gains. (a) BA scale-free networks.
(b) ER random networks. (c) WS small-world networks. Net-
works of 100 nodes were used to produce these plots, and the
eigenratio method was evaluated for different feedback gain
values K to show its sensitivity to the gain. M1 is our proposed
method, which is independent of K.

Here, we propose a notion of pseudoinverse centrality together
with a Lyapunov-based approach to resolve this bottleneck. Con-
sider a control system described by the Laplacian dynamics (see
Sec. 1.2 in the supplementary material) associated with a network
of n nodes, given by

ẋ = Ax + Bu, (7)

where A = −σL and L ∈ R
n×n is the graph Laplacian of the given

network, B ∈ R
n×n is an input matrix, and u = −Kx ∈ R

n is a feed-
back control law with K ∈ R

n×n. In particular, we consider B = I
(an identity matrix), which implies that every node in the network
is receiving feedback. It is known that modes (eigenvalues of the A
matrix) that are difficult to control from a given input (pinning site
in this context) require higher control gains.28 Therefore, by com-
puting the feedback gain for each possible pinning site and using
them as a measure of node centrality, one can determine the node
that requires the least amount of gain, which can be considered the
most influential one.

To establish pseudoinverse centrality, we exploit Lyapunov’s
method in feedback design. Indeed, it has been shown that the
control of the form u(t) = −BTPx(t), where P is the steady-state
solution to the Lyapunov equation,

Ṗ(t) = −ATP(t) − P(t)A − Q, (8)

can result in a minimum time response.29 The solution to Eq. (8) is
of the form

P(t) =

∫ t1

0

exp
(

ATt
)

Q exp(At)dt, (9)

where Q ∈ R
n×n is symmetric and positive definite (PD), which

is chosen here as Q = BBT = I. The integral in Eq. (9) exists for
t1 = ∞ only when A is Hurwitz; i.e., Re(λi) < 0 for i = 1, . . . , n.30

However, in the case of the Laplacian dynamics, A is not Hur-
witz; therefore, we can only approximate the steady-state solution
by taking a sufficiently large time horizon t1. We can then obtain an
approximation to the steady-state solution, given by

P(t1) ≈ − 1
2
(A − εI)−1, (10)

derived by setting the left-hand side of Eq. (8) to zero and then solv-
ing for P under the assumption that A and P commute. The term εI
(with ε in the order of 1/t1) was introduced to shift the zero eigen-
value so that one can invert the matrix. This technique is often used

in nonlinear systems analysis30 and signal processing applications31

when A is singular or ill-conditioned.
Since only the relative values of the entries in P play a role

in identifying the most influential node, we propose to use the
Moore–Penrose inverse (MPi) in place of Eq. (10) as follows:

P = − 1
2
A†, (11)

where A† is the MPi of A. Note that the solution given in Eq. (11) is
preferred to Eq. (10) as it is less likely to introduce numerical errors
even for large matrices. We will then use Eq. (11) to compute the
node centrality measure, which we refer to as the MPi centrality.

1. MPi centrality measure

Let c = (c1, . . . , cn)
T be the vector of centrality measures with

ci = 1/pii, where pii is the ith diagonal element of P for i = 1, . . . , n.
Then, the most influential node is the kth node that corresponds to
the largest centrality measure in c.

Figure 3(a) shows that the method correctly identifies the MIN
in all the considered BA scale-free, ER random, and WS small-world
networks even at weak feedback gains where the eigenvalue ratio
method is not reliable. Note that the control centrality is computed
by simultaneous application of n feedback controls with the input
matrix B = I and the gain matrix K = P. Under this scenario, the
MPi centrality expresses to what extent each node contributes to the
stability of the state with strong feedback gain (K → ∞) when all
the nodes are simultaneously controlled.

By avoiding the estimation of eigenvalues for each control site
and computing all centrality measures ci simultaneously, we are able
to identify the MIN in a computationally efficient manner.

V. NETWORKS WITH INTERSECTING HYPERBOLAS

A. Networks with relocating MINs

As it was pointed out, in a given network, the stability hyper-
bolas for the different nodes exhibit the same horizontal shift (Kc)
but can have different steepness and vertical shift (σc). So far, we
focused on identifying the MIN based on a single measure (σc or MPi
centrality). If the MIN has the steepest hyperbola and the smallest
σc, then this node is unique in the sense that it is independent of
the coupling strength, and the stabilization of the network will be
achieved with the weakest feedback gain. However, if some nodes
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FIG. 4. Illustration of relocating MIN due to intersecting hyperbolas in a 55-node
tree network. R1 (node N11): strong σ and weak K operating regime. R2
(node N33): weak σ and strong K operating regime.

have steep hyperbolas and other nodes’ smaller σc values, then the
hyperbolas can intersect, and the MIN will relocate by uniformly
changing the coupling strength across the network.

We illustrate this relocation phenomenon of the MIN in Fig. 4
using a 55-node tree network that has intersecting hyperbolas.
Indeed, the hyperbolas of nodes N11 and N33 intersect at O′ and
observe that the steepest hyperbola (red dashed line corresponding
to N11) will require a weaker feedback gain in the strong coupling
operating regime; hence, N11 is the MIN. However, after the inter-
section, we see that the situation has been reversed, i.e., now for
a fixed coupling strength σ , it is N33 (red solid line) that requires
the smallest feedback gain, and therefore, it is the MIN in the weak
coupling regime.

Being able to quickly identify networks with relocating MINs
is of practical importance in the sense that it will allow one to cor-
rectly access the node’s influence at different operating regimes, i.e.,
various values of the coupling strength and the control feedback
gain. Hence, in the following, we devise a numerical procedure for
detecting such networks.

B. Identification of networks with relocating MINs

An indication that the stability hyperbolas may intersect is
when the MIN for a given network is predicted by MPi centrality
does not have the smallest calculated σc value. A natural approach
to determine intersecting points among hyperbolas is to check the
existence of the solution (K, σ) satisfying the equation defining
the stability hyperbola. However, this approach, though accurate, is
computationally costly and time-consuming for large networks. To
give an idea, the computation of σc at each node in the power grid
shown in Fig. 6(a) took approximately 8 h on a standard desktop
computer, and furthermore, the computation for finding the point
(K∗, σ ∗), where K∗ = σ ∗ on the hyperbola (see Fig. 1), requires an
iterative scheme.

The procedure proposed here is a result of analyzing the con-
tribution of each node to the feedback control in the general form
u(x) = −Kx, where the gain matrix is K = BTP. Assuming that the
feedback is applied only to node 1, and then the input matrix reduces

to vector B = (1, 0, . . . , 0)T. Therefore, the feedback gain becomes a
row vector, K, that is the first row of the matrix P. For the general
feedback configuration that utilizes every node states, each entry in
the gain vector K will contribute to the control signal.

In networks with unique MIN, the MPi centrality-based
method is used to identify the pinning site that requires the least
feedback gain for network stabilization. By reviewing a large num-
ber of networks with relocating MINs, we observed that the diagonal
elements of the Moore–Penrose pseudoinverse may not follow the
same trend as the norm of the gains K, related to the off-diagonal
elements.

Based on this observation, the following procedure was found
to be effective for identifying networks with relocating MINs:

• Step 1. Use the diagonal entries, pii, of the matrix P to form the
vector p̄ = 1

min
i

pii
(pii, . . . , pnn)

T.

• Step 2. Compute the weights cj = ‖Pj‖
2
2 for j = 1, . . . , n,

where Pj is the jth row of P and then rescale p̄ to get

w̄ = 1
min

i
ci p̄i

(

c1p̄1, . . . , cnp̄n

)T
.

• Step 3. Compute the difference of the two vectors z = w̄ − p̄

= (z1, . . . , zn)
T.

• Step 4. Assume that k is the index of the most influential node
selected using the MPi centrality with σ k

c denoting the corre-
sponding critical coupling, then for any zi < zk, i = 1, . . . , n,
compute σ i

c . If σ i
c < σ k

c , then the stability hyperbolas of nodes
i and k can intersect. Hence, the network has relocating MINs.

Note that the number of nodes satisfying zi < zk is much less
than the size of the network n, which makes this procedure compu-
tationally more tractable than computing the critical coupling for all
n nodes in the network. The effectiveness of the proposed algorithm
is validated in Sec. VI.

VI. APPLICATIONS AND EXPERIMENTS

A. Identification of most influential nodes with

synthetic networks

To evaluate the performance of the MPi centrality measures,
we illustrate the results in terms of the ratio σc/σc−min. The MPi
centrality was evaluated against some of the commonly used central-
ities, including the degree, closeness, and eigenvector centralities. In
Fig. 5(a), the results for networks with unique MIN are presented
where σc/σc−min = 1 means that the method successfully identifies
the most influential node, while σc/σc−min > 1 means that the MIN
was not identified. Figure 5(a) shows that for these networks of 100
nodes, including Barabási–Albert (BA) scale-free,32 Erdős–Rényi
(ER) random,33 Watt–Strogatz (WS) small-world,34 and tree35 net-
works, our approach (M1) uniquely identifies the most influential
sites and outperformed the other approaches. (We note that while
N = 100 is somewhat small to completely reflect the properties of
scale-free networks, we used 1000 realizations to capture the salient
features, such as presence of hubs and short path lengths.)

The results shown in Fig. 5(b) illustrate the performance of the
proposed method when the networks have relocating MINs as pre-
dicted by the technique in Sec. V. The ratio σc/σc−min was greater
than one, which implies that the proposed method did not uniquely
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FIG. 5. Performance measure (σc/σc-min) of identifying MIN with the proposed
MPi centrality-based method (M1) and with other commonly used techniques
(M2 and M3) in different networks. (a) and (b) Ratios of the critical coupling σc for
the pinning sites (selected with the methods M1–M3) to the smallest σc in each
network (plot of average values and their confidence intervals). (a) Networks with
unique MIN. (b) Networks with relocating MINS in BA and tree networks for 1000
sample networks. M1: our proposed method; M2: node degree-based method
for BA, ER, and WS networks; and average distance-based method for trees.
M3: based on the ratio of a node degree over an average distance for BA, ER,
and WS networks and based on the eigenvector centrality (Fiedler vector) for tree
networks. Tree networks used in the numerical experiment were generated with
7 generations but a different number of nodes at each run, while the spanning
trees were obtained from ER random networks of 100 nodes. The other networks
had 100 nodes. Error bars represent standard deviations of the performance
measures for the sample networks.

identify the MIN because the stability hyperbolas intersect. In this
case, the MIN selected using the MPi centrality, which is the most
influential control node in strong coupling (weak feedback), could
require up to 25% more coupling strength when the network is
operating in the weak coupling regime.

We, thus, see that it is essential to identify networks with relo-
cating MINs. We also validated the relocating MIN identification
algorithm in a sample of 1000 networks (with 100 nodes) for various
network topologies (Table I). For each of the networks, the stability
hyperbolas were determined, and the percentage of networks with
intersecting hyperbolas was calculated. For BA scale-free, ER ran-
dom, and WS small-world networks, a large majority (> 98%) of
the networks had unique MIN. However, 37% of the tree networks
had relocating MINs. Our algorithm to identify the networks with
relocating MINs worked quite well with the false positive rate (FPR)
≈ 0 for all the networks and a true positive rate (TPR) of 1 for ER
random, WS small-world, and BA scale-free networks (TPR = 0.77
for the tree networks). Apparently, tree networks have a tendency to
exhibit relocating MINs, and it is more challenging to identify them.

TABLE I. Quantification of MIN relocation phenomena in a sample of 1000 networks

of 100 nodes. The estimated percentage of relocating MIN networks is obtained by

applying the proposed technique in Sec. V.

Percentage of
networks with
relocating MIN Accuracy

Network type True Estimated TPR FPR

BA scale-free 1.60 1.70 1 0.001
ER random network 0.40 0.40 1 0
WS small-world 0.10 0.10 1 0
Tree networks 37.0 28.4 0.77 0

B. Real-world networks with relocating most

influential nodes

We have also found networks with relocating MINs in some
real-world networks, e.g., in power and social networks. Specifically,
here, we consider the Western States power grid of the United States
and the ego-Facebook networks. The former is represented by an
undirected network where a node represents either a generator, a
transformer, or a substation and the edges represent the transmis-
sion lines,34 while the latter represents users’ friendship with users as
nodes and the friendship as edges.36

Figures 6(a) and 6(b) show the Western States power grid of the
United States (4941 nodes and 6594 edges) and the ego-Facebook
network (2888 nodes and 2981 edges), respectively, in which the
color bar denotes the calculated control centrality (normalized to 1)

FIG. 6. Real-world networks exhibiting relocating MINs. (a) Western States’
power grid of the United States. (b) Ego-Facebook networks. The colormap repre-
sents the normalized control centrality of each node from zero to one. (c) and (d)
Intersecting hyperbolas for the power grid and ego-Facebook networks, respec-
tively. (c) Hyperbolas normalized by σc−min = 3792 (N427, red hyperbola) and
Kc = 4941. The other hyperbolas have σc = 3865 (N394, black), σc = 4001
(N1244, blue), and σc = 4086 (N1309, green). (d) Hyperbolas normalized by the
network σc−min and Kc. The tangent lines show the steepness of the hyperbolas.
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for each node. Note that we analyze the structure of these two
networks without considering their true node dynamics, but instead
treat them as if they were oscillator networks. In addition, we con-
sider the coupling strength to be uniform. For the power network,
the MPi centrality-based method identified the optimal site N1244
in the weak gain region, and the steepness analysis revealed that this
network has three possible MINS (N1244, N427, and N394) that cre-
ated two hyperbola intersections (N1244 with N427 and N1244 with
N394), shown in Fig. 6(c). As a result, either node N427 or N1244
can be the most influential site in the high gain region, depending on
the coupling strength. This case also indicates that when the degree
centrality fails to select the most influential site, the resulting con-
trol node can be far from optimal. Indeed, in this network, node
N2554 has the highest node degree γmax = 19 with the critical cou-
pling σc = 5390, while the two best control sites N427 and N1244
have a lower node degree, γ = 6, with the corresponding critical
couplings, σc = 3792 and σc = 4001, that are 29.65% and 25.77%
lower than that of N2554.

As for the social network, we found two potential MINs, N288
(node degree γ = 481) and N603 (γ = 769), with σc = 459.07 and
σc = 457.84, respectively. The most influential site is switched from
node N288 in the weak feedback region to N603 in the high feedback
region [see Fig. 6(d)]. This example illustrates that the most influen-
tial node can relocate without a change in the network structure by
simply increasing the overall coupling strength in the network. In a
social network, this would be equivalent to a relocation of leadership
when the people get to know each other better, but without making
any new acquaintances.

C. Experiments with networks of chemical oscillators

To corroborate the theoretical findings, experiments were per-
formed with networks of coupled oscillatory chemical reactions. The

nodes of the network are corroding nickel wires in sulfuric acid,
and without external control, the corrosion rate (current) is oscilla-
tory. The perturbation of the circuit potential through feedback can
stabilize the chemical reaction, hence suppressing oscillations. The
coupling between nodes is established by cross-resistances whose
currents affect the reaction rate37 (see Sec. 4 in the supplementary
material).

In the two-node network [Fig. 7(a)], the experimentally deter-
mined stable behavior follows very well the theoretically predicted
stability hyperbola [Fig. 7(b)] with the critical values Kc = 1.61 V/A
and σ̃c = 0.115 mS, respectively. We further compare the critical
gain Kc of the three-node networks to the critical gain K̃c of the two-
node network in Fig. 7(a) in terms of the ratio Kc/K̃c, which agrees
with the theory that predicted a 3/2 ratio regardless of the topol-
ogy and control site [Fig. 7(c)]. Similarly, the critical couplings are
compared using the ratio σc/σ̃c [Fig. 7(d)]. The experiments follow
the trends of the theoretical predictions: for networks (ii) and (iv)
in Fig. 7(a), the critical coupling strength ratios σc/σ̃c are nearly the
same, and networks (iii) and (i) have a ratio of approximately 2.9,
which is close to the theoretical prediction of 2.62.

We note that there are certainly small differences between
the theoretical predictions and the experiments, which can be
attributed to the theoretical assumptions not completely satisfied in
the experiments. In particular, the nodes have small heterogeneities
(e.g., different oscillation frequencies ω), and these deviations can
be important, especially at weak coupling. Indeed, measurements at
the strong feedback regime (expressed as σc/σ̃c) deviate from theory
more than at strong coupling (expressed as Kc/K̃c).

The validation of the developed MPi centrality-based method
for selecting the most influential site is carried out using an eight-
node irregular tree network shown in Fig. 8(a). The theory predicted
a unique MIN at node 1. We first determined a stabilizing feed-
back gain K in a weak coupling regime by pinning node 1 and then

FIG. 7. Experiments: Pinning control of small networks.
(a) Network topologies studied, where the square indicates con-
trolled nodes. (b) Phase diagram of coupling and feedback
gain for a pair of coupled oscillators (network i). The errorbars
(red) represent the experimental data. Line (blue): theoretical
prediction using Eq. (4). (c) Comparison of critical feedback
gains at a strong coupling limit (σ = 2mS) for the four net-
works in panel (a), from experiments (bars) to the theoretical

predictions (errorbars) via Kc/K̃c, where K̃c = Kc of network
i. (d) Comparison of critical coupling at strong feedback gain
(K = 4.6 V/A) from experiments to theoretical predictions via
σc/σ̃c where σ̃c = σc of network i. The errorbars in panels
(b)–(d) indicate where the oscillatory state (lower bound) and
the stationary state (upper bound) are observed. Operating
conditions: V = 1105mV, Rind = 1 k�.
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FIG. 8. Experiments: pinning control of large networks. (a) Eight-electrode tree network, with node one as the optimal site. The color represents the mean percent of the
natural amplitude; V = 1110mV, σ = 1mS, K = 5.4 A/V. (b) Mean amplitude remaining for various control nodes at K sufficient to control the network by the optimal
control node. (c) The quotient σ/σ 1

c
at each control site, where σ 1

c
= σc−min. (d) Ten-electrode tree network (with relocating MINs) in the limit of Kc (strong σ ); V = 1090mV,

σ = 2mS, K = 2.4 V/A. The square indicates the pinned node. (e) Ten-electrode tree network (with relocating MIN) in the limit of σc (strong K); V = 1090mV, σ = 0.50mS,
K = 5.5 V/A. (f) The mean percent amplitudes in the strong coupling (left) and weak coupling (right). Individual resistance Rind = 1 k�.

measured the mean oscillation amplitudes A of the oscillations for
different control sites [with the same K, see Fig. 8(b)]. The results
show that as the control site moves away from node 1, the control
becomes less effective resulting in a higher mean amplitude of oscil-
lations. In Fig. 8(c), we show the trend of the critical couplings as the
ratio σc/σ

1
c (σ 1

c is the critical coupling for node 1), which agrees with
experimental variations of the amplitudes.

MIN relocation was theoretically predicted and experimentally
observed in the ten-node network [Figs. 8(d) and 8(e)] obtained
by adding a star motif to the end of a chain network. Using the
MPi centrality-based method, node 3 was predicted as the MIN in
the strong coupling (weak gain) regime and node 1 as the MIN
in the weak coupling (strong gain) regime. This is experimentally
confirmed by measuring the mean oscillation amplitudes of the net-
work for both control sites, in the weak and strong coupling regimes,
respectively [see Fig. 8(f)]. The results, thus, show that the distance
of a node to the peripheries of the network becomes more impor-
tant as the coupling strength is weakened, while at strong coupling,
more weight is placed on the degree of nodes causing the shift in the
optimal control site. These experimental observations support the
stability hyperbola-based selection of the most influential site.

VII. CONCLUSIONS

The results, thus, show that the analysis of stability hyperbolas
in the coupling strength vs. feedback gain plane provides valuable

information about the location of the most influential node in the
network. For a given network, the critical coupling strength in the
limit of infinity gain is an excellent indicator about the perfor-
mance of the node, and this quantity can be obtained from the
smallest eigenvalue of the system’s Laplacian matrix (under control).
However, determining σc can be difficult for large networks. There-
fore, we showed that the inverse of the diagonal elements of the
Moore–Penrose pseudoinverse of the coupling Laplacian (without
feedback) has an important physical meaning: These values express
to what extent a given node contributes to the stability of the net-
work when all nodes have feedback. Then, one can use this quantity
to approximate the relative influence of the node when only one
node has feedback. Calculating the Moore–Penrose pseudoinverse
of the coupling Laplacian provides a quick and convenient technique
to evaluate the node influences. Once the most influential node is
identified, one should apply feedback at that node to achieve the best
performance.

By careful examination of the stability hyperbolas, we have
found that in addition to the limiting values of the hyperbolas, the
steepness is also an important quantity, especially with strong cou-
pling. For many networks, the stability hyperbolas that have the
smallest σc (small vertical shift) are also steep, and thus, there is a
unique most influential node. However, in some examples, certain
nodes can perform better with strong coupling (due to steep hyper-
bolas) and other nodes at weak coupling (because they have small σc

values). The most influential node, thus, can relocate even without
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changing the network structure (i.e., connectivity) but simply by
changing the uniform overall coupling strength throughout the net-
work. We found that such relocation is an essential property of tree
networks but can also occur in network models (Erdős–Rényi ran-
dom, small-world, scale-free) and real-world networks. In addition,
this relocation phenomenon has also been observed in undirected
networks with two pinning sites (i.e., where two influential sites are
controlled simultaneously) as well as in directed networks with uni-
form coupling (see Fig. 3 in the supplementary material where the
sensitivity of the influential node on the value of σ is very clear). We
provided a simple numerical algorithm, with which a network with
a unique or relocating most influential site can be determined.

In the theoretical aspect of the study, we used Stuart–Landau
oscillators to confirm the findings. We should note that the the-
ory is based on linear stability analysis, where the stabilization was
achieved by controlling an unstable focus type of stationary state
at the pinning site. Therefore, it would be expected that other
systems with an unstable focus type of instabilities can be con-
trolled with the proposed scheme; for example, in the experiments
with oscillatory electrochemical reactions, the oscillations occurred
through a supercritical Hopf bifurcation,38 and thus, it was expected
that the stabilized state was an unstable focus. Extending the tech-
nique to stabilization of other types of unstable steady states will be
considered a future direction.

Identifying influential nodes in a network is a key to effi-
ciently manipulating its dynamic behavior and functioning, such as
efficient control of rumors, suppression of disease spreading, and
establishment of new marketing tools;39 for example, by careful net-
work design (e.g., adding and removing links), one can guarantee
unique leadership and optimize resources accordingly. Similarly, a
network can be designed with separate leadership optimized for
weak and strong coupling scenarios (e.g., when social distancing or
communication outages are expected). The developed methods are
directly applicable to facilitate and advance applications in network
science, for instance, identifying the so-called influential spreader40

to determine the foci and dosage required for immunization in an
epidemic network,41 efficient distribution of resources in tree-like
networks (e.g., in the nephrons of kidney42), and locate optimal
pacemaker position for synchronization.43,44 In addition, an anal-
ogy could be made between pinning amplitudes (as shown in our
work) and pinning phases (as studied with charge density waves
and swarmalators45,46), which could further widen the applications
of finding MINs with pinning control.

SUPPLEMENTARY MATERIAL

The supplementary material includes the linear stability anal-
ysis of the studied system, the description of the properties of the
stability hyperbola, additional examples of networks with relocating
MINs, and the experimental procedure.
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