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ABSTRACT
Background  Small cell lung cancer (SCLC) is a 
highly malignant cancer characterized by metastasis 
and an extremely poor prognosis. Although combined 
chemoimmunotherapy improves the prognosis of 
extensive-stage (ES)-SCLC, the survival benefits 
remain limited. Furthermore, no reliable biomarker is 
available so far to predict the treatment outcomes for 
chemoimmunotherapy.
Methods  This retrospective study included patients with 
ES-SCLC treated with first-line combined atezolizumab 
or durvalumab with standard chemotherapy between 
Janauray 1, 2019 and October 1, 2022 at five medical 
centers in China as the chemoimmunotherapy group. The 
patients were divided into one training cohort and two 
independent external validation cohorts. Additionally, we 
created a control group of ES-SCLC who was treated with 
first-line standard chemotherapy alone. The Radiomics 
Score was derived using machine learning algorithms 
based on the radiomics features extracted in the regions 
of interest delineated on the chest CT obtained before 
treatment. Cox proportional hazards regression analysis 
was performed to identify clinical features associated with 
therapeutic efficacy. The log-rank test, time-dependent 
receiver operating characteristic curve, and Concordance 
Index (C-index) were used to assess the effectiveness of 
the models.
Results  A total of 341 patients (mean age, 62±8.7 years) 
were included in our study. After a median follow-up time 
of 12.1 months, the median progression-free survival 
(mPFS) was 7.1 (95% CI 6.6 to 7.7) months, whereas 
the median overall survival (mOS) was not reached. 
The TNM stage, Eastern Cooperative Oncology Group 
performance status, and Lung Immune Prognostic Index 
showed significant correlations with PFS. We proposed 
a predictive model based on eight radiomics features to 
determine the risk of chemoimmunotherapy resistance 
among patients with SCLC (validation set 1: mPFS, 12.0 
m vs 5.0 m, C-index=0.634; validation set 2: mPFS, 
10.8 m vs 6.1 m, C-index=0.617). By incorporating the 
clinical features associated with PFS into the radiomics 
model, the predictive efficacy was substantially improved. 

Consequently, the low-progression-risk group exhibited a 
significantly longer mPFS than the high-progression-risk 
group in both validation set 1 (mPFS, 12.8 m vs 4.5 m, 
HR=0.40, p=0.028) and validation set 2 (mPFS, 9.2 m 
vs 4.6 m, HR=0.30, p=0.012). External validation set 1 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Landmark studies on extensive-stage small cell 
lung cancer (ES-SCLC) have demonstrated that 
combined immunotherapy and chemotherapy as a 
first-line treatment although improves overall sur-
vival, the benefit is limited. No reliable biomarker is 
available so far to predict the treatment outcomes of 
chemoimmunotherapy in ES-SCLC.

WHAT THIS STUDY ADDS
	⇒ We constructed a predictive model using integrat-
ed clinical and radiomics information from patients 
with ES-SCLC and established two external vali-
dation cohorts to exclude the potential variations 
between institutions due to different CT equipment 
and parameter settings, thereby ensuring the sta-
bility and generalizability of our results. Our model 
can precisely pick out the subgroup of patients who 
would benefit from chemoimmunotherapy. The risk 
for disease progression was reduced by ~65% and 
the risk for death was reduced by ~70% in the low-
progression-risk group compared with the high-
progression-risk group.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ We developed an economic, non-invasive, valid 
and effective model for predicting the therapeu-
tic responsiveness to chemoimmunotherapy and 
the prognosis of patients with ES-SCLC, providing 
a convenient and cost-effective tool for the man-
agement of ES-SCLC. With low input requirements 
and strong operability, our innovative strategy will 
have significant clinical significance and profound 
impacts.
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and set 2 yielded the highest 6-month area under the curve and C-index 
of 0.852 and 0.820, respectively. Importantly, the integrated prediction 
model also exhibited considerable differentiation power for survival 
outcomes. The HR for OS derived from the low-progression-risk and high-
progression-risk groups was 0.28 (95% CI 0.17 to 0.48) in all patients and 
0.20 (95% CI 0.08 to 0.54) in validation set. By contrast, no significant 
differences were observed in PFS and OS, between high-progression-risk 
patients receiving chemoimmunotherapy and the chemotherapy cohort 
(mPFS, 5.5 m vs 5.9 m, HR=0.90, p=0.547; mOS, 14.5 m vs 13.7 m, 
HR=0.97, p=0.910).
Conclusions  The integrated clinical and radiomics model can 
predict the treatment outcomes in patients with ES-SCLC receiving 
chemoimmunotherapy, rendering a convenient and low-cost prognostic 
model for decision-making regarding patient management.

INTRODUCTION
Small cell lung cancer (SCLC), a highly aggressive malig-
nancy, accounts for approximately 15% of lung cancers, 
with around 70% of patients diagnosed with extensive-
stage SCLC (ES-SCLC).1–3 Platinum-based chemotherapy 
has been the standard of care for ES-SCLC for decades, 
with a 2-year survival rate of approximately 7%.4 Land-
mark studies on ES-SCLC, such as IMpower133 and 
CASPIAN, have demonstrated that the combination of 
programmed death ligand 1 (PD-L1) immunotherapy 
and chemotherapy as a first-line treatment improves 
overall survival (OS).5 6 Despite these advancements, a 
combination of atezolizumab or durvalumab prolongs 
median progression-free survival (mPFS) by <1 month 
compared with standard chemotherapy, with a median 
OS (mOS) benefit of only 2.0–2.7 months.5 6 These find-
ings suggest that a proportion of patients with ES-SCLC 
exhibit a poor treatment response to immune checkpoint 
inhibitors (ICIs).

However, no established predictive biomarker is avail-
able to guide the use of ICIs in patients with SCLC; patients 
who will benefit from chemoimmunotherapy in ES-SCLC 
remain uncertain. Most patients with SCLC exhibit nega-
tive PD-L1 expression. Moreover, PD-L1 expression levels 
are not significantly correlated with response to chemo-
immunotherapy.7 8 Previous studies have classified SCLC 
based on neuroendocrine gene or transcription factor 
expression as a guide to treatment.9–11 However, the use 
of multiple transcription factors and microenvironmental 
indicators for clinical guidance is highly complex, which 
limits the feasibility of the approach in clinical prac-
tice.12–14 Therefore, an accurate, rapid, user-friendly, and 
cost-effective predictive marker is urgently needed to esti-
mate the treatment outcomes of chemoimmunotherapy.

Artificial intelligence (AI) has been used for monitoring 
disease progression and predicting disease prognosis. 
Recent studies have demonstrated that machine learning 
(ML) analysis of CT can predict the RNA-seq transcrip-
tome of lung cancer tissues, which can be used to evaluate 
CD8+ T cell tumor infiltration and thus predict immuno-
therapy response.15 On the other hand, deep learning 
(DL) algorithms are widely used in cancer diagnosis, 
precision staging, and efficacy prediction. DL-guided 

imaging can identify epidermal growth factor receptor 
mutations, pathological diagnosis, and molecular types of 
lung cancer.16 17 Random forest classification models can 
identify patients who are likely to experience immune 
hyperprogression by analyzing imaging features.18 These 
findings demonstrate that AI can be used to probe micro-
cosmic imaging features with biological and pathological 
processes.

Here, this multicenter retrospective cohort study 
recruited patients with ES-SCLC who received chemoim-
munotherapy as first-line treatment. We proposed an ML 
approach using combined radiomics markers and clinical 
features to establish an efficacy predictive classifier for the 
potential benefits of chemoimmunotherapy in patients 
with ES-SCLC, which is expected to be user-friendly, non-
invasive, highly reproducible, and precise.

MATERIALS AND METHODS
Study design and participants
In this retrospective study, eligible patients were adults 
confirmed by definite histopathology of SCLC and clas-
sified as ES according to the Veterans Administration 
Lung Study Group staging system. And the patients 
should receive first-line standard chemoimmunotherapy 
(atezolizumab/durvalumab plus chemotherapy). The 
requirement for informed consent was waived due to 
the retrospective study design. Finally, we included 379 
patients between January 2019 and September 2022 as the 
chemoimmunotherapy group. The training set (n=253) 
included patients from The Second Affiliated Hospital 
of Zhejiang University (n=72), Hunan Cancer Hospital 
(n=156), and West China Hospital (n=25), whereas the 
independent external validation sets 1 and 2 included 
patients from Peking University Cancer Hospital (n=51) 
and Shanghai Pulmonary Hospital (n=75). In addition, 
we also collected data from 57 patients with ES-SCLC 
who received first-line chemotherapy alone as the control 
group. Baseline chest CT, demographic information 
(age, sex, ethnicity, and marital status), smoking history, 
treatment regimen and side effects, follow-up duration, 
PFS, and OS time were recorded. Disease stage at diag-
nosis was classified according to the American Joint 
Committee on Cancer, eighth edition, tumor, node, 
metastasis staging system; the best objective response was 
evaluated according to Response Evaluation Criteria in 
Solid Tumors, V.1.1. Patients who discontinued therapy 
and had missing follow-up data were excluded. Variables 
with values of p<0.05 in the univariate Cox proportional 
hazards regression model were entered into the multivar-
iate Cox regression model; those with values of p<0.05 in 
the multivariate Cox regression model were included in 
the final prediction model.

Prediction model construction
The target lung cancer lesions (ie, regions of interest) 
on the pretreatment lung CT were labeled manually 
for the remaining patients using 3D-Slicer software. 
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Next, a peripheral ring was constructed by automatically 
expanding and contracting the tumor border by 2 mm 
on each side, resulting in a ring that was approximately 
4 mm thick inside and outside the border. The lung CT 
images were labeled manually by two experienced radiol-
ogists (QW and MC); disputes were resolved by discus-
sion with a third one (KH). Images were resampled and 
cropped if needed. The 3D CT images had dimensions 
ranging from 512×512 × 52 to 512×512 × 512 units. The 
PyRadiomics package extracted the segmented region of 
interest images for histological features, including first-
order statistical, spatial geometry, texture, and wavelet 
features. LASSO-Cox proportional risk regression was 
performed using PFS as the outcome for each eigenvalue 
of patients in the training set. Features with non-zero 
coefficients were extracted using 10-fold cross-validation. 

Radiomics Score (radio-score) was calculated based on a 
linear combination of the weighted feature coefficients, 
using the cut-off as the median value. To further optimize 
the independent variables, correlation and collinearity 
analyses were performed between the radio-score and 
clinical features.

Furthermore, we integrated radio-score with significant 
clinical variables for PFS to apply multivariate Cox regres-
sion to construct the combined model. Accordingly, Risk 
Score was calculated and the median values were chosen 
to discriminate low-progression-risk/high-progression-
risk groups of disease progression.

Statistical analysis
Data were analyzed and plotted using R studio (V.4.2.3). 
Radiomics features were extracted using Python (V.3.8). 

Figure 1  Workflow of the proposed integrated predictive model and study design. The patients with ES-SCLC treated with 
combined atezolizumab or durvalumab with standard chemotherapy are included and one training cohort and two independent 
external validation cohorts are created. Cox regression is employed to screen for therapeutic efficacy associated clinical 
features. Radiomics Score is constructed using machine learning from the radiomics features extracted in the regions of interest 
delineated on the chest CT before treatment. Clinical features are further combined with the radiomics score to devise the 
integrated model, whose outputs create the treatment outcome prediction. AUC, area under the curve; DCA, decision curve 
analysis; ES-SCLC, extensive-stage small cell lung cancer; K-M, Kaplan-Meier.
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Table 1  Baseline characteristics of the patients

Characteristics

Chemoimmunotherapy 
group,
N (%)
(n=341)

Radiomics analysis in the chemoimmunotherapy 
group, N (%)

Chemotherapy 
group,
N (%)
(n=57)

Training set
(n=174)

Validation set 1 
(n=39)

Validation set 2
(n=45)

Age, mean (SD), years 62.0 (8.7) 62.2 (9.0) 62.3 (8.8) 62.6 (8.5) 62.0 (8.4)

Age group, years

 � <65 194 (57) 93 (53) 19 (49) 27 (60) 34 (60)

 � ≥65 147 (43) 81 (47) 20 (51) 18 (40) 23 (40)

Sex

 � Male 307 (90) 158 (91) 34 (87) 40 (89) 53 (93)

 � Female 34 (10) 16 (9) 5 (13) 5 (11) 4 (7)

Smoking status

 � Smoker 264 (77) 149 (86) 28 (72) 23 (51) 51 (89)

 � Non-smoker 77 (23) 25 (14) 11 (28) 22 49) 6 (11)

ECOG

 � 0–1 316 (93) 158 (91) 37 (95) 42 (93) 51 (89)

 � 2 25 (7) 16 (9) 2 (5) 3 (7) 6 (11)

Disease stage at diagnosis*

 � III 50 (15) 29 (17) 0 (0) 10 (22) 14 (25)

 � IV 291 (85) 145 (83) 39 (100) 35 (78) 43 (75)

Brain metastases

 � Yes 66 (19) 33 (19) 8 (21) 7 (16) 10 (18)

 � No 275 (81) 141 (81) 31 (79) 38(84) 47 (82)

Liver metastases

 � Yes 69 (20) 37 (21) 9 (23) 8 (18) 13 (23)

 � No 272 (80) 137 (79) 30 (77) 37 (82) 44 (77)

LIPI

 � Good 117 (34) 59 (34) 8 (21) 21 (47) 16 (28)

 � Intermediate 143 (42) 79 (45) 11 (28) 15 (33) 27 (47)

 � Poor 81 (24) 36 (21) 20 (51) 9 (20) 14 (25)

Drug

 � Durvalumab 99 (29) 81 (47) 3 (8) 0 (0) /

 � Atezolizumab 242 (71) 93 (53) 36 (92) 45 (100) /

Best objective response†

 � CR+PR 264 (77) 122 (70) 33 (84) 40 (89) 42 (74)

 � Stable disease 68 (20) 46 (26) 3 (8) 5 (11) 9 (16)

 � PD 9 (3) 6 (4) 3 (8) 0 (0) 6 (10)

irAE

 � Yes 68 (20) 39 (22) 6 (15) 6 (13) /

 � No 273 (80) 135 (78) 33 (85) 39 (87) /

Radiotherapy

 � Chest 99 (29) 55 (32) 10 (26) 9 (20) 10 (16)

 � Brain 63 (18) 34 (20) 10 (26) 5 (11) 13 (23)

*Disease stage at diagnosis classified according to American Joint Committee on Cancer, eighth edition, tumor, node, metastasis (TNM) 
staging system.
†Best objective response was evaluated according to Response Evaluation Criteria in Solid Tumors, V.1.1.
CR, complete response; ECOG, Eastern Cooperative Oncology Group; irAE, immune-related adverse event; LIPI, Lung Immune Prognostic 
Index; PD, progressive disease; PR, partial response.
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Time-dependent receiver operating characteristic 
(ROC) curve with 6 months and 12 months as cut-offs 
and Concordance Index (C-index) were used to evaluate 
the model performance. Decision curve analysis (DCA) 
was used to assess the clinical benefit of the model. Cali-
bration was evaluated to determine the validity of the 
model. Differences between low-progression-risk and 
high-progression-risk groups were assessed using log-rank 
tests and Kaplan-Meier (K-M) analysis. Correlation was 
assessed using Spearman’s correlation analysis. Variance 
inflation factor (VIF) was used to analyze the collinearity 
between independent variables. Values of p<0.05 were 
considered statistically significant.

Role of the funding source
The funder of the study played no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the article.

RESULTS
Study population
Figure 1 illustrates the study flow. In total, 379 patients 
in the chemoimmunotherapy group were screened, 
including 253, in the training set, and 51 and 75 in 
the external validation sets 1 and 2, respectively. After 
excluding 38 patients with missing follow-up information 
and 6 who discontinued treatment, 341 were included 
in the study. Table 1 presents the baseline characteristics 
of the participants. Patients were predominantly male 
(307/341, 90%) and had a mean age of 62±8.7 years, 
history of smoking (264/341, 77%), stage IV cancer 
(291/341, 85%), and Eastern Cooperative Oncology 

Group (ECOG) Score <2 (316/341, 93%). At baseline, 66 
(19%) patients had brain metastases and 69 (20%) had 
liver metastases. Furthermore, 29% (99/341）and 71% 
(242/341）of patients were treated with durvalumab 
and atezolizumab, respectively, and the prognosis did 
not differ between the groups, except for a significantly 
higher prevalence of immune-related adverse events 
(irAEs) observed in patients who received durvalumab.

Clinical features and treatment outcomes
Over a median follow-up duration of 12.1 months, the 
mPFS was 7.1 (95% CI 6.6 to 7.7) months, 87 (26%) 
patients died and the median OS (mOS) was not reached. 
The 6-month, 9-month, and 12 month PFS rates were 
60.7%, 38.2%, and 28.3%, respectively. The 12-month 
and 18-month OS rates were 75.0% and 58.5%, respec-
tively (table  2). Notably, most patients (264/341, 77%) 
achieved disease control after receiving chemoimmuno-
therapy, 1 patient achieved a complete response (CR) and 
68 (20%) remained stable, whereas 9 patients (3%) expe-
rienced progressive disease (PD) after treatment. The 
objective response rate (ORR) and disease control rate 
were 77% and 97%, respectively. Among the 225 patients 
who have experienced disease progression after treat-
ment, 60% (135/225) suffered disease progression at the 
primary site, 32% (73/225) developed distant metastasis, 
and 2% (4/225) demonstrated both types of progression. 
In total, 68 patients (20%) experienced irAEs, including 
20 (6%) with grade ≥3, such as immune-related pneu-
monia and hepatic injury. During the treatment course, 
99 of 341 (29%) patients received chest radiotherapy and 
63 (18%) patients received brain radiotherapy (table 1). 

Table 2  Summary of treatment response

Chemoimmunotherapy 
group (n=341)

Radiomics analysis in chemoimmunotherapy group

Chemotherapy 
group (n=57)

Training set
(n=174)

Validation set 1 
(n=39)

Validation set 2 
(n=45)

ORR 77.4% 70.1% 84.6% 88.9% 73.7%

DCR 97.4% 96.6% 92.3% 100.0% 89.5%

Death 25.5% 26.4% 43.6% 4.4% 42.1%

Follow-up time,
median (95% CI), 
months

12.1 (11.0 to 13.2) 12.4 (11.1 to 13.7) 15.3 (13.6 to 
16.9)

7.1 (6.0 to 8.2) 11.8 (8.9 to 14.7)

PFS, median (95% CI), 
months

7.1 (6.6 to 7.7) 6.9 (6.2 to 7.7) 6.9 (4.7 to 9.2) 8.1 (6.3 to 9.9) 5.9 (5.1 to 6.7)

OS, median (95% CI), 
months

NR NR 19.1 (9.9 to 28.3) NR 13.7 (8.9 to 18.5)

6-month PFS (%) 60.7% 60.3% 53.8% 66.1% 45.5%

9-month PFS (%) 38.2% 36.0% 41.0% 44.4% 13.0%

12-month PFS (%) 28.3% 25.6% 38.3% 22.4% 4.3%

12-month OS (%) 75.0% 73.2% 62.6% 86.4% 59.1%

18-month OS (%) 58.5% 60.7% 51.6% 86.4% 30.8%

DCR, disease control rate; ORR, objective response rate; OS, overall survival; PFS, progression-free survival.
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The K-M curve clearly showed that radiotherapy had 
minimal effect on PFS, but significantly prolonged mOS 
(NR vs 17.2 m, 95% CI 14.2-NR, HR=0.48, p=0.001, online 
supplemental figure S1).

Univariate Cox regression analyses were conducted to 
investigate the association between clinical features and 
PFS. ECOG performance status, Lung Immune Prog-
nostic Index (LIPI), T stages, N stages, and M stages 
significantly impacted the outcome (figure 2). All of the 
aforementioned were statistically significant in multivar-
iate Cox regression analyses (p<0.05). The K-M curves 
in figure  2 illustrate the impacts of clinical features on 
PFS. Of note, Cox regression analyses indicated that 
ECOG performance status, liver metastasis, and LIPI were 
significantly associated with survival outcomes (p<0.05; 
figure 3). The K-M curves in figure 3 illustrate the impacts 
of clinical features on OS. Furthermore, Spearman’s 
correlation analyses indicated a significant correlation 
between PFS and OS (R=0.677, p<0.01) (figure 2H).

Construction of the radiomics prediction model
After excluding patients with missing imaging data or 
inadequate image quality, we analyzed imaging omics of 
258 patients from three cohorts. The cohorts included 
174 patients in the training set and 39 and 45 patients in 
the external validation sets 1 and 2, respectively. Tables 1 
and 2 present the detailed clinical features of each group.

For radiomics analysis, we extracted 1218 radiomics 
features from the region of interest (ROI) of CT images 
of the lung. LASSO-Cox regression was performed for 
the training set using PFS as the outcome variable, which 
identified eight radiomics features with non-zero coeffi-
cients. We multiplied the weight of feature coefficients 
by the sum of feature values to calculate the radio-score 
(online supplemental file 1). We divided patients into 
low-progression-risk and high-progression-risk groups 
using the median cut-off value of the training set. The 
time-dependent ROC curve and the C-index were used to 
evaluate the efficiency of the model, with 6 months and 

Figure 2  Clinical features associated with PFS. Forest plot for PFS of (A) Univariate Cox proportional hazard model of clinical 
variables and (B) Multivariate Cox proportional hazard model of clinical variables; (C-G) The K-M curve of PFS-associated 
clinical variables: (C) T stage; (D) N stage; (E) M stage; (F) ECOG and (G) LIPI; (H) Spearman’s correlation of PFS and OS. CNS, 
central nervous system; PFS, progression-free survival; K-M, Kaplan-Meier; OS, overall survival; ECOG, Eastern Cooperative 
Oncology Group; PS, performance status; LIPI, Lung Immune Prognostic Index; irAE, immune-related adverse event.

https://dx.doi.org/10.1136/jitc-2023-007492
https://dx.doi.org/10.1136/jitc-2023-007492
https://dx.doi.org/10.1136/jitc-2023-007492
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12 months as the time nodes. The training set demon-
strated an area under the curve (AUC) of 0.637 and 0.734 
at 6 months and 12 months, respectively, and a C-index of 
0.585. The external validation set 1 demonstrated an AUC 
of 0.714 and 0.668 at 6 months and 12 months, respec-
tively, and a C-index of 0.634. The external validation set 
2 demonstrated an AUC of 0.635 and 0.733 at 6 months 
and 12 months, and a C-index of 0.617 (table 3). The K-M 
curves for low-progression-risk and high-progression-risk 
were significantly separated, with an mPFS of 7.4 (95% 
CI 6.5 to 11.1) months vs 6.0 (95% CI 5.4 to 7.4) months, 
respectively, in the training set (HR=0.59, 95% CI 0.41 to 
0.86, p=0.006). The classification method was applied to 

external validation sets 1 and 2, and the results showed 
an mPFS of 12.0 (95% CI 7.0-NR) months vs 5.0 (95% CI 
3.2-NR) months (HR=0.41, 95% CI 0.19 to 0.89, p=0.023) 
and 10.8 (95% CI 7.0-NR) months vs 6.1 (95% CI 4.9 to 
9.5) months (HR=0.39, 95% CI 0.17 to 0.89, p=0.026), 
respectively. The K-M curves illustrating these findings 
are shown in figure 4.

Establishment of the integrated prediction model
Although the ML-based Radiomics model can be used 
as an independent predictor for PFS, its accuracy and 
efficacy need further improvement. According to results 
of Spearman’s correlation analysis between radio-score 

Figure 3  Clinical features associated with overall survival. (A–C) Forest plot for OS of (A) Univariate Cox proportional hazard 
model of clinical variables and (B) Multivariate Cox proportional hazard model of clinical variables; (C–E) The K-M curve of OS 
associated clinical variables: (C) ECOG, (D) LIPI and (E) Liver metastases. CNS, central nervous system; K-M, Kaplan-Meier; 
OS, overall survival; ECOG, Eastern Cooperative Oncology Group; PS, performance status; LIPI, Lung Immune Prognostic 
Index; irAE, immune-related adverse event.
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and clinical features, we found there was no correla-
tion between radio-score and clinical features except 
LIPI (R=0.691, p<0.01) (online supplemental figure 
S2). Further collinearity analysis showed VIFs of LIPI 
and radio-score were 1.789 and 3.709, respectively, indi-
cating the absence of collinearity in between (online 

supplemental table S1). Therefore, we integrated all the 
PFS-related clinical features related to the Radiomics 
model to develop a combined prediction model.

We used Cox regression to model the selected clinical 
features and radio-scores in the training set. The regres-
sion coefficient was used to calculate the comprehensive 

Table 3  Performance of different models in predicting PFS

6 month AUC
(95% CI)

12 month AUC
(95% CI)

C-index
(95% CI)

Radiomics model

 � Training set (n=174) 0.637 (0.548 to 0.727) 0.734 (0.623 to 0.845) 0.585 (0.527 to 0.643)

 � Validation set 1 (n=39) 0.714 (0.551 to 0.877) 0.668 (0.466 to 0.870) 0.634 (0.540 to 0.728)

 � Validation set 2 (n=45) 0.635 (0.427 to 0.844) 0.733 (0.397 to 1.000) 0.617 (0.468 to 0.766)

 � Control set (n=57) 0.461 (0.297 to 0.624) NA 0.534 (0.440 to 0.628)

Integrated model

 � Training set (n=174) 0.744 (0.663 to 0.825) 0.836 (0.753 to 0.919) 0.699 (0.651 to 0.748)

 � Validation set 1 (n=39) 0.820 (0.689 to 0.952) 0.726 (0.525 to 0.928) 0.688 (0.590 to 0.785)

 � Validation set 2 (n=45) 0.852 (0.706 to 0.998) 0.751 (0.372 to 1.000) 0.820 (0.721 to 0.918)

 � Control set (n=57) 0.394 (0.233 to 0.555) NA 0.556 (0.456 to 0.656)

AUC, area under the curve; C-index, Concordance Index; NA, Not applicable; PFS, progression-free survival.

Figure 4  Machine learning based Radiomics model performance. (A–C) The ROC curve of the Radiomics prediction model in 
(A) training set, (B) validation set 1 and (C) validation set 2; (D–F) K-M curves of PFS in (D) training set, (E) validation set 1 and 
(F) validation set 2 stratified as low-progression-risk and high-progression-risk using the Radiomics model. AUC, area under the 
curve; FPR, false positive rate; K-M, Kaplan-Meier; mPFS, median PFS; PFS, progression-free survival; TPR, true positive rate; 
ROC, receiver operating characteristic.

https://dx.doi.org/10.1136/jitc-2023-007492
https://dx.doi.org/10.1136/jitc-2023-007492
https://dx.doi.org/10.1136/jitc-2023-007492
https://dx.doi.org/10.1136/jitc-2023-007492
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prediction model score. The median cut-off value was used 
to divide the low-progression-risk and high-progression-
risk groups. Compared with the simple Radiomics model, 
the AUC at 6 months and 12 months and C-index of the 
training and validation sets were significantly improved 
in the combined prediction model (training set: 0.744, 
0.836, and 0.699; external validation set 1: 0.820, 0.726, 
and 0.688; external validation set 2: 0.852, 0.751, and 
0.820) (table 3). The calibration curve, DCA plots, and 
risk factor diagram are shown in figure 5. The DCA plot 
suggests our prediction model can obtain satisfactory 
clinical benefits, and the integrated model has a higher 
net benefit level than the sole Radiomics model. We 
can also find intuitively that the high- progression-risk 
group had a higher rate of disease progression from risk 
factor diagram, compared with the low-progression-risk 
group. Furthermore, the integrated model significantly 
increased the degree of separation between the two 
curves in the low-progression-risk and high-progression-
risk groups (figure 6), as well as substantially improved 
the HR, resulting in a mPFS of 8.8 (95% CI 7.3 to 12.8) 
months vs 5.6 (95% CI 4.3 to 6.5) months (HR=0.35, 95% 
CI 0.24 to 0.52, p<0.001) in the training set and 12.8 (95% 
CI 10.3-NR) months vs 4.5 (95% CI 4.0 to 7.3) months 

(HR=0.40, 95% CI 0.18 to 0.90, p=0.028) and 9.2 (95% 
CI 7.1 to 14.3) months vs 4.6 (95% CI 4.1-NR) months 
(HR=0.30, 95% CI 0.12 to 0.76, p=0.012) in the external 
validation sets 1 and 2, respectively. These findings indi-
cate that the integrated prediction model dramatically 
improved the prediction efficiency compared with the 
sole radiomics model.

Of importance, we plotted the OS K-M curve of low-
progression-risk and high-progression-risk groups (n=139 
and n=119, respectively) predicted by our integrated 
model (figure  6). There were significant differences in 
OS between the two groups for the entire population (NR 
vs 14.5 (95% CI 12.4-NR) months, HR=0.28, 95% CI 0.17 
to 0.48), p<0.001. The median OS for the low-progression-
risk and high-progression-risk groups in the training set 
was NR vs 14.5 (95% CI 12.4-NR) months, and HR=0.33, 
95% CI 0.17 to 0.61, p<0.001. For the combined external 
validation sets 1 and 2, the mOS was NR vs 13.6 months 
(95% CI 7.0-NR), HR=0.20, 95% CI 0.08 to 0.54, p=0.001. 
In addition, the 12-month OS rates in the low-progression-
risk and high-progression-risk groups were 82.3% vs 
63.5% in the training set, and 86.4% vs 51.8% in the vali-
dation sets 1 plus 2. The 18-month OS rates in the low-
progression-risk and high-progression-risk groups were 

Figure 5  Model performance of the integrated model. (A–C) The ROC curve of the combined prediction model in (A) training 
set, (B) validation set 1 and (C) validation set 2; (D) The calibration curve of the combined prediction model at 6 months and 12 
months in predicting PFS. (E–F) DCA curve of the Radiomics model and combined model at 6 months (E) and 12 months (F) in 
predicting PFS; (G) Risk factor diagram of the combined model in predicting PFS. AUC, area under the curve; TPR, true positive 
rate; FPR, false positive rate; DCA, decision curve analysis; ECOG, Eastern Cooperative Oncology Group; LIPI, Lung Immune 
Prognostic Index; PFS, progression-free survival; ROC, receiver operating characteristic.
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74.1% vs 45.4% in the training set, and 75.6% vs 43.2% in 
the validation sets 1 plus 2. Again, these findings demon-
strate that our comprehensive model can predict the risk 
of disease progression and survival outcomes, allowing 
for the precise identification of patients with ES-SCLC 
who will benefit most from chemoimmunotherapy.

Performance of the integrated model for the control group
The demographic features of patients in the chemo-
therapy cohort are shown in table  1. Over a median 
follow-up time of 11.8 months, the mPFS was 5.9 (95% 
CI 5.1 to 6.7) months, and mOS was 13.7 (95% CI 8.9 to 
18.5) months. No statistically significant differences were 
observed in PFS or OS between high-progression-risk 
patients receiving chemoimmunotherapy and the chemo-
therapy cohort (mPFS, 5.5 (95% CI 4.4 to 6.2) months vs 
5.9 (95% CI 5.0 to 6.7) months, HR=0.90, 95% CI 0.63 
to 1.28, p=0.547; mOS, 14.5 (95% CI 12.4-NR) months vs 
13.7 (95% CI 9.4 to 24.0) months, HR=0.97, 95% CI 0.59 
to 1.60, p=0.910) (figure 7). On the other hand, we tried 
to apply clinical and radiomics information of the chemo-
therapy cohort into the integrated model. The 6-month 
AUC and C-index were only 0.394 and 0.556, respec-
tively. The PFS and OS K-M curves of low-progression-
risk and high-progression-risk groups indicated that the 

integrated model could not predict the prognosis in the 
chemotherapy group (online supplemental figure S3).

DISCUSSION
This is the largest multicenter retrospective analysis to 
date and is the first to employ ML to generate a convincing 
predictive marker for the treatment outcomes in patients 
with ES-SCLC. Our findings demonstrate that radiomics 
can be an independent prognostic predictor for patients 
treated with chemoimmunotherapy, regardless of other 
clinical or molecular biomarkers. The addition of clin-
ical features markedly further improved the predictive 
efficacy of the model. Most importantly, the eventual 
survival outcome was significantly different between the 
low-progression-risk and high-progression-risk groups. 
The risk for disease progression was reduced by ~65% 
and the risk for death was reduced by ~70% in the low-
progression-risk group compared with high-progression-
risk group.

Chemoimmunotherapy is the recommended first-line 
treatment for ES-SCLC. Our retrospective study demon-
strated an mPFS of 7.1 months, ORR of 77%, and irAE 
rate of 20%. The therapeutic efficacy was not correlated 

Figure 6  Kaplan-Meier analysis in the cohorts. (A–C) K-M curves of PFS in (A) the training set, (B) validation set 1 and 
(C) validation set 2 stratified as low-progression-risk and high-progression-risk using the integrated model. (D–F) K-M curves 
of OS in (D) all patients, (E) training set and (F) validation set stratified as low-progression-risk and high-progression-risk using 
the integrated model. K-M, Kaplan-Meier; mOS, median OS; mPFS, median PFS; OS, overall survival; PFS, progression-free 
survival.

https://dx.doi.org/10.1136/jitc-2023-007492
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with the prevalence of irAEs, drug agents, or the pres-
ence of pure baseline brain metastases. These findings 
are in general consistent with the randomized control 
studies, such as IMpower133 and CASPIAN, as well 
as the recent emerging CAPSTONE-1 and ASTRUM-
005,5 6 19 20 except for a relatively longer OS, which could 
partially be explained by the contributions of radio-
therapy.21 We did observe that radiotherapy played a 
crucial role in the improvement of survival outcomes of 
the ES-SCLC group patients, which warrants validation 
by the randomized trials in future. LIPI was an indepen-
dent prognostic predictor, which is in line with previous 

observations in both limited-stage SCLC and patients with 
ES-SCLC.22 23 Our proposed ML Radiomics model, to 
some extent, is capable of identifying the beneficial popu-
lation with ES-SCLC, achieving 6-month and 12 month 
AUCs of 0.635–0.733 in the validation sets. Further-
more, by integrating the clinical features with the radio-
score, we devised the more valid and accurate ML-based 
predictive model. The patients were divided into low-
progression-risk and high-progression-risk groups by the 
integrated classifier. The K-M curves for both PFS and 
OS demonstrated a statistically significant separation 
beginning at an early stage and persisting until the final 

Figure 7  Kaplan-Meier curves: (A) PFS, (B) OS, of patients with low- progression- risk and high- progression- risk who 
received first-line chemoimmunotherapy and patients who received first-line chemotherapy. mOS, median OS; mPFS, median 
PFS; OS, overall survival; PFS: progression-free survival.
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observation date. The AUC and C-index for the training 
set and external validation sets at 6 months and 1 year all 
approach or even exceed 0.8. The OS HRs for OS (0.2–
0.3) were clinically sound.

SCLC, a highly heterogeneous and immunologically 
‘cold’ tumor, is characterized by the downregulation of 
histocompatibility complex class I and reduced numbers 
of natural killer (NK) cells and CD8+T lymphocytes in 
the tumor microenvironment.24–27 A series of biomarkers, 
such as PD-L1 status and tumor mutation burden, have 
failed to demonstrate an acceptable predictive ability.28 
Gay et al10classified SCLC into SCLC-A, N, P, and I 
subtypes based on the expression of the transcription 
factors of ASCL1, NEUROD1, and POU2F3. They found 
SCLC-I tumors derive greater survival benefit from 
immune checkpoint blockade. However, notably, the OS 
HRs derived from our model are markedly greater than 
the ones observed in SCLC-I. Moreover, the assessment 
of the aforementioned biomarkers often requires inva-
sive procedures and is complex and expensive. Also, the 
heterogeneity of SCLC poses challenges for biomarker 
testing using small specimens. Hence, these characteris-
tics make the use of current biomarkers challenging in 
the clinical setting.

Our ML-based integrated prognostic model, using the 
information from chest CT and clinical characters, is 
economic and non-invasive, and could accurately iden-
tify patients with ES-SCLC who would well respond to 
immunotherapy. Notably, to validate the generalizability 
of the proposed model, we trained the model using the 
combined data from three hospitals and tested it using 
two databases from two other hospitals. Our model 
performed well in these different populations. On the 
other hand, unlike the commonly used DL model with 
controversial clinical application due to the relatively poor 
interpretation, transparency, and repeatability, our ML 
model based on ROI segmentation had high interpret-
ability, stability, and accuracy. Of note, the PFS K-M curve 
of the high-progression-risk group closely overlapped 
with that of the control group, the ones who received 
first-line chemotherapy. In concert, not only mPFS, but 
the kinetics of the PFS K-M curve of the high-progression-
risk group were quite comparable to the mPFS observed 
in the control groups (who received chemotherapy) from 
the IMpower133 and CASPIAN Trials.5 6 These observa-
tions suggest that the patients with a high progression risk 
judged by our integrated model, highly mimic the respon-
siveness of the ones who received chemotherapy alone. 
Thus, we believe our model does pick out the subgroup of 
patients who would benefit from immunotherapy.

There were some limitations in our study. First, the OS 
data of our chemoimmunotherapy group were immature; 
second, a C-index of 0.6 suggests that the sole radiomics 
model did play a role, but was not the dominant deter-
minant for PFS prediction. However, we will continue to 
follow-up these patients and develop novel algorithms, 
and we believe an updated and clinically applicable 
model will be launched in the near future.

Collectively, this retrospective study of patients with 
ES-SCLC included 341 patients from multicenters and 
established two external validation cohorts to exclude 
the potential variations between the institutions due to 
different CT equipment and parameter settings, thereby 
ensuring the the stability and generalizability of our 
results. We developed an economic, non-invasive, valid, 
and effective model for predicting the therapeutic 
responsiveness to chemoimmunotherapy and the prog-
nosis of patients with ES-SCLC, providing a convenient 
and cost-effective tool for the management of ES-SCLC. 
With low input requirements and strong operability, our 
innovative strategy will have significant clinical signifi-
cance and profound impacts.
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