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A B S T R A C T   

Background: Hydrogen sulfide (H2S) has been identified as the third gaseous signaling molecule. Endogenous H2S 
plays a key role in the progression of various types of cancer. However, the effect of endogenous H2S on the 
growth of esophageal cancer (EC) remains unknown. 
Methods: In this study, three kinds of H2S-producing enzymes inhibitors, DL-propargylglycine (PAG, inhibitor of 
cystathionine-γ-lyase), aminooxyacetic acid (AOAA, inhibitor of cystathionine-β-synthase), and L-aspartic acid 
(L-Asp, inhibitor of 3-mercaptopyruvate sulfurtransferase) were used to determine the role of endogenous H2S in 
the growth of EC9706 and K450 human EC cells. 
Results: The results indicated that the combination (PAG+AOAA+L-Asp) group showed higher inhibitory effects 
on the viability, proliferation, migration, and invasion of EC cells than PAG, AOAA, and L-Asp group. Inhibition 
of endogenous H2S promoted apoptosis via activation of mitogen-activated protein kinase pathway in EC cells. 
Endogenous H2S suppression triggered pyroptosis of EC cells by activating reactive oxygen species-mediated 
nuclear factor-κB signaling pathway. In addition, the combine group showed its more powerful growth- 
inhibitory effect on the growth of human EC xenograft tumors in nude mice without obvious toxicity. 
Conclusion: Our results indicate that inhibition of endogenous H2S production can significantly inhibit human EC 
cell growth via promotion of apoptosis and pyroptosis. Endogenous H2S may be a promising therapeutic target in 
EC cells. Novel inhibitors for H2S-producing enzymes can be designed and developed for EC treatment.   
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Background 

Esophageal cancer (EC), which has the sixth highest mortality rate 
and patients with this advanced illness have a fewer than 25% five-year 
overall survival rate, is the seventh most dangerous cancer in the world 
[1–3]. Although multimodality therapies have remarkably improved 
during the past decades, the prognosis of EC remains dismal. Therefore, 
multidisciplinary therapy has been strongly recommended to improve 
the prognosis [4]. Hydrogen sulfide (H2S) has been known as the third 
gasotransmitter [5–8]. It is well known that endogenous H2S is essential 
as a mediator in a variety of physiological and pathological conditions 
[9]. Owing to its vascular relaxant and angiogenesis effects, H2S has 
shown its key player in modulating cancer development and progression 
in recent studies [10–15]. However, the effect of endogenous H2S on 
esophageal cancer remains unknown and its potential mechanism is 
lacking. Hence, the current study aimed to explore the regulatory role of 
endogenous H2S in EC cells. 

Currently, three kinds of H2S-synthesizing enzymes have been 
identified as being involved in H2S production: cystathionine-γ-lyase 
(CSE), cystathionine-β-synthase (CBS), and 3-mercaptopyruvate sulfur
transferase (3-MST). Recent studies have shown that the three enzymes 
exhibit a tissue-specific expression pattern [16,17]. The aggressiveness 
of various solid tumors, including hepatoma cells [12], colon cancer [10, 
18], prostate cancer [19], and breast cancer [16], has been associated 
with high amounts of CSE and CBS expression. And 3-MST expression 
were found in human neoplastic cells lines, melanoma cell lines, colon 
cancer cell lines, lung adenocarcinoma lines and urothelial cancer cell 
lines [17]. Together, the expression levels and functional correlations of 
CBS, CSE and 3-MST have been identified in different cancer cells, but 
their roles in EC are not yet to be clarified. 

In this study, we aim to determine the roles of H2S-synthesizing 
enzymes in the growth of EC cells. In summary, in vitro and in vivo studies 
deepen our understanding of the crucial functions of endogenous H2S in 
EC progression and provide novel insights for anti-cancer intervention. 

Methods and materials 

Cell culture 

Human Esophageal Cancer Cells (EC9706, K450) were purchased 
from Shanghai Jining Biosciences (Shanghai, China). Cells were cultured 
in RPMI-1640 medium (Gibco, Grand Island, NY, USA) supplemented 
with 10% fetal bovine serum (FBS, Gibco), 100 U/ml penicillin (Gibco), 
and 100 µg/ml streptomycin (Gibco). The cells were maintained at 37 ◦C 
in a humidified atmosphere of 5% CO2 and 95% air. Five groups were 
included in the experiment as follows: control group, DL- 
propargylglycine (PAG, CSE inhibitor) group, aminooxyacetic acid 
(AOAA, CBS inhibitor) group, L-aspartic acid (L-Asp, 3-MST inhibitor) 
group, and the combination (PAG+AOAA+L-Asp) group. All drugs were 
used at the concentrations of 1, 2.5, 5, and 10 mM for 24 h. Adminis
tration of phosphate buffer saline (PBS) for 24 h was considered as the 
control group. Then the cells were visualized under a CKX41 microscope 
(Olympus, Tokyo, Japan). And 10 mM PAG, AOAA, and L-Asp were used 
in further experiments. 

Measurement of H2S levels 

H2S levels in EC9706 and K450 cells were detected using the 
enzyme-linked immunosorbent assay kit (LanpaiBio, Shanghai, China) 
as previously described [20]. 

Cell proliferation assay 

The cell proliferation was performed by 5-Ethynyl-2′-deoxyuridine 
(EdU) assay using Cell-Light EdU DNA Cell Proliferation Kit (RiboBio, 
Shanghai, China). 

Cell viability assay 

Cell viability was assessed using the CellTiter 96 Aqueous One So
lution Cell Proliferation Assay kit (MTS; Promega, Madison, WI, USA). 
Then the absorbance was determined at 490 nm. 

Colony formation assay 

6 × 102 cells/plate were grown for 10 to 14 days on 35-mm dishes 
until individual clones could be identified. After washed with PBS 
buffer, the colonies were fixed with methanol and stained with crystal 
violet. Then the colonies containing more than 50 cells were counted. 

Wound healing assay 

The cells per well were seeded in 6-well plates and cultured in me
dium with 10% FBS. When the cells reached 90% confluence, scratch 
wounds were made with the use of a sterile 200 μL pipette tip and the 
cell monolayer was put in a serum-free medium. At 0 h, 12 h, and 24 h, 
the scratched area was identified and photographed. The areas of the 
wounds were measured by using ImageJ Software. 

Soft agar assay 

Soft agar assay was performed as we previously described [21]. 

Transwell assay 

Cell migration and invasion assays were assessed by Transwell. In 24- 
well chamber, cells were placed into the upper compartment with 
serum-free medium and medium containing 20% FBS was added to the 
lower wells as a chemoattractant. The difference between cell migration 
and invasion assay was whether the bottom of the insert chamber was 
pre-coated with or without matrigel. For the migration and invasion 
assays, 5 × 106 cells were incubated for 24 h and 48 h, respectively. 
Then the cells migrated to the lower surface of the insert dish were fixed 
with 100% methanol for 15 min, stained with 0.1% crystal violet for 10 
min, and then imaged under a microscope. 

Western blot 

EC cells were treated, harvested, and lysed with a protease inhibitor 
(Beyotime, Shanghai, China). Using sodium dodecyl sulphate- 
polyacrylamide gel electrophoresis, equal amount of protein was sepa
rated and then transferred to a polyvinylidene fluoride membrane 
(Millipore, Bedford, MA, USA). The membrane was blocked with 5% 
nonfat milk for 2 h followed by incubation overnight at 4◦C with a 
primary antibody of anti-E-cadherin antibody (1:1000, CST, Danvers, 
MA, USA), anti-N-cadherin (1:1000, CST), anti-matrix metal
loproteinase-9 (MMP-9) (1:1000, CST), anti-Vimentin (1:1000, CST), 
anti-Snail (1:1000, CST), anti-Slug (1:1000, CST), anti-phospho (p)- 
extracellular signal-regulated protein kinase (ERK) (1:1000, Pro
teintech, Chicago, IL, USA), anti-ERK (1:1000, Proteintech), anti-p-c- 
Jun N-terminal kinase (JNK) (1:1000, Proteintech), anti-JNK (1:1000, 
Proteintech), anti-p-p38 (1:1000, Proteintech), anti-p38 (1:1000, Pro
teintech), anti-nod-like receptor pyrin domain-containing protein 3 
(NLRP3) (1:1000, Proteintech), anti-cleaved gasdermin D (GSDMD) 
(1:1000, Proteintech), anti-interleukin (IL)-1β (1:1000, Proteintech), 
anti-cleaved caspase (cas)-1 (1:1000, Proteintech), anti-IL-18 (1:1000, 
Proteintech), anti-p50 (1:1000, Proteintech), anti-p-p65 (1:1000, Pro
teintech), anti-p65 (1:1000, Proteintech), anti-p-IκBα (1:1000, Pro
teintech), anti-IκBα (1:1000, Proteintech), anti-B-cell lymphoma-2 (Bcl- 
2) (1:1000, Proteintech), anti-Bcl-2-associated X protein (Bax) (1:1000, 
Proteintech), anti-B-cell lymphoma-extra large (Bcl-xl) (1:1000, Pro
teintech), anti-Bcl-xl/Bcl-2-associated death promoter (Bad) (1:1000, 
Proteintech), anti-cleaved cas-3 (1:1000, Proteintech), anti-cleaved cas- 
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9 (1:1000, Proteintech), anti-cleaved poly adenosine diphosphate-ribose 
polymerase (PARP) (1:1000, Proteintech), anti-cytochrome C (Cyt C) 
(1:1000, Proteintech), and anti-β-actin (1:5000, CST). After washing, the 
membrane was incubated with horseradish peroxidase (HRP)-conju
gated secondary antibody for 1 h. The bands were detected using an 
enhanced chemiluminescence system (Thermo, Rockford, IL, USA). The 
bands were semi-quantified with ImageJ software. 

Cell apoptosis assay 

Apoptosis was measured using TdT-mediated dUTP-biotin nick end 
labeling (TUNEL) assay. TUNEL-positive cells were imaged with a 
fluorescent microscope and the percentage was calculated using ImageJ 
software. The Annexin V Apoptosis Detection Kit (KeyGen Biotech, 
Nanjing, Jiangsu, China) was used for Annexin/PI analyses by a flow 
cytometer (CytoFLEX S, Beckman, CA, USA). 

Reactive oxygen species (ROS) detection 

Cellular ROS detection was performed by the dihydroethidium assay 
kit (Beyotime). 

Xenograft nude mouse model 

Animal studies were approved by the Committee of Medical Ethics 
and Welfare for Experimental Animals of Henan University School of 
Medicine (HUSOM-2019-167). Nude male mice (BALB/C-nu/nu) of 
four-week-old were purchased from the Beijing Vital River Laboratory 
Animal Technology Co., Ltd (Beijing, China). Then, 60 mice were 
divided into ten groups (n = 6/group) for the administration of EC9706 
and K450 cells (5 × 106 cells in 200 μl PBS) with 10 mM PAG, AOAA, L- 
Asp, PAG+AOAA+L-Asp and PBS subcutaneously injected near the 
tumor for 28 days respectively. The body weight and tumor volume of 
the mice were determined every 4 days. The volume (V) was calculated 
with the formula (V = 1/2 × length × width2). After 28 days the mice 
were euthanized, and tumor, heart, liver, spleen, lung, kidney, and brain 
were weighted. The tumor growth inhibition rate (IR) was calculated as 
IR = [(A - B)/A] × 100%, where A and B was the average tumor weight 
of the control group and treatment group, respectively. 

Immunohistochemistry (IHC) 

The paraffin-embedded tissue sections were used for hematoxylin 
and eosin (HE) staining. IHC was conducted using 4-μm-thick paraffin- 
embedded tumor sections. The primary antibodies included anti-Ki67 
(CST), anti-cluster of differentiation 31 (CD31) (CST), anti-cleaved 
cas-3, anti-NLRP3, anti-E-cadherin were diluted and then incubated at 
4◦C overnight. The slides were carefully washed before being incubated 
with HRP conjugates using diaminobenzidine detection. Tumor tissues 
were observed using a Zeiss Axioskop 2 plus microscope. Then, the 
microvessel density (MVD) was calculated, and the proliferation index, 
apoptotic index, NLRP3 positive cells, and E-cadherin positive cells were 
determined by the ratios of the positively stained cells to the total 
number. 

Statistical analysis 

The data are provided as the mean ± standard error of the mean 
(SEM). The difference between indicated groups was evaluated by one- 
way analysis of variance using SPSS 19.0 software (SPSS, Chicago, IL, 
USA). P < 0.05 was considered statistically significant. 

Results 

Suppression of endogenous H2S inhibits the viability and proliferation of 
human EC cells 

To assess the potential involvement of endogenous H2S in the 
development and progression of EC, the EC cells were treated with 1-10 
mM PAG, AOAA, and L-Asp. As a result, the viability of EC9706 and 
K450 cells was dose-dependently reduced, suggesting that suppression 
of CSE, CBS, and 3-MST could inhibit the growth of human EC cells 
(Fig. 1a). Thus, in the next experiments we selected the concentration of 
10 mM PAG, AOAA, and L-Asp as the ideal inhibition concentration. 
Furthermore, the decrease of H2S level was conformed after pretreated 
with the three H2S-producing enzymes inhibitors (Fig. 1b). The prolif
erative capacity of EC9706 and K450 cells was declined in PAG, AOAA, 
and L-Asp group when compared to the control group while the combine 
group exhibited the highest inhibitory effects (Fig. 1c–f). There were 
similar trends in the clonogenicity ability of EC9706 and K450 cells 
(Fig. 1g, h). Overall, these data imply that suppression of endogenous 
H2S level may inhibit the viability and proliferation of human EC cells. 

The endogenous H2S mediates the migration and invasion of human EC 
cells 

Next, we assessed the influence of PAG, AOAA, and L-Asp on the 
migration and invasion of EC cells. Compared with the control group, 
the migration and invasion were decreased in PAG, AOAA, and L-Asp 
group, whereas the combine group showed the most striking effect 
(Fig. 2a–d). In addition, the results of the wound healing and colony 
formation exhibited the similar trends (Fig. S1). Moreover, the expres
sion levels of epithelial-mesenchymal transition (EMT)-related proteins 
were determined by western blotting. The level of E-cadherin exhibited 
an elevation trend and the expressions of N-cadherin, MMP-9, Vimentin, 
snail, and slug were decreased compared with the control group. 
(Fig. 2e, f). These findings support the conclusion that endogenous H2S 
exerts an important effect on the suppression of EC cell migration and 
invasion. 

Suppression of endogenous H2S induces apoptosis via mitogen-activated 
protein kinase (MAPK) pathway in human EC cells 

To investigate the potential role of endogenous H2S in the regulation 
of apoptosis, we performed the TUNEL and AnnexinV/PI assays on 
EC9706 and K450 cells. As shown in Fig. 3a–d, in comparison with the 
control group, the apoptotic index was higher in PAG, AOAA, and L-Asp 
group while the combination group showed the highest apoptotic index. 
The levels of Cyt C, Bax, Bad, cleaved caspase-3, 9, PARP in human EC 
cells exhibited similar trends. In addition, the reverse trends were 
observed in the expressions of Bcl-2 and Bcl-xl (Fig. S2). MAPKs, which 
include ERK, JNK, and p38, play key roles in cellular apoptosis. Both 
JNK and p38 were activated whereas ERK was inactivated by adminis
tration alone (PAG, AOAA, and L-Asp group) or in combination; yet the 
effects were more pronounced by the combined administration (Fig. 3e, 
f). In sum, these data suggest that suppression of endogenous H2S can 
induce apoptosis via MAPK pathway in human EC cells. 

Suppression of endogenous H2S activates pyroptosis through ROS-nuclear 
factor-κB (NF-κB) signaling pathway in human EC cells 

To clarify the effect of impairing endogenous H2S formation on 
pyroptosis, we firstly detected the expression levels of pyroptosis-related 
proteins. As shown in Fig. 4a, b, compared with the control group, the 
levels of NLRP3, cleaved GSDMD, IL-1β, cleaved cas-1 and IL-18 were 
markedly up-regulated in PAG, AOAA, L-Asp, and combination group. 
Additionally, the combination group had significantly higher response 
than the three monotherapy groups. It has been proved that ROS is one 
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Fig. 1. Effects of PAG, AOAA, and L-Asp on the viability and proliferation of human EC cells. (a) The MTS assay was used to determine the percentage of viable cells 
after treated with different concentration of PAG, AOAA, L-Asp alone or in combination. The cell viability of each group without PAG, AOAA, and L-Asp treatment 
was normalized as 100% and considered to be the control group. (b) The levels of H2S after administration alone (10 mM PAG, 10mM AOAA, or 10mM L-Asp) or in 
combination were detected in EC cells. (c) Phase-contrast microscopy was used to observe the morphology of the indicated cells; original magnification × 200. (d) 
DNA replication activities of EC cells in each group were examined by EdU assay; original magnification × 200. (e) The proliferation rate of each group was analyzed. 
(f) The MTS assay was used to determine the percentage of viable cells. The cell viability of the control group was normalized as 100%. (g) The clonogenic capacity 
was determined in EC cells. (h) The number of colonies was calculated. The experiments were performed in triplicates. Data are presented as mean ± SEM. *P < 0.05, 
**P < 0.01 compared with the control group; △△ P < 0.01 compared with PAG group; ★★ P < 0.01 compared with AOAA group; ## P < 0.01 compared with L- 
Asp group. 

H.-G. Wang et al.                                                                                                                                                                                                                               



Translational Oncology 38 (2023) 101770

5

Fig. 2. Effects of PAG, AOAA, and L-Asp on the migration and invasion of human EC cells. (a) Transwell assay was performed to assess the migration of EC cells; 
original magnification × 200. (b) The number of the migrated cells was calculated. (c) Transwell assay was performed to assess the invasion of EC cells; original 
magnification × 200. (d) The number of the invasive cells was calculated. (e) Western blotting analysis for the expression of E-cadherin, N-cadherin, MMP-9, 
Vimentin, snail, and slug in EC9706 and K450 cells. β-actin was used as the loading control. (f) The relative intensity of E-cadherin, N-cadherin, MMP-9, Vimen
tin, snail, and slug by densitometry scanning are shown, normalized to the corresponding β-actin level. The experiments were performed in triplicates. Data are 
presented as mean ± SEM. *P < 0.05, **P < 0.01 compared with the control group; △△P <0.01 compared with PAG group; ★P < 0.05, ★★ P < 0.01 compared with 
AOAA group; ## P < 0.01 compared with L-Asp group. 
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Fig. 3. Effects of PAG, AOAA, and L-Asp on the apoptosis of human EC cells. (a) The apoptotic level was measured by TUNEL staining; original magnification × 200. 
(b) The apoptotic index was calculated. (c) The apoptotic level was detected by flow cytometry. (d) The result of flow cytometry was determined. (e) Western blotting 
analysis for the expression of p-ERK1/2, ERK1/2, p-JNK, JNK, p-p38, and p38 in EC9706 and K450 cells. β-actin was used as the loading control. (f) The densitometry 
analyses of p-ERK1/2, ERK1/2, p-JNK, JNK, p-p38, and p38 were performed, normalized to the corresponding β-actin level. The experiments were performed in 
triplicates. Data are presented as mean ± SEM. *P < 0.05, **P < 0.01 compared with the control group; △△P < 0.01 compared with PAG group; ★P < 0.05, ★★P <
0.01 compared with AOAA group; ##P < 0.01 compared with L-Asp group. 
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Fig. 4. Effects of PAG, AOAA, and L-Asp on the pyroptosis of human EC cells. (a) Western blotting analysis for the expression of NLRP3, IL-1β, IL-18, cleaved GSDMD, 
and cleaved cas-1 in EC9706 and K450 cells. (b) The densitometry analyses of NLRP3, IL-1β, IL-18, cleaved GSDMD, and cleaved cas-1 in EC9706 and K450 cells, 
normalized to the corresponding β-actin level. (c, d) Representative images and quantification of the intracellular ROS production was detected using the fluorescent 
probes DHE; original magnification × 100. (e) Western blotting analysis for the expression of p50, p-p65, p65, p-IκBα and IκBα in EC9706 and K450 cells. (f) The 
densitometry analyses of p50, p-p65, p65, p-IκBα and IκBα in EC9706 and K450 cells, normalized to the corresponding β-actin level. The experiments were performed 
in triplicates. Data are presented as mean ± SEM. *P < 0.05, **P < 0.01 compared with the control group; △P < 0.05, △△P < 0.01 compared with PAG group; ★P <
0.05, ★★P < 0.01 compared with AOAA group; ##P < 0.01 compared with L-Asp group. 
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of the key factors which can trigger the inflammatory response caused 
by the NLRP3 inflammasome [22]. Consistently, in our study, the ROS 
levels were significantly upregulated in PAG, AOAA, L-Asp, and com
bination group compared with the control group (Fig. 4c, d). Mean
while, the results revealed that either administration alone (PAG, AOAA, 
and L-Asp group) or in combination had inhibitory effects on the 
expression levels of p50, p-p65, and p-IκBα (Fig. 4e, f), suggesting that 
suppression of endogenous H2S could develop anti-cancer effect at least 
partly through ROS- NF-κB signaling pathway. 

Suppression of endogenous H2S inhibits the angiogenesis and growth of 
human EC xenograft tumors 

EC9706 and K450 cells were successfully adopted to establish the 
nude mouse tumor models. Compared with the control group, the tumor 
volumes and weights were dramatically decreased in PAG, AOAA, and L- 
Asp group. In addition, the tumor volume and tumor weight were lower 
but the tumor inhibitory rate was higher in the combination group than 
those in PAG, AOAA, and L-Asp group (Fig. 5a–d). As shown in Fig. 5e, f, 
HE staining results revealed that suppression of endogenous H2S was 
negatively correlation to EC progression. Furthermore, inhibition of 
tumor growth was evidenced by staining for a decrease in Ki67 and 
CD31 staining, as well as the increase in cleaved cas-3, NLRP3, and E- 
cadherin staining. 

Suppression of endogenous H2S has no significant toxicity 

Further, we determined the effects of suppression of endogenous H2S 
on the histology of other organs. We did not observe abnormalities in 
other organs, such as heart, liver, spleen, lung, kidney, and brain in PAG, 
AOAA, L-Asp and the combined group-treated mice, suggesting no 
adverse effects (Fig. 6a, b). Moreover, there was no obvious difference in 
body weight and organ index among groups (Fig. 6c, d). Taken together, 
the data demonstrate that inhibition of endogenous H2S can dramati
cally suppress the angiogenesis and growth of human EC xenograft tu
mors without significant toxicity. 

Discussion 

Endogenous H2S is an emerging novel cancer modulator in different 
pathological conditions and a possible diagnostic and prognostic marker 
in cancer. Recently, it was found that H2S-synthesizing enzymes (CBS, 
CSE, 3-MST) were dramatically altered in tumor tissues, indicating a 
potential role in the process of carcinogenesis [23]. However, the 
function of endogenous H2S in EC remains unclear. Thereby, in current 
study, we observed the effects of synthesizing enzymes inhibitors of H2S: 
PAG (CBS inhibitor), AOAA (CSE inhibitor), and L-Asp (3-MST inhibitor) 
on EC9706 and K450 EC cells. The findings demonstrated that the 
proliferation, viability, migration, and invasion of EC9706 and K450 
cells were reduced in PAG, AOAA, and L-Asp group when compared to 
the control group. Whereas the combine group showed higher inhibitory 
effects. Many studies have revealed that EMT plays a decisive role in 
tumor progression and metastasis [24–26]. In this study, we observed 
that synthesizing enzymes inhibitors of H2S increased the expression 
levels of epithelial markers (such as E-cadherin) and decreased the 
expression levels of mesenchymal markers (such as N-cadherin, 
Vimentin, Snail, Slug, MMP-9) in EC cells. These findings suggest that 
synthesizing enzymes inhibitors of H2S negatively regulates the EMT 
process and thereby significantly weakens tumor cell migration and 
invasion in vitro. So far, it has been revealed that H2S can inhibit the EMT 
process through decreased phospho-p38 expression [27]. Therefore, the 
antimetastatic effects of the three inhibitors on EC cells mediated by 
inhibition of the EMT process in this study are consistent with the pre
viously reported works. In sum, these data suggest that inhibition of 
endogenous H2S could suppress the viability, proliferation, migration, 
and invasion of human EC cells. 

Apoptosis, type I cell death, is an important process to maintain 
tissue and cell homeostasis [28]. The intrinsic mitochondrial pathway 
and extrinsic stimulation of death receptors are two apoptotic signaling 
pathways [29–31]. The activation of Bax and caspase could cause 
morphological changes and mitochondrial dysfunction, thus promoting 
mitochondrial apoptosis. Our findings revealed that administration 
alone (PAG, AOAA, and L-Asp group) or in combination had exhibited 
higher Bad/Bcl-xl and Bax/Bcl-2 ratios, as well as Cyt C, cleaved 
caspase-3, cleaved caspase-9 and cleaved PARP levels than the control 
group, indicating that inhibition of endogenous H2S induced apoptosis 
in human EC cells. Three most important MAPK family members that are 
associated with cell apoptosis are ERK, JNK, and p38 [32]. The activa
tion of ERK is generally a survival signal, whereas the activation of 
p38/JNK is a type of apoptotic signal pathway [33]. The effects of 
H2S-produced enzymes on apoptosis were further determined by 
assessing the roles of ERK, JNK and p38 in EC9706 and K450 cells. The 
data revealed that inhibition of endogenous H2S could induce apoptosis 
via MAPK pathway in human EC cells. 

Pyroptosis is a non-traditional type of programmed cell death char
acterized by the pore formation on the plasma membrane, which causes 
cell enlargement and plasma membrane disruption [34–36]. Therefore, 
pyroptosis induction might be a novel strategy for treating cancer [37, 
38]. The in vitro and in vivo results revealed that inhibition of endoge
nous H2S could induce EC cell pyroptotic death evidenced by the 
elevated levels of NLRP3, cleaved GSDMD, IL-1β, cleaved cas-1, and 
IL-18. The similar trend was observed in the levels of ROS. Many studies 
have indicated that low levels of ROS are essential for a range of phys
iological functions, such as signal transduction and cell growth [39,40]. 
However, ROS over-production could cause redox imbalance and 
oxidative stress, thus affecting a number of cellular functions, such as 
apoptosis, necroptosis and pyroptosis [25,35,36]. It has been shown that 
in colon cancer cells AOAA can increase the intracellular ROS induced 
by oxaliplatin [41]. Similarly, our results indicated that PAG, AOAA, 
and L-Asp increased ROS levels. Alternatively, H2S has been demon
strated to be involved in many inflammatory states including the NF-κB 
pathway [42,43]. NF-κB, an inflammatory oncogenic pathway, plays 
key roles in angiogenesis and proliferation and is constitutively acti
vated in a number of human cancers [44–46]. Of note, NF-κB activation 
contributes to the development and progression of esophageal squamous 
cell carcinoma [47]. Our results demonstrated that suppression of H2S 
producing enzymes dramatically decreased the expression levels of 
p-IκBα, p-p65, and p50, thereby inhibiting NF-κB signaling pathway in 
EC. The results indicate that PAG, AOAA, and L-Asp can promote 
pyroptosis through ROS-NF-κB signaling pathway in human EC cells. 

We further examined the effect of endogenous H2S on the growth of 
human EC xenograft tumors. The results suggested that PAG, AOAA, and 
L-Asp suppressed EC xenograft tumor growth and the combination 
group exhibited more potent inhibitory effects on tumor growth. 
Furthermore, there were no differences in organ and body weight, as 
well in the morphologies of heart, liver, spleen, lung, kidney, and brain, 
indicating that administration was not associated with any significant 
toxicity. The extraordinary tumor-inhibiting properties of PAG, AOAA, 
and L-Asp were further confirmed by IHC analysis for proliferation 
(Ki67), angiogenesis (CD31), apoptosis (cleaved cas-3), pyroptosis 
(NLRP3), and EMT (E-cadherin) of xenografted tumors from control, 
PAG, AOAA, L-Asp, and the combination group mice. Taken together, 
our data demonstrated that inhibition of endogenous H2S could suppress 
the angiogenesis and growth of human EC xenograft tumors without 
significant toxicity. 

All small-molecule inhibitors suffer from possible lack of specificity. 
Of note is that in our study PAG, AOAA, L-Asp, and the combination 
group had not produced any effect in matched healthy control mice, 
suggesting the inhibitors has possible specific effects under the condi
tions. Nevertheless, the utilization of pharmacological agents (in gen
eral, and also in particular in the current set of experiment) may be 
complicated by non-specific (“off-target”) effects. Therefore, further 
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Fig. 5. Effects of PAG, AOAA, and L-Asp on the growth of human EC xenograft tumors in nude mice. (a) Representative xenografts dissected from different groups of 
nude mice were shown. (b) The tumor volumes of human EC xenograft tumors were measured every 4 days. (c, d) The tumors were weighed and the inhibition rates 
of tumor growth were calculated. (e) Representative photographs of HE, Ki67, CD31, Cleaved cas-3, NLRP3, and E-cadherin staining in human EC xenograft tumors; 
original magnification × 200. (f) The proliferation rate, MVD, apoptotic index, NLRP3 and E-cadherin positive cells were calculated. Data are presented as mean ±
SEM (n=6). *P < 0.05, **P < 0.01 compared with the control group; △P < 0.05, △△P < 0.01 compared with PAG group; ★P < 0.05, ★★P < 0.01 compared with 
AOAA group; ##P < 0.01 compared with L-Asp group. 
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studies remain to be conducted in the future to further validate the 
findings. To investigate the role of CBS, CSE or 3-MST in EC cancer 
development and progression, different strategies such as gene silencing 
or knockout using siRNA, shRNA, or CRISPR can be employed. 

Conclusions 

Our results indicated that inhibition of endogenous H2S production 
could inhibit the growth of human EC cells via promoting apoptosis and 
pyroptosis both in vitro and in vivo. Endogenous H2S might be a prom
ising therapeutic target in human EC cells. Novel inhibitors for H2S- 

generating enzymes can be designed and developed for EC treatment. 

Ethics approval and consent to participate 

Animal studies were approved by the Committee of Medical Ethics 
and Welfare for Experimental Animals of Henan University School of 
Medicine (HUSOM-2019-167). All methods were performed in accor
dance with the relevant guidelines and regulations and this study is 
reported in accordance with ARRIVE guidelines. 

Fig. 6. Effects of PAG, AOAA, and L-Asp on the toxicity in nude mice. (a) Representative figures of the heart, liver, spleen, lung, kidney, and brain in nude mice. (b) 
The organ index was calculated. (c) The body weight change curve of each group during the experiment. (d) The body weight of each group on the first day (day 0) 
and the last day (day 28). Data are presented as mean ± SEM (n=6). 
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