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Abstract

INTRODUCTION: Genetic associations with Alzheimer’s disease (AD) age at onset (AAQ)
could reveal genetic variants with therapeutic applications. We present a large Colombian
kindred with autosomal dominant AD (ADAD) as a unique opportunity to discover AAQ genetic
associations.

METHODS: A genetic association study was conducted for ADAD dementia AAO in 340
individuals with the PSENI E280A mutation via TOPMed array imputation. Replication was
assessed in two ADAD cohorts, one sporadic EOAD study, and four late onset AD studies.
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RESULTS: 13 variants had p<1x10~7 or p<1x10~° with replication including three independent
loci with candidate associations with clusterin including near CLU. Other suggestive associations
were identified in or near HS3571, HSPG2, ACE, LRP1B, TSPANI0, and TSPAN14.

DISCUSSION: Variants with suggestive associations with AAO were associated with biological
processes including clusterin, heparin sulfate and amyloid processing. The detection of these
effects in the presence of a strong mutation for ADAD reinforce their potentially impactful role.
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Background

Complex genetic, environmental, and lifestyle risk factors confounded by the aging process
underlie risk for late onset Alzheimer’s disease (LOAD). Autosomal dominant Alzheimer’s
disease (ADAD) closely resembles the clinical and neuropathological features of LOAD, but
without the confound of aging, and thus provides a less heterogeneous view of underlying
AD-associated processes. ADAD accounts for less than 1% of all cases of AD and mutations
in PSENI account for 80% of this monogenic group (reviewed in [1]).

There is a strong correlation between age at onset (AAO) and a particular ADAD mutation
(r2 = 0.52) [2], but there still remains substantial unexplained variability. Large ADAD
families such as the kindred harboring the Colombian PSEANZ NM_000021:¢.839A>C, p.
(Glu280Ala) (canonically known as PSEN1 EZ80A) mutation, the world’s largest ADAD
founder population with a comprehensive family tree of thousands of individuals [3],
provide an opportunity to assess the contribution of genetic variation to unexplained
variability in age of dementia onset. PSEN1 EZ80A mutation carriers typically develop mild
cognitive impairment (MCI) at a median age of 44 years (95% CI, 43-45) and dementia

at age of 49 years (95% ClI, 49-50) [4]. The value of this family for the nomination of
genetic variants that delay the onset of AD was recently affirmed by the report of a PSEN1
EZ80A carrier who developed MCI nearly three decades after the kindred’s median age

at clinical onset [5] (this individual is also included in this study). This individual was
homozygous for the rare APOE e3 Christchurch variant (APOE NM_000041:c.460C>A, p.
(R154S), rs121918393) and had an exceptionally high amyloid-p plague burden, but limited
neurofibrillary tau burden. In addition to this case report, several studies have explored
genetic associations with AAQO in PSENI E280A carriers [6-9], but all with substantially
lower numbers of cases (at most 72 individuals) [6]. To expand on the valuable insights
gained from these previous studies, we conducted the most comprehensive search to date
for genetic variants associated with age at dementia onset in this founder population by
assessing 340 individuals, which is the current snapshot of all individuals from this cohort,
that currently have high quality genotypic and phenotypic information available.
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Methods

Patient Recruitment

A cohort of 368 patients was selected from the Neuroscience Group of Antioquia (GNA)
database of the PSENI E280A family. After all quality control steps, 340 individuals
remained for analysis. Selection criteria included being a PSENI E280A carrier with
diagnosis of dementia, having adequate medical and neuropsychological evaluations and
follow-up for a confident age determination of clinical age at dementia onset, and having

a DNA sample. Participants were evaluated following a standard protocol including
physical and neurological examination, as well as population-validated neuropsychological
assessment [10, 11]. Dementia was diagnosed according to most recent DSM criteria at the
time of diagnosis. Collected data were stored in medical records software (SISNE v2.0).
Family history was obtained from the patients and their relatives, and genealogical data from
baptism and death certificates was gathered from local parishes and was incorporated into
the pedigree reconstruction. Blood samples from each individual were obtained through
standard phlebotomy and collected in EDTA tubes. Genomic DNA was purified from
peripheral blood leukocytes using a modified salting-out technique (Gentra Puregene Blood
Kit, Qiagen). All individuals were genotyped for PSENI EZ80A using a restriction length
fragment polymorphism assay.

Genotyping Arrays

1,923,394 variants were genotyped using the lllumina Multi-Ethnic Genotyping Array
plus Neuro consortium content (catalog #WG-316-1014, beadchip #20028352). Data

were annotated with build hg38 and processed and analyzed using PLINK v1.90b5.2,
PLINK v2.00aLM [12], and GEMMA [13] (GEMMA was used for the main association
analysis, see Results for details). Genetic relatedness was assessed using KING 2.2 [14].
Imputation was conducted using the TOPMed Imputation Panel and Server (version 1.3.3),
which includes 97,256 references samples and 308,107,085 variants and uses Minimac4
for imputation. Imputation methods and quality control are described in detail in the
Supplemental Methods.

Replication sets

Seven cohorts were selected for replication. For ADAD, we used the Dominantly Inherited
Alzheimer’s Network (DIAN) cohort, with 116 mutation carrier cases (96 European ancestry
and 20 Native American ancestry) with age of dementia onset as the phenotype as in the
main cohort analyzed. The DIAN cohort was analyzed using GEMMA on TOPMed-imputed
genotyping array data with an allele frequency cutoff of 1% for all variants considered.

Fixed effect covariates were the parental age at onset, the gene, including considering
PSENI before and after codon 200 as separate “genes” given more deleterious effects of
PSENI variants after codon 200 [15], and the first three principal components.

As a second dominant AD replication cohort, we used the Alzheimer’s Disease in

Adults with Down Syndrome (ADDS) cohort, which was obtained from the Synapse

AD Knowledge portal (Synapse ID: syn25871263) and imputed using TOPMed. After
quality control for missingness, heterozygosity, and relatedness, 222 individuals remained
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for analysis. We used the available phenotype if the individuals had converted to MCI or AD
(105 not yet converted, 58 MCI, and 59 AD) weighted as 0, 0.5, and 1 respectively for the
phenotype. We performed the GEMMA analysis in the same manner as our cohort, with sex
and PCs 1-10 included in the model. For this cohort, chromosome 21 was not considered for
replication.

Given the limited sample sizes for dominant AD, we also evaluated sporadic AD cohorts.
For EOAD, we evaluated the largest sporadic early onset AD cohort aggregated to

date, an ADGC EOAD study cohort currently in analysis with 6,282 European ancestry
early onset AD cases and 13,386 European ancestry controls (European ancestry is

the largest admixture component in our cohort). For this cohort, all Single variant

analyses were performed with Plink v2.0 GLM function with the following model:
Status~SNP+SEX+PC1-10. For LOAD, we selected an AD age at onset study (9,162 cases)
[16], a study of AD age at onset survival (14,406 cases and 25,849 controls) [17], a genome
wide association study (GWAS) meta-analysis for AD (21,982 AD vs. 41,944 controls) [18],
and the latest meta-analysis of AD and AD by proxy (111,326 cases and 677,663 controls)
[19]. See supplemental methods for discussion of International Genomics of Alzheimer’s
Project (IGAP) replication data.

Role of the funding source

The study sponsors were not involved in study design, the collection, analysis, and
interpretation of data, the writing of the report, or the decision to submit the paper for
publication.

Results

Cohort demographics

The final cohort had a mean age of dementia onset of 49.3 years (median: 48, range:
37-75, 10t-90t percentile: 43-56). 198 of the patients were genetically female (58.2%).
The patients had extensive follow up data; the mean number of medical evaluations was 6.7
(1-27), and 4.8 (1-18) for neuropsychological evaluations. A partial pedigree of enrolled
individuals annotated with age at dementia onset is presented in Supplemental Figure 1.

Association analysis

Association analysis was conducted using age at dementia onset as a quantitative outcome
for 340 individuals passing QC. We employed GEMMA, a package that performs a
likelihood ratio test using a linear mixed model to adjust for relatedness between individuals.
We adjusted for genetic sex, the first ten principal components (calculated from the set of
540,753 high quality variants used as imputation input using PLINK v2.00aLM) because
this was an admixed population, and batch. The chip heritability calculated by GEMMA was
0.74+/-0.14 with a Vg estimate of of 24.6 and Ve estimate of 8.5.

Top nominally significant loci of interest

To determine if any hits observed statistically deviated from random chance, we generated
a QQ plot (Supplemental Figure 2). No variants deviated detectably from a uniform
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distribution’s expected error range except for from modest inflation (genomic inflation
factor of 1.05), but this was not surprising given the small size of the cohort, and the
modest level of inflation reflects that GEMMA'’s kinship matrix adjustment works well for
this familial cohort. Because of this, the variants presented throughout should be viewed as
speculative, particularly variants where a small number of alleles account for the association
(including 6 out of the 13 loci presented in Table 1 where allele count ranges from 3-7).
To add evidence for possible biological significance, we relied primarily on replication.
First, we compared the number of variants with p<1x107 that exhibit nominal replication
(p<0.05) in one of the seven replication cohorts. Second, we used a stricter threshold
(p<1x10~7) where we did not require replication. The result of these filtering conditions

is shown in Table 1 and includes three variants at different loci associated with clusterin
biology, rs138295139, rs35980966 and rs4942482. LocusZoom plots and single nucleus
multiomics linkages (correlations between single nucleus RNA-seq and ATAC-seq from
the same nuclei [20]) for these variants are presented in Figure 1. In addition, the age of
each individual harboring each variant in Table 1 is illustrated in Supplemental Figure 3 by
variant to illustrate the spread of the variants across the cohort by zygosity. The Manhattan
plot for the study is shown in Supplemental Figure 4. Unannotated summary statistics for
all variants are provided in Supplemental Table 1. Annotated summary statistics including
replication information from described cohorts for variants with p<1x107°, coding variants
with p<0.05, APOE coding variants, and variants that are index variants for previous GWAS
are provided in Supplemental Table 2. This table also includes imputation quality (R2) for
variants presented in all tables, including those in Table 1 (average +/- standard deviation
=0.95 +/- 0.09), with only one variant with an R2 < 0.85 (rs11705431, R2=0.671)). As

an additional quality control measure, note that we also only considered variants called

in the genomes of the 26 individuals sequenced at HudsonAlpha (see methods). Variants
with p<1x107° that overlap with a single nucleus multiomics linkage between ATAC-seq
and RNA-seq in the same nuclei from a recent study [20] are shown in Supplemental
Table 3 along with more detailed information including which cell types are implicated in
each multiomics linkage. LocusZoom plots of all regions with p<1x10~° are presented in
Supplemental File 1.

Results at key APOE variants

Effects of previously established APOE variants important for AD association in LOAD

are in the expected direction based on previous studies, but modest in magnitude (Table 2).
Overall, the observations are consistent with previously reported observations including a
protective effect of APOE 2 in the Colombian E280A population (f=8.2, 95% Cl=4.5-
12.0, p=3.8x107°) [21], a deleterious effect of APOE 4 in the Colombian E280A
population in one study (hazard ratio 2.1, 95% CI 1.1-4.0, p=0.03) [22] but an inability

to detect an effect of APOE 4 in three other studies in this population [21, 23, 24], and a
non-significant trend towards an APOE €2 > APOE 3 > APOE e4 age-of-onset in dominant
AD families with a variety of mutations [2].

A recent case report implicated the APOE Christchurch variant (rs121918393) [5]. That
individual was also enrolled in this study, and while we do observe a nominally significant
effect on age at onset of this variant, we note that the effect size is modest, which could
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be because our model does not consider homozygosity effects. No other coding variants in
APOE beyond those described in Table 2 were observed in either the imputed set or the
subset of cases with genomes available.

Replication at known AD-associated loci

We evaluated 17 AD GWAS, including the largest case/control studies for AD in European
ancestry populations [18, 19, 25-27], studies in non-European ancestry populations [28-32],
age at onset modifier studies [16, 17], and endophenotype studies [33-37]. These studies
identified 108 loci (at least 500kb between unique loci) and 184 index variants within

these loci with high confidence associations for AD and endophenotypes (Supplemental
Table 4 (an expansion from a table put forward by [38])). Of these variants, 151 were
genotyped in this cohort, nine with p<0.05, but only six of these were in a consistent
direction. Replication of hits with genome-wide significance for AD-associated phenotypes
with nominal significance (p<0.05) with consistent effect direction in this cohort are shown
in Table 3. This table should be interpreted with caution, as it is close to the number of
variants that would be expected based on random sampling of this set of GWAS hits (six
observed versus ~four expected), however the variants identified do share some nearby
genes or pathways with variants from other nomination approaches (see Discussion).

In addition to testing known LOAD risk loci individually, we also evaluated the effect of
LOAD variants combined using a LOAD polygenic risk score (Figure 2). Polygenic risk
score both without (Figure 2A) and with APOE e allele—defining variants rs429358 and
rs7412 (Figure 2B) exhibited a significant correlation with age at dementia onset in the
expected direction (later age of onset associated with a lower polygenic risk score).

Coding variants of interest

We next asked if any coding variants speculatively associate with age of dementia onset
(Table 4). We chose four conditions: p<1x107>; p<0.01, Combined Annotation Dependent
Depletion (CADD) phred score [39] >20 and replication in more than 1 study; p<0.01,
population allele frequency < 2%, CADD>20, and replication in at least 1 study; and coding
variants in high priority AD genes with p<0.05 including APP, PSEN1, PSENZ, MAPT,
APOE (not shown because in Table 2), ABCA7, SORL1, TREMZ, and recently implicated
GWAS loci with signal for coding variation in a recent exome meta-analysis [40] including
ATP8B4, ABCA1, ADAMI0, CLU, ZCWPWI, and ACE.

Shared pathways between previous GWAS and coding variants of interest

Several pathways emerged with variants in both the previous GWAS replication set and the
coding variants of interest set. First, 7TSPAN14and TSPANI1Oare involved in scaffolding
ADAM10 and had GWAS and coding variants respectively. Second, ACE had a GWAS and
coding variant. Third, /53571 had a GWAS variant, and #SPGZ2had a coding variant, with
both involved in heparin sulfate biology.
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Discussion

Genetic association studies for LOAD are limited by heterogeneity of cases and unknown
levels of contribution from environmental sources. This study addresses these limitations
by employing a well-described phenotype in a geographically isolated population with a
monogenic form of AD [3]. While environmental influences will always be present, this
population has a relatively homogeneous set of environmental influences.

We identified 13 loci with p<1x10~° and replication or p<1x10~' with a nearby GWAS

hit associated with AD phenotypes as well as more speculative signals when considering
replication of previous GWAS in this cohort or important coding variants. This study
nominates several important biological processes and pathways for consideration including
clusterin, heparin sulfate and amyloid processing.

One of the most significant variants was rs35980966 (p=5.5x1078), which is a rare variant
(gnomAD v3.1.2 MAF=0.35%) that tags the CL U locus on chromosome 8 and exhibits
replication in three studies [18, 19] and ADGC EOAD study in progress. The variant falls
within a single nucleus multiomics linkage [20] to CLU. In addition, rs138295139 on
chromosome 1 is only 4.4kb from a variant previously associated with plasma clusterin,
rs4428865 [41], though these variants are not in LD, which could be explained by the

rarity of rs138295139. Finally, rs4942482 on chromosome 13 is near a variant previously
associated with CSF clusterin [41] and replicates in three studies [17, 19] and ADGC EOAD
study in progress. This variant is linked via single nucleus multiomics measurements to
nearby genes including ZC3H13and SIAHS3 (the linkage to SIAH3 s particularly interesting
as it is AD-specific). The variant previously associated with CSF clusterin levels [41] falls
between these genes. In addition, S/AH3 has been associated through another GWAS to

rate of ventricular enlargement in the ADNI cohort [42], an association that has also been
separately observed with variants near CLU [43]. Taken together, these observations, along
with evidence for diverse contributions of clusterin in LOAD (recently review in [44]),
suggest that further investigation of the role of clusterin and processes that may influence the
effects of clusterin in ADAD is warranted.

Two variants were identified in or near heparin sulfate associated genes including
rs6448453, a common variant near HS3571, and rs143543800, a rare variant in HSPGZ.
Heparin sulfate has been implicated in cell-to-cell spread of tau [45] as well as other
AD-associated processes [46], pointing to potential importance of this pathway for dominant
AD.

Variants in genes associated with amyloid processing were also identified in this study.

A common variant in 7SPANI14, rs6586028 (recently newly implicated in LOAD [19]),
replicated in this cohort, and we also identified a coding variant in 7SPAN10(Table

4). These two genes code for tetraspanins that are a part of the TspanC8 subgroup of
tetraspanins which promote ADAM10 maturation [47]. Given ADAM10’s established role
as an a.-secretase promoting non-amyloidogenic processing of Ap [48] as well as its ability
to cleave TREM2 (reviewed in [49]) and the recent association of genetic variation in or near
ADAMI10with AD risk by GWAS [18, 25, 27] along with a candidate study of mutations
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[50], the basis of the observed association between age of dementia onset and these variants
in TSPANI4and TSPANIO0 (both with a deleterious correlation) may result from disruption
of a protective role of ADAM10.

As the largest age at onset modifier study in ADAD to date (to our knowledge), this

study has nominated several new candidate genetic associations with age of dementia onset
in ADAD. The most important limitation of this study is the small sample size (despite
being the largest available sample size for this population) which precluded variants passing
multiple corrections adjusted genome-wide significance. However, because we analyzed the
three largest ADAD datasets available in the field, it is not possible to further increase
sample size or replication in ADAD, and we therefore present these findings in light of
replication with these available ADAD cohorts as well as sporadic EOAD and LOAD
cohorts. Still, we recognize the speculative nature of the nominal associations identified in
this study. Recruitment of more patients with early onset and/or dominant dementias from
South American countries will help to overcome this limitation in future studies [51].

An important overarching theme from this analysis is that while age at dementia onset in
ADAD has a strong heritable component, it is likely that, as with LOAD, there are many
different genetic contributors that sum to determine an individual’s age at dementia onset
for ADAD. Indeed, previous studies have suggested that further study of these types of
genetic contributions is warranted [52]. Based on the unique demography of this population
as a tri-continental admixture that passed through a narrow bottleneck [53], we conducted
this study with the hypothesis that rare variants with a large effect size, i.e., the APOE
Christchurch mutation [5], could account for much of the difference in age at dementia
onset. Indeed, we identified many genetic variants of a similar rarity in this study that are
candidates for having a large effect on age at dementia onset. However, we note that due
to the nature of the analysis, it is possible for the presence of alleles in a small number of
individuals with a particularly late age at onset to result in a low p value and large effect
size (“winner’s curse™), therefore large effect sizes in this study should be interpreted with
caution. In particular, 6 of the 13 associations highlighted as top candidate associations are
observed with an allele count of between 3-7, and thus these associations are driven by a
small number of individuals with a late age of onset. Further functional analysis in future
studies could help to clarify the possible role of these rare variants on biological processes
that may affect AD age at onset.

Importantly, we also detected common and/or lower effect size variation associated with
age of dementia onset in pathways and biological processes including clusterin, heparin
sulfate and amyloid processing. Because many of these variants replicate or were identified
in non-admixed European populations, it suggests that the associations for many of these
variants are robust to ancestral background. The identified variants in this study occur in the
presence of a very strong causative mutation for ADAD, emphasizing the importance of the
association signals observed for these variants and the need for more investigation of these
variants in future studies.
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Figure 1:

Plots of loci linked to clusterin or clusterin related phenotypes meeting criteria in Table

1. (A-C) LocusZoom plots of loci with index variants indicated with a purple diamond.
Nearby NHGRI-EBI GWAS hits are indicated. (A) Note nearby variant previously linked

to plasma clusterin levels. (B) Note several nearby variants previously linked to AD near
CLU. (C) Note nearby variant previously linked to CSF clusterin levels between SIAH3
and ZC3H13. (D,E) Single nucleus multiomic (snMultiomics) links (RNA-seg—ATAC-seq
correlations from the same nuclei) indicated for hits on chromosomes 8 and 13. Strength of
the link is indicated by height, and direction indicates direction of correlation. Index variants
are indicated with a green diamond. (D) Note link to CLU. (E) Note links to SIAH3and

ZC3H13.
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Figure 2:
Late onset AD polygenic risk score applied to the PSENI EZ80A cohort. (A) LOAD

polygenic risk score with APOE excluded (Spearman p = 0.0392). (B) LOAD polygenic risk
score with APOE included (Spearman p < 0.00001).
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