
RESEARCH PAPER

Evaluation of synthetically generated computed
tomography for use in transcranial focused

ultrasound procedures
Han Liu ,a,† Michelle K. Sigona ,b,c,† Thomas J. Manuel,b,c Li Min Chen,c,d

Benoit M. Dawant,e and Charles F. Caskey b,c,d,*
aVanderbilt University, Department of Computer Science, Nashville, Tennessee, United States

bVanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
cVanderbilt University, Institute of Imaging Science, Nashville, Tennessee, United States

dVanderbilt University, Department of Radiology and Radiological Sciences, Nashville, Tennessee,
United States

eVanderbilt University, Department of Electrical and Computer Engineering, Nashville, Tennessee,
United States

ABSTRACT. Purpose: Transcranial focused ultrasound (tFUS) is a therapeutic ultrasound method
that focuses sound through the skull to a small region noninvasively and often under
magnetic resonance imaging (MRI) guidance. CT imaging is used to estimate the
acoustic properties that vary between individual skulls to enable effective focusing
during tFUS procedures, exposing patients to potentially harmful radiation. A method
to estimate acoustic parameters in the skull without the need for CT is desirable.

Approach: We synthesized CT images from routinely acquired T1-weighted MRI
using a 3D patch-based conditional generative adversarial network and evaluated
the performance of synthesized CT (sCT) images for treatment planning with tFUS.
We compared the performance of sCT with real CT (rCT) images for tFUS planning
using Kranion and simulations using the acoustic toolbox, k-Wave. Simulations were
performed for 3 tFUS scenarios: (1) no aberration correction, (2) correction with
phases calculated from Kranion, and (3) phase shifts calculated from time reversal.

Results: From Kranion, the skull density ratio, skull thickness, and number of active
elements between rCT and sCT had Pearson’s correlation coefficients of 0.94, 0.92,
and 0.98, respectively. Among 20 targets, differences in simulated peak pressure
between rCT and sCT were largest without phase correction (12.4%� 8.1%) and
smallest with Kranion phases (7.3%� 6.0%). The distance between peak focal loca-
tions between rCT and sCT was <1.3 mm for all simulation cases.

Conclusions: Real and synthetically generated skulls had comparable image sim-
ilarity, skull measurements, and acoustic simulation metrics. Our work demonstrated
similar results for 10 testing cases comparing MR-sCTs and rCTs for tFUS planning.
Source code and a docker image with the trained model are available at https://
github.com/han-liu/SynCT_TcMRgFUS.
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1 Introduction
Transcranial focused ultrasound (tFUS) is a novel noninvasive method of focusing energy
through the skull that often uses magnetic resonance imaging (MRI) for target identification,
treatment planning, and closed-loop control of energy deposition.1 Focused ultrasound is
clinically approved for thermally ablating the thalamus2 and, when used at lower energy levels,
is being explored for other applications, such as drug delivery and neuromodulation.3 Precise
focusing is critical for all tFUS procedures to minimize treatment of off-target tissues.4 Prior
to tFUS, CT images are acquired to estimate regional skull density, speed of sound, and ultra-
sound attenuation during ultrasound wave propagation.5 Thermally ablative thalamotomy pro-
cedures use MR thermometry6 to intraoperatively monitor thermal dose and targeting accuracy.
MR thermometry relies on the temperature dependence of the proton resonance frequency shift to
linearly map phase differences between two time points to temperature change. Another tFUS
application is neuromodulation, a nonthermal method that has been demonstrated in humans
targeting the thalamus,7 somatosensory cortex,8 and primary visual cortex.9 During neuromodu-
lation procedures, neuronavigation aids in real-time transducer placement by calculating the
position and rotation of optically tracked tools and projecting the transducer’s focus onto
pre-acquired images. The projected focus from optical tracking is usually a free-field estimate
of the focus location,10 neglecting the inhomogenous layers of the skull known to shift and distort
the focus.11 The inclusion of CT images in the neuromodulation planning process allows for
incorporation of skull models to map the skull layers to acoustic properties and estimate spatial
accuracy, spatial extent, and output pressure for patient-specific skull models. CT imaging bur-
dens patients by requiring a longer screening time and increased risk due to radiation. For tFUS
research in development and preclincal phases, it is unrealistic to obtain CT scans of a healthy
participant. Therefore, it is desirable to replace the real CT (rCT) images with synthetic CT (sCT)
images that are generated from other imaging modalities.

Values from CT images of the head are used in different ways during treatment planning for
all tFUS procedures. One important metric is the skull density ratio (SDR), an estimate of the
transparency of the skull to ultrasound. The SDR is not always predictive of the energy needed to
generate a focal spot transcranially, but a lower SDR is generally interpreted to mean lower
acoustic transmission through the skull.12,13 Although the precise method for computing
SDR on a clinical system is proprietary, the metric is derived from the ratio of the Hounsfield
units (HU) of trabecular to cortical bone along the line from a transducer element to the focus,13

and an open source software, Kranion, is available that is capable of generating SDR metrics
highly correlated to those found in clinical systems.14 Along with SDR, Kranion can report a
skull thickness (ST) measurement between bone layers and number of active elements (NAEs),
or an element’s ray <20 deg incident to the skull. Detailed spatial maps have been created from
CT images to map acoustic properties and model the propagation of sound through the
skull.5,15,16 Using modeling tools such as the acoustic toolbox, k-Wave,17 simulations are used
to observe ultrasound waves interacting with subject-specific heterogeneous skulls, quantifying
the focal shift, focus size, and energy loss caused by the aberrating skull.

The use of multi-element arrays during tFUS procedures is desirable because each individual
element’s amplitude and phase can be precisely controlled. Electronically controlled elements
are integral during tFUS procedures to move the transducer’s focus location without physically
manipulating the transducer and to calculate phase shifts to correct for the skull.18,19 Several
aberration correction methods that vary in run-time and focus restoration performance have been
explored.14,20,21 For clinical thermoablation, the real-time estimation of amplitude and phase cor-
rection are essential as procedures require shifting the small focal volume throughout the brain to
ablate the full target.19 The selection of correction method is usually dependent on a trade-off
between time constraints and intensity required for a given application.

Deep-learning based methods have been previously used to generate sCTs from MR
images.22 Dual-echo ultrashort TE (UTE) MR imaging23 was used to train a 2D U-Net24 that
was efficient at generating realistic skulls, but UTE scans are not widely available and require
development on an MR scanner as they are not standard protocols. An alternative to UTE images
are T1-weighted images, but these can be more challenging to synthesize CT skulls from than
UTE because UTE imaging can capture signals from tissues with a very short transverse relax-
ation time such as bone, providing more information for skull synthesis. For instance, Lei et al.25
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proposed using patch-based features extracted from MRIs to train a sequence of alternating ran-
dom forests based on an iterative refinement model. Maspero et al.26 trained three 2D conditional
generative adversarial networks (cGANs),27 one for each plane, and combined the results to gen-
erate sCT from T1-weighted MRI. Gupta et al.28 proposed training a 2D U-Net on sagittal views
of MRIs and synthesizing the HU of air, soft tissue, and bone in three output channels. However,
2D networks are limited by the lack of information of relationship between slices,29 and the
synthetic images may have discontinuity between slices along the views that are not involved
in training. The irregular skull geometry of sCT may lead to significant differences in tFUS
planning. In very recent work done in parallel to ours,30 a 3D cGAN was proposed to synthesize
the whole head CT from MR images. Here, we focus on the skull, which is the critical structure
for tFUS.

We hypothesize that sCT generated from MRI can yield comparable clinical metrics for
transcranial ultrasound that are derived from CT. If sCT are highly similar to rCTs, the proposed
workflow for tFUS planning can be reduced to a single subject scan, rather than the multiple
scans that are traditionally obtained, as shown in Fig. 1. Our study used two open-source soft-
ware tools to compare skull metrics derived from sCTand rCT images using 10 testing cases with
two targets. We evaluated the performance of the rCT and sCT skulls using Kranion to report the
SDR, ST, and NAEs. Acoustic simulations were performed using k-Wave to calculate the pres-
sure field formed from interactions with each CT, and the aberration correction performance
capabilities were compared through a fast ray-tracing method and a computationally expensive
time reversal technique. From each simulation, we quantified the maximum intracranial pressure,
focal shift between the peak pressure and intended target locations, and focal volumes.
Demonstration of the similarity between sCT and rCT would show feasibility of synthesizing
realistic CT skulls from T1-weighted MRI.

Built upon our previous work,31 we perform more extensive experiments in this study to
validate our developed technique from aspects of image similarity and acoustic simulations.
For image similarity, we compare our cGAN-based method against another mainstream synthesis
approach to demonstrate the superiority of our method for our application. For acoustic simu-
lations, we include aberration correction in our acoustic analysis as it is an essential step for
clinical procedures to restore the maximum pressure at the intended target and thus is important
to compare the performance of phases calculated from sCTs against rCTs.

2 Methods

2.1 Dataset and Pre-processing
In this study, our dataset included 86 paired CT and T1-weighted MRI scans of Parkinson
patients who underwent Deep Brain Stimulation from Vanderbilt University Medical Center.
Informed consent was obtained from all subjects included in this study. The in-plane resolution
of CT images ranged from 0.4297 to 0.5449 mm with a slice thickness of 0.67 mm, whereas the

Fig. 1 Comparison between the traditional tFUS planning routine and our proposed method. In
traditional planning, a patient needs to be scanned twice for CT and MRI separately, in which the
CT is used to extract important parameters, such as skull density and thickness, for tFUS planning.
By contrast, we propose generating an sCT from MRI for parameter extraction, reducing the
screening time and the risk due to radiation.
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MR images had an isotropic voxel size of 1 mm. To prepare the paired CT-MRI dataset for
network training, we applied a series of image pre-processing procedures as follows. First, for
each subject, we spatially aligned the MRI and CT images by rigid registration. Specifically, we
registered the low-resolution MRI scans to the high-resolution CT images to preserve the HU
values in high-resolution CT images. Rigid registration was used based on the assumption that
the shape and size of brain anatomical structures do not vary for the same subject in different
imaging modalities. Here, we employed an open-source medical imaging library ANTsPy for
rigid registration, in which mutual information was used as the cost function. Second, to discard
the irrelevant brain regions to our skull synthesis task, we filtered out the non-skull regions from
the CT images. Specifically, we extracted a binary mask of the skull region using an empirically
selected threshold, i.e., 400 HU. We then took the largest connected component of the mask to
remove other isolated regions. To preserve some contextual information around the skull,
we further performed morphological dilation to the skull mask with a ball-shaped structuring
element with a radius of four voxels. This dilated mask was used to filter the raw CT image
to obtain the skull-only CT image. In addition, for CT images, we clipped the intensity values
to the range of ð−1024;3071Þ HU and linearly scaled them to ð−1;1Þ. For MRI scans, we applied
Z-score normalization to each scan, which was further clipped to the ð0.01th; 99.9thÞ percentile of
the intensity values, followed by a linearly scaling to ð−1;1Þ.

2.2 Network Architecture and Training
As an extension of our previous work,31 we adopted a 3D patch-based cGAN to generate a sCT
skull image given a T1-weighted MRI. Our 3D cGAN consisted of a generator G and a discrimi-
nator D, where G was trained to generate realistic CT skulls to fool the discriminator and D was
trained to classify the rCT and sCT skulls. For the generator G, we followed the network archi-
tecture in pix2pix,27 i.e., 2D ResNet32 with nine residual blocks, and extended the network to 3D.
The residual blocks were useful for shuttling the low-level features extracted from MR images,
e.g., the location of prominent edges, directly to the deeper layers. At the output layer of G, we
used Tanh as the activation function to map the logits to a bounded range of ð−1;1Þ. As shown in
DCGAN,33 this bounded output range allowed the model to learn more quickly to saturate during
the training process. For the discriminator D, we adopted a 3D PatchGAN classifier,27 which
could be run convolutionally to provide the ultimate output by averaging all responses across
the whole volume.

Due to the limit of GPU memory, the network input was a 3D patch x ∈ R256×256×32 ran-
domly cropped from the whole MRI volume X. Similarly, the corresponding CT patch y was
cropped from the same spatial position from the whole CT volume Y. The loss function of cGAN
LcGAN is expressed as

EQ-TARGET;temp:intralink-;e001;114;303LcGANðG;DÞ ¼ Ex;y½logðDðx; yÞÞ� þ Ex½logð1 −Dðx; GðxÞÞÞ�: (1)

Note that the input of the 3D PatchGAN classifier D was also conditioned on x, as it was
found to be critical for GAN to produce realistic outputs.27 A L1 reconstruction loss LL1, which
encouraged less blurring27 was used and is expressed as

EQ-TARGET;temp:intralink-;e002;114;242LL1ðGÞ ¼ Ex;y½ky − GðxÞk1�: (2)

In addition, we included an additional edge-aware loss Ledge
34,35 to further align the edges

between GðxÞ and y. Specifically, we computed the edge maps with a 3D Sobel filter hð·Þ
and minimized the L1 distance between the edge maps. The edge-aware loss function is
expressed as

EQ-TARGET;temp:intralink-;e003;114;168LedgeðGÞ ¼ Ex;y½khðyÞ − hðGðxÞÞk1�: (3)

The final objective function G� was the weighted sum of the three loss terms, which is
expressed as

EQ-TARGET;temp:intralink-;e004;114;118G� ¼ arg min
G

max
D

LcGANðG;DÞ þ λ1LL1ðGÞ þ λ2LedgeðGÞ: (4)

We followed the standard training strategy to train our cGAN:36 we updated the parameters
of D and G alternatively per gradient descent step. We used the Adam optimizer37 with an initial
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learning rate as 2 × 10−4 and momentum parameters β1 ¼ 0.5 and β2 ¼ 0.999. A mini-batch size
of 1 was used. During training, we applied online intensity augmentations38 including random
intensity shifts with an offset ranging from ð−0.1; 0.1Þ and random contrast adjustment with
gamma ranging from (0.5, 1.5). Both intensity augmentations were applied with a probability
of 0.2. This augmentation strategy aimed to simulate the varying intensity distributions of MRI
scans, especially when they were acquired from different sites or with different protocols. We did
not augment the intensity values of CT images to preserve the physical meaning of the skull HU
values. During the inference phase, we used a sliding window to generate sCT patches across
the whole volume and fused the results by averaging multiple predictions over each pixel.
We set the overlapping ratio between the sliding windows as 0.75 of the patch dimension,
i.e., 192 × 192 × 24. For post-processing, we obtained a skull mask from the sCT image follow-
ing the same steps as in pre-processing, i.e., global threshold, connected component analysis,
and morphological dilation. This mask was used to remove the false positive predictions outside
the skull regions.

2.3 Study Design

2.3.1 Evaluation of image similarity

In our experiment, we randomly split the entire dataset into subgroups containing 66 images for
training, 10 for validation, and the remaining 10 for testing. We trained the networks for a total of
1500 epochs and determined the best weighting factors λ1 ¼ 100 and λ2 ¼ 10 by a grid search
based on the validation set. To better evaluate the performance of skull synthesis, we only com-
puted the mean absolute error (MAE) within the skull region of the ground truth. We also evalu-
ated the synthesis performance of our 3D patch-based cGAN against the other mainstream MR-
CT translation approach, i.e., autoencoder.23,28 For fair comparison, we used the same backbone
architecture for autoencoder as the generator of our cGAN model. The objective function for
training autoencoder is the same as cGAN but without the adversarial loss.

2.3.2 Target selection

The left or right ventral intermediate nucleus (Vim) of the thalamus was used as the target of
interest for acoustic evaluation. The right and left Vim segmentation regions were identified by
the “Ventral_Lateral_Nucleus” label from the International Consortium Brain Mapping
(ICBM)39 template atlas. The ICBM atlas was registered to each test case MR image with a
transformation calculated from an affine registration using 3D Slicer’s (version 4.11.2)40

General Registration (BRAINS)’ module. The output transformation from the registration was
applied to the segmented labels and exported as a binary volume as a guide to position the trans-
ducer in Kranion.

2.3.3 Evaluation of skull metrics using Kranion

In Kranion, we placed a virtual 990-element hemispherical array transducer so that the focus was
positioned at the right or left Vim, so there were 2 targets for each skull in our test dataset of 10
skulls. The transducer geometry is comparable to the the 1024-element ExAblate transducer
(Insightec, Tirat Carmel, Israel). The transducer was tilted along the x and y axes and rotated
so that the most NAEs with the sCT skull was displayed on Kranion’s graphical interface, with-
out exceeding 10 deg in each direction to simulate a realistic scenario. The average and cortical
bone speeds were maintained as 2705 and 3103 m∕s, respectively. The skull measurements,
transducer element coordinates, and focus coordinates were exported after positioning the trans-
ducer at the target with the sCT. The corresponding rCT replaced the sCT skull, and the output
files were exported. For each virtual targeting procedure (N ¼ 20), we calculated the SDR, the
ST (the distance between skull boundaries along a ray path), and the NAE between the rCT and
sCT. The SDR and STwere averaged across all active elements returned from Kranion. Similarity
and statistical significance was determined with Pearson’s correlation coefficient and Wilcoxon
signed-rank test (α ¼ 0.05) for metrics derived from rCT and sCT.
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2.3.4 Acoustic simulation using k-Wave

Once the transducer was positioned about the respective Vim target, the CT image, MR image,
transducer element positions, and focus position from the Kranion scene were imported into
MATLAB to run full-wave acoustic simulations with the open-source toolbox k-Wave.17

k-Wave solves the first order acoustic wave equation using the k-space pseudospectral method.
The CT and MR images were resampled using the imresize3 function in MATLAB (Mathworks,
Natick, Massachusetts, United States) to an isotropic grid spacing of 0.52 mm and was further
zero padded to a grid size of ðNx;Ny; NzÞ ¼ ð600; 600; 500Þ to ensure that all transducer ele-
ments were inside the simulation space. A threshold of 400 HU was used to extract a skull mask
from the CT image, and an upper limit of 2000 HU was applied to account for the high radio
density contribution from any implants in the skull. The intracranial space was set to a constant
value of brain tissue, and the remainder of the simulation grid that contained the transducer was
set as water. Table 1 shows the respective acoustic parameters used for all simulations.5,41,42 The
heterogeneous skull layers were incorporated in simulations using a linear approximation to map
HU to bone porosity and related porosity to the speed of sound, density, and absorption with the
following equations:5

EQ-TARGET;temp:intralink-;e005;114;537Φ ¼ 1 −
HU

maxðHUÞ ; (5)

EQ-TARGET;temp:intralink-;e006;114;489ρskull ¼ ρwaterΦþ ρboneð1 −ΦÞ; (6)

EQ-TARGET;temp:intralink-;e007;114;472cskull ¼ cwaterΦþ cboneð1 −ΦÞ; (7)

EQ-TARGET;temp:intralink-;e008;114;454αskull ¼ αmin þ ðαmax − αminÞΦ0.5: (8)

The transducer was modeled using the makeMultiBowl function in k-Wave with an element
diameter of 8 mm and radius of curvature of 150 mm, and all elements were directed toward the
focus position. Simulations were performed at a frequency of 650 kHz, which maintained a spa-
tial discretization greater than 4.3 points per wavelength (PPW) in water. Three simulations were
performed for each target: a simulation without aberration compensation, a simulation with an
applied time delay derived from skull thickness calculations from Kranion, and a simulation with
corrections from time reversal. Simulations without correction were performed with the same
input amplitude and phase for all elements. Directly applying phases calculated from Kranion
to each element was unsuccessful in restoring the focus compared with the no correction case,
which was similarly observed by Lu et al.21 Instead, Lu et al. calculated time delays using the
skull thickness calculated from Kranion as

EQ-TARGET;temp:intralink-;e009;114;314tKranion;k ¼ ðR − dskull;kÞ∕cwater þ dskull;k∕cskull; (9)

EQ-TARGET;temp:intralink-;e010;114;279ΔtKranion;k ¼ tKranion;k −minkðtKranion;kÞ; (10)

where R was the radius of the transducer array, dskull;k was the skull thickness from Kranion for
each element k, cwater was 1500 m∕s, and cskull was the mean calculated from each skull after
conversion by Eqs. (5) and (6). Phase correction from time reversal was performed by placement
of a virtual point source at the target location that recorded the time-varying pressure for each
element. The respective amplitude and phases were extracted with the extractAmpPhase function
(taking an FFT of the signal close to the source signal) in k-Wave, and the average phase was

Table 1 Acoustic properties used for all simulations.

Speed of sound (m∕s) Density (kg∕m3) Absorption (dB∕MHz∕cm)

cwater ¼ 1500 ρwater ¼ 1000 αwater ¼ 0

cbrain ¼ 1560 ρbrain ¼ 1030 αbrain ¼ 0.38

cbone ¼ 3100 ρbone ¼ 2200 αbone;min ¼ 0.2

— — αbone;max ¼ 8
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calculated for all points of a bowl and subtracted from the initial phase. Only the newly acquired
phases were applied without changing the input amplitude. To minimize the simulation time, a
100 cycle waveform was used; this was the minimum number of cycles to propagate to the target
and return to the transducer. All simulations were run on a Quadro P6000 GPU (NVIDIA
Corporation, Santa Clara, California, United States). The root-mean-squared (RMS) pressure
was recorded for each voxel location of the grid. To assess the simulation similarity between
rCT and sCT, we compared the peak pressure (maximum intracranial pressure) and the pressure
at the target. We also characterized the beam properties by evaluating focal shift between the peak
and target locations, the distance vector between rCT and sCT, and the focal size and volume.
Statistical analysis of simulated pressure fields between rCT and sCT were performed with the
Wilcoxon signed-rank test (α ¼ 0.05).

3 Results

3.1 Image Similarity Results
We performed both quantitative and qualitative evaluations of image similarity on our testing set.
Quantitatively, we show the box and whisker plot in Fig. 2. Specifically, the MAEs between rCTs
and sCTs in skull regions were 192.31� 28.21 HU and 206.83� 27.91 for cGAN and autoen-
coder, respectively. We performed paired t-test and found that the difference in mean MAE was
statistically significant (p-value < 0.01). Qualitatively, as shown in Fig. 3, we found that, at the
inferior part of the skull, the synthesized skull exhibited a larger difference than at the superior
part. The synthetic skull generated by cGAN also included more details and had a sharper appear-
ance compared with the one generated by autoencoder. Finally, we note that our synthesized
skulls do not have discontinuity between slices and are highly comparable to real skulls, as
shown in Fig. 4.

3.2 Skull Metric Results
Metrics from Kranion exhibit a strong similarity between rCT and sCT across all 20 evaluated
targets [Figs. 5(a)–5(c)]. The Pearson’s Correlation Coefficients for the skull density ratio, skull
thickness, and NAEs are 0.94 (p < 0.001), 0.92 (p < 0.001), and 0.98 (p < 0.001), respectively,
demonstrating a strong positive linear correlation of these metrics and a significant correlation
between rCT and sCT. P-values calculated from the Wilcoxon signed rank test found differences
between rCT and sCT derived SDR (p ¼ 0.007) and ST (p ¼ 0.003), but found no difference in
NAE between the populations (p ¼ 0.104). Trend lines from paired comparisons between rCT
and sCT revealed generally higher SDR and lower ST for sCT compared with rCT. Table 2
summarizes the mean and standard deviation for SDR, ST, and NAE for the full group com-
parison. The mean differences between rCT and sCT were 4.8%� 3.7%, 5.6%� 3.1%, and
0.65%� 0.41% for SDR, ST, and NAE, respectively. Of the 990 elements that comprised the
transducer array, overlapping and non-overlapping elements were compared for each target

Fig. 2 Box and whisker plot of MAE values achieved by cGAN and autoencoder on the testing set.
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between rCTand sCT (Fig. 6). On average, 97.0%� 1.5% elements overlapped between rCTand
sCT, with 98.9% in the most overlapping case and 92.8% in the least overlapping case [Figs. 7(a)
and 7(b), respectively].

3.3 Acoustic Simulation Results
Acoustic simulation results from k-Wave are summarized in Table 3. The RMS pressure at the
intracranial peak and target locations were compared without phase correction and with applied
phases calculated from Kranion and time reversal [Fig. 8(a)]. The mean difference in peak

Fig. 4 Visual comparison between real (upper row) and synthetic (lower row) skull. Isosurfaces
emphasize that sCTs are visually comparable to rCTs and contiguous.

Fig. 3 Qualitative results of an example case from the testing set. We compare the two main-
stream MR-CT translation methods: autoencoder (middle column) and our cGAN (right column).
The major differences between two approaches are highlighted by orange arrows.
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Table 2 Mean ± standard deviation calculated for each skull metric from Kranion.

CT SDR ST NAE

rCT 0.65� 0.07 6.4� 0.66 925� 30

sCT 0.67� 0.06 6.1� 0.76 929� 29

Fig. 6 NAEs. For all 20 evaluted targets, the active elements calculated from Kranion are com-
pared with the rCT and sCT skulls. Of the 990 elements, the distribution of overlapping active,
overlapping inactive, and non-overlapping rCT and sCT active elements are distinguished.

Fig. 5 Kranion-derived skull metrics. (a)–(c) There was a strong linear relationship between the
skull density ratio, skull thickness, and NAEs between the rCT and sCT for both targets. High
Pearson’s correlation coefficients shown in the bottom right corner of each plot were observed
between all three skull metrics. (d)–(f) A comparison between rCT and sCT for individual test
points, observing that the sCT generally had a higher SDR and a lower skull thickness compared
with the corresponding rCT.
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pressure between rCT and sCT was 12.4%� 8.1%, 7.3%� 6.0%, and 7.5%� 10.0% for no
phase correction, Kranion phases, and TR corrected phases, respectively [Fig 8(b)]. From stat-
istical testing, we observed no difference of peak pressure between rCT and sCT simulations
for the case without correction (p ¼ 0.062) but observed a difference with Kranion phases
(p ¼ 0.003) and TR corrected phases (p < 0.001). Similar relationship were noted for target
pressure comparisons between rCT and sCT (no correction: p ¼ 0.765, Kranion: p ¼ 0.627,
and TR: p ¼ 0.002). The largest distance vector between rCT and sCT peak pressure locations
was noted in the case of no correction (1.3� 1.2 mm) and the largest focal volume difference
(25.5%� 20.5%), but both metrics were improved when phase correction was applied [Figs. 8(c)
and 8(d)]. Kranion calculated phases reduced the distance vector of the peak location between

Fig. 7 Active elements were similar between rCT and sCT. Visual comparisons are shown for two
representative cases to evaluate overlapping active and inactive elements between rCT and sCT.
Plots are color coded, showing the distribution of active and inactive elements of the 990 element
hemispherical array for the (a) most overlapping case with 98.9% of the active and inactive ele-
ments overlapping between rCT and sCT, and the (b) least overlapping case with 92.8% over-
lapping. From left to right, elements for the rCT skull, sCT skull, and then compared between
rCT and sCT for the overlapping and non-overlapping elements. The case numbers noted in the
titles of each subplot correspond with the bar plot in Fig 6.

Table 3 Mean differences between rCT and sCT for metrics calculated from acoustic simulations
presented as mean ± standard deviation. TR: time reversal.

Simulation Peak pressure (%) Focal position (mm) Focal volume (%)

No correction 12.4� 8.1 1.3� 1.2 25.5� 20.5

Kranion 7.3� 6.0 0.6� 0.7 20.4� 23.5

TR 7.5� 10.0 0.0� 0.1 2.4� 1.9
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rCT and sCT to 0.6� 0.8 and the focal volume to 20.4%� 23.5%. For the TR simulations, there
was no focal shift observed between rCT or sCT skulls except for one case in which a 0.5 mm
offset was observed (evaluated target No. 10). TR simulations had the smallest difference in
focal volume of 2.4%� 1.9%. An example comparing rCT and sCT’s pressure fields with
TR-corrected phases is shown in Fig. 9.

4 Discussion and Conclusions
tFUS is being explored for a number of applications.43 Patient-specific information is required to
model effects of the skull during tFUS, and the current gold standard uses a CT to generate a
subject-specific map of acoustic properties of the skull. We explored the feasibility of replacing
rCT images with sCT images for tFUS procedures. We hypothesized that results from acoustic
simulations with sCT skulls would yield equivalent focal size, location, and pressure compared
with simulations with ground truth skulls and evaluated this by comparing the pressure field from
three simulation scenarios varying the skull compensation methods. We compared skull-derived
metrics used clinically to determine patient eligibility using rCTand sCT. Successful replacement
of rCT images with an image generated from routine MR scans could improve tFUS procedure
planning by incorporating a subject’s skull without causing additional burden on the patient.
Through our work here, we showed that the sCT skulls generated by our proposed 3D
patch-based cGAN (1) do not have discontinuity between slices and (2) are highly comparable
to rCTs when used to predict skull properties for transcranial ultrasound procedures.

Image similarity between synthesized and real skulls were first evaluated by qualitative
inspection and quantitative assessment. We explored the effectiveness of two mainstream
MR-CT synthesis approaches and demonstrated the superiority of cGAN. Through open-source
software, Kranion, we compared clinically relevant skull metrics and active elements derived
from rCTand sCTand found that they were highly correlated. Statistical testing revealed a differ-
ence in skull density ratio and skull thickness, in which SDR was slightly overestimated for sCT
and conversely STwas underestimated when compared with rCT. Koh et al. reported correlation
coefficients of 0.95 and 0.90 for SDR and ST, respectively, comparable to our reported results in
this study of 0.94 and 0.92, respectively. Acoustic simulations using k-Wave provided a more
detailed assessment of ultrasound interaction with the synthetic skulls. Without any skull com-
pensation techniques applied, the peak intracranial pressure difference was higher than that
reported of Koh et al. (12.4%� 8.1% versus 3.11%� 2.79%). We speculate that this is due
to key differences in the simulation setups: (1) our simulations were performed at a higher

Fig. 8 (a) Acoustic simulation results from k-Wave. For each evaluated target, the peak intracra-
nial RMS pressure (transparent bars) and the pressure at the target (solid bars) are shown for rCT
and sCT, grouped by phase correction type. (b)–(d) A group summary of all 20 test cases are
shown for RMS pressure, focal shift, and focal volume.
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frequency (650 kHz versus 200 kHz) and (2) we modeled the large hemispherical ExAblate array
transducer whereas Koh et al. modeled a single-element transducer. A higher fundamental fre-
quency was used for all transducer modeling in this study to match the clinical system that it was
modeled after. Because attenuation is frequency dependent, at higher frequencies we expect a
greater decrease in intensity at the focus.15 The hemispherical array has a much larger surface
area than the smaller, single-element transducer (radius of curvature of 150 mm versus 55 mm);
thus a greater amount of skull area influences the simulation outcome, which increases sensitivity
to skull differences.

Our study simulated three different tFUS scenarios: no correction for phases offset by the
skull, corrections calculated from ray-tracing, and modeling of a virtual source followed by time-
reversed phases to restore pressure at the target. TR corrected simulations had the smallest mean
difference focal position and volume between rCT and sCT, but application of Kranion-
calculated phases had the smallest peak pressure difference. Because the Kranion phases were
dependent on the skull thicknesses from Kranion, which we found to be highly correlated
between rCT and sCT, we expected the simulation results from applying the phases to be similar.

Fig. 9 Simulated pressure field after applying phases calculated from time reversal. An example of
the resultant pressure field with TR-corrected phases targeting the left Vim is shown (evaluated
target No. 4). (a) The first row contains the pressure field simulated with the rCT skull volume,
overlaid on the CT and MR images and enlarged in the final column to better see the focal shape
and size. (b) Similarly, the sCT skull and simulated acoustic field is presented with similar overlays.
(c) The percent difference of the pressure fields between rCT and sCT was calculated using the
rCT peak pressure as the ground truth and is presented in the final row, denoting the intended
location with the red dot. The evaluated target was selected as the representative case as it had
the largest percent different at the spatial peak location. Qualitatively and quantitatively the spatial
extent of the foci are very similar between the rCT and sCT results, with the main difference iden-
tified as the maximum pressure.
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The mean phase difference was smaller for phases calculated from Kranion than TR-corrected
simulations, but the TR-corrected simulations more fully encapsulated the internal structure of
the skull.5 Similar work has evaluated the skull correction performance capabilities of artificial
skulls and applied the phases in an experimental context beyond modeling and simulations.4,44,45

One study reconstructed a virtual CT from a T1-weighted MR image and compared calculated
phases from Insightec’s ExAblate system, resulting in an average phase difference between the
real and MR-generated CT of <1 radians, and application of the phases was successfully dem-
onstrated in thermal experiments using head phantoms.4 A study using the same transducer as
Wintermark et al. compared UTE-derived MR images with rCT images of head phantoms and
found no statistical difference between peak temperatures achieved for thermal experiments.44

Most recently, Leung et al. generated skulls from UTE images and calculated phases from the
Insightec system but applied phases in a water bath setup, measuring the pressure field behind
a skull using a hydrophone; they reported comparable beam profile results when compared
with rCTs.45

Regarding peak intracranial pressure differences observed between rCT and sCT, the mean
difference computed in our study falls within an expected range of variability of 10% that was
observed through an intercomparison study across 11 simulation tools.46 Because the modeled
array was large, the grid size necessary to fit all elements would be ðNx;Ny; NzÞ ¼
ð960; 960; 540Þ to maintain >6 PPW in water at 650 kHz and satisfy 3D convergence testing
requirements to avoid simulation instabilities.47 For a single time-reversed simulation, the total
run-time on a CPU is ∼26.9 h. We instead opted to use GPU-accelerated simulations to reduce
the computation time, but the GPU’s memory constraints required us to decrease the spatial
resolution to 4.3 PPW. Although the coarser spatial resolution was used for all results reported
in this work, we ran a single test case at 0.33 isotropic voxel size (∼7.4 PPW in water) to quantify
simulation differences without phase correction and with TR-corrected phases for rCT and sCT
(N ¼ 4). All low-resolution simulations underestimated pressure when compared with high-
resolution simulations, shown in Fig. S1 in the SupplementaryMaterial, with the average difference
between high and low resolution peak intracranial pressure being 42.4%� 2.5%. We acknowledge
that this pressure discrepancy is high, but we note that a relative peak pressure difference between
rCT and sCT was similar [high resolution = 6.6%� 5.1% and low resolution = 6.5%� 0.5%

(raw values shown in Table S1 in the Supplementary Material)]. Similar focal volume differences
between rCT and sCTwere observed for high and low resolution simulations, shown in Table S2
in the Supplementary Material. Although the distance vector between rCT and sCT was larger
when calculated with high resolution simulation results for the no correction case, we think that
this transducer’s focus is highly aberrated without phase corrections applied. With TR-correction
applied, we found that the vector was offset by a single spatial step size for high and low
resolution simulations. Overall, GPU simulations resulted in an underestimation of pressure, but
most measurements in the present study do not incorporate these pressure estimates.

The performance of cGAN-generated skulls may be improved by incorporating additional
MRI contrast such as zero-echo time (ZTE) into the training process. A recent work evaluated
CTs generated from learned T1-weighted MR images, ZTE MR images, and direct conversion
from ZTE to HU.48 Tested through acoustic analysis, ZTE outperformed learned T1-weighted
and direct ZTE conversion images for four regions in the brain with low variation. This work
suggests that ZTE or other imaging sequences can be integrated with convolutional neural net-
works and tested to observe improvements in similarity between skulls.

To assess any biases in our model, we performed a 5-fold cross validation (full description
and results can be found in the Supplementary Material) in which our network underwent five
configurations of training, validation, and testing from our full dataset of 86 paired CT and MR
images. Although the k-fold cross validation showed strong correlation between metrics calcu-
lated from Kranion targeting the left ventral intermediate nucleus of the thalamus for all five folds
(N ¼ 50 rCT and sCT skull pairs) the lower correlation coefficients between some folds iden-
tified limitations in our study. The first limitation is that 10 test cases cannot fully account for the
heterogeneity of the skulls and additional testing cases are required to deem our synthetically
generated skulls as suitable replacements of rCT images for tFUS procedures. Alternatively,
a larger number of training MR-CT pairs for the network could include a wider range of skulls
and minimize differences seen between folds.
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Our work evaluated CT images synthetically generated from 3D cGAN with rCT scans for
potential use in tFUS thermal and nonthermal applications for a multi-element array. Our initial
study found that sCTs generated from the 3D cGAN were comparable to rCTs and could replace
the need for CT scans with a routine T1-weighted MR image, but this requires larger test or
training datasets to fully capture the variability of human skulls. Patient selection for tFUS
is assessed by metrics characterizing the skull; we showed that sCTs are comparable to rCTs
for all skulls. Good similarity was demonstrated for three acoustic simulation scenarios that may
arise for tFUS applications. Replacement of rCTs with sCTs would decrease patient burden of
additional scan time, minimize exposure to radiation, and eliminate the need to register a
pre-acquired CT to the MRI—a known source of error.

Disclosures
No conflicts of interest, financial or otherwise, are declared by the authors.

Acknowledgments
This work was supported by National Institutes of Health (NIH, Grant No. U18EB029351) and the
Advanced Computing Center for Research and Education (ACCRE) of Vanderbilt University. All
acoustic simulations were run on a Quadro P6000 GPU donated by NVIDIA Corporation. The con-
tent is solely the responsibility of the authors and does not necessarily represent the official views
of these institutes.

References
1. F. A. Jolesz, “MRI-guided focused ultrasound surgery,” Annu. Rev. Med. 60, 417 (2009).
2. W. J. Elias et al., “A pilot study of focused ultrasound thalamotomy for essential tremor,” N. Engl. J. Med.

369(7), 640–648 (2013).
3. Y. Meng, K. Hynynen, and N. Lipsman, “Applications of focused ultrasound in the brain: from thermoa-

blation to drug delivery,” Nat. Rev. Neurol. 17(1), 7–22 (2021).
4. M. Wintermark et al., “T1-weighted MRI as a substitute to CT for refocusing planning in mr-guided focused

ultrasound,” Phys. Med. Biol. 59(13), 3599 (2014).
5. J.-F. Aubry et al., “Experimental demonstration of noninvasive transskull adaptive focusing based on prior

computed tomography scans,” J. Acoust. Soc. Am. 113(1), 84–93 (2003).
6. V. Rieke and K. Butts Pauly, “MR thermometry,” J. Magn. Reson. Imaging 27(2), 376–390 (2008).
7. W. Legon et al., “Neuromodulation with single-element transcranial focused ultrasound in human thalamus,”

Hum. Brain Mapp. 39(5), 1995–2006 (2018).
8. W. Lee et al., “Image-guided transcranial focused ultrasound stimulates human primary somatosensory

cortex,” Sci. Rep. 5(1), 1–10 (2015).
9. W. Lee et al., “Transcranial focused ultrasound stimulation of human primary visual cortex,” Sci. Rep. 6(1),

1–12 (2016).
10. H. Kim et al., “Image-guided navigation of single-element focused ultrasound transducer,” Int. J. Imaging

Syst. Technol. 22(3), 177–184 (2012).
11. J. Sun and K. Hynynen, “Focusing of therapeutic ultrasound through a human skull: a numerical study,”

J. Acoust. Soc. Am. 104(3), 1705–1715 (1998).
12. A. Boutet et al., “The relevance of skull density ratio in selecting candidates for transcranial mr-guided

focused ultrasound,” J. Neurosurg. 132(6), 1785–1791 (2019).
13. W. S. Chang et al., “Factors associated with successful magnetic resonance-guided focused ultrasound treat-

ment: efficiency of acoustic energy delivery through the skull,” J. Neurosurg. 124(2), 411–416 (2016).
14. F. Sammartino et al., “Kranion, an open-source environment for planning transcranial focused ultrasound

surgery,” J. Neurosurg. 132(4), 1249–1255 (2019).
15. S. Pichardo, V. W. Sin, and K. Hynynen, “Multi-frequency characterization of the speed of sound and attenu-

ation coefficient for longitudinal transmission of freshly excised human skulls,” Phys. Med. Biol. 56(1), 219
(2010).

16. F. Marquet et al., “Non-invasive transcranial ultrasound therapy based on a 3D CT scan: protocol validation
and in vitro results,” Phys. Med. Biol. 54(9), 2597 (2009).

17. B. E. Treeby and B. T. Cox, “k-Wave: Matlab toolbox for the simulation and reconstruction of photoacoustic
wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).

18. A. Kyriakou et al., “A review of numerical and experimental compensation techniques for skull-induced
phase aberrations in transcranial focused ultrasound,” Int. J. Hyperth. 30(1), 36–46 (2014).

Liu et al.: Evaluation of synthetically generated computed tomography for. . .

Journal of Medical Imaging 055001-14 Sep∕Oct 2023 • Vol. 10(5)

https://doi.org/10.1146/annurev.med.60.041707.170303
https://doi.org/10.1056/NEJMoa1300962
https://doi.org/10.1038/s41582-020-00418-z
https://doi.org/10.1088/0031-9155/59/13/3599
https://doi.org/10.1121/1.1529663
https://doi.org/10.1002/jmri.21265
https://doi.org/10.1002/hbm.23981
https://doi.org/10.1038/srep34026
https://doi.org/10.1002/ima.22020
https://doi.org/10.1002/ima.22020
https://doi.org/10.1121/1.424383
https://doi.org/10.3171/2019.2.JNS182571
https://doi.org/10.3171/2015.3.JNS142592
https://doi.org/10.3171/2018.11.JNS181995
https://doi.org/10.1088/0031-9155/56/1/014
https://doi.org/10.1088/0031-9155/54/9/001
https://doi.org/10.1117/1.3360308
https://doi.org/10.3109/02656736.2013.861519


19. Y. Meng et al., “Technical principles and clinical workflow of transcranial MR-guided focused ultrasound,”
Stereotact. Funct. Neurosurg. 99(4), 329–342 (2021).

20. T. Bancel et al., “Comparison between ray-tracing and full-wave simulation for transcranial ultrasound focus-
ing on a clinical system using the transfer matrix formalism,” IEEE Trans. Ultrasonics Ferroelectr. Freq.
Control 68(7), 2554–2565 (2021).

21. N. Lu et al., “Two-step aberration correction: application to transcranial histotripsy,” Phys. Med. Biol. 67(12),
125009 (2022).

22. S. Guo et al., “Feasibility of ultrashort echo time images using full-wave acoustic and thermal modeling
for transcranial MRI-guided focused ultrasound (tcMRgFUS) planning,” Phys. Med. Biol. 64(9), 095008
(2019).

23. P. Su et al., “Transcranial MR imaging–guided focused ultrasound interventions using deep learning
synthesized CT,” Am. J. Neuroradiol. 41(10), 1841–1848 (2020).

24. O. Ronneberger, P. Fischer, and T. Brox, “U-net: convolutional networks for biomedical image segmenta-
tion,” Lect. Notes Comput. Sci. 9351, 234–241 (2015).

25. Y. Lei et al., “MRI-based pseudo CT synthesis using anatomical signature and alternating random forest with
iterative refinement model,” J. Med. Imaging 5(4), 043504 (2018).

26. M. Maspero et al., “Deep learning-based synthetic CT generation for paediatric brain MR-only photon and
proton radiotherapy,” Radiother. Oncol. 153, 197–204 (2020).

27. P. Isola et al., “Image-to-image translation with conditional adversarial networks,” in Proc. IEEE Conf.
Comput. Vision and Pattern Recognit., pp. 1125–1134 (2017).

28. D. Gupta et al., “Generation of synthetic CT images fromMRI for treatment planning and patient positioning
using a 3-channel U-net trained on sagittal images,” Front. Oncol. 9, 964 (2019).

29. Q. Yu et al., “Thickened 2D networks for efficient 3D medical image segmentation,” arXiv:1904.01150
(2019).

30. H. Koh et al., “Acoustic simulation for transcranial focused ultrasound using GAN-based synthetic CT,”
IEEE J. Biomed. Health. Inf. 26(1), 161–171 (2021).

31. H. Liu et al., “Synthetic CT skull generation for transcranial mr imaging–guided focused ultrasound inter-
ventions with conditional adversarial networks,” Proc. SPIE 12034, 120340O (2022).

32. K. He et al., “Deep residual learning for image recognition,” in Proc. IEEE Conf. Comput. Vision and Pattern
Recognit., pp. 770–778 (2016).

33. A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep convolutional
generative adversarial networks,” arXiv:1511.06434 (2015).

34. Y. Luo et al., “Edge-preserving MRI image synthesis via adversarial network with iterative multi-scale
fusion,” Neurocomputing 452, 63–77 (2021).

35. Y. Fan et al., “Temporal bone CT synthesis for MR-only cochlear implant preoperative planning,” Proc. SPIE
12466, 124661I (2023).

36. I. Goodfellow et al., “Generative adversarial nets,” in Adv. Neural Inf. Process. Syst. 27 (2014).
37. D. P. Kingma and J. Ba, “Adam: a method for stochastic optimization,” arXiv:1412.6980 (2014).
38. M. J. Cardoso et al., “Monai: an open-source framework for deep learning in healthcare,” arXiv:2211.02701

(2022).
39. J. C. Mazziotta et al., “A probabilistic atlas of the human brain: theory and rationale for its development,”

Neuroimage 2(2), 89–101 (1995).
40. S. Pieper, M. Halle, and R. Kikinis, “3D Slicer,” in 2004 2nd IEEE Int. Symp. Biomedical Imaging: Nano to

Macro (IEEE Cat No. 04EX821), IEEE (2004).
41. F. A. Duck, Physical Properties of Tissues: A Comprehensive Reference Book, Academic Press (2013).
42. C. Constans et al., “A 200–1380-khz quadrifrequency focused ultrasound transducer for neurostimulation in

rodents and primates: transcranial in vitro calibration and numerical study of the influence of skull cavity,”
IEEE Trans. Ultrasonics Ferroelectr. Freq. Control 64(4), 717–724 (2017).

43. V. Krishna, F. Sammartino, and A. Rezai, “A review of the current therapies, challenges, and future directions
of transcranial focused ultrasound technology: advances in diagnosis and treatment,” JAMA Neurol. 75(2),
246–254 (2018).

44. G. W. Miller et al., “Ultrashort echo-time MRI versus ct for skull aberration correction in MR-guided trans-
cranial focused ultrasound: in vitro comparison on human calvaria,” Med. Phys. 42(5), 2223–2233 (2015).

45. S. A. Leung et al., “Comparison between MR and CT imaging used to correct for skull-induced phase
aberrations during transcranial focused ultrasound,” Sci. Rep. 12, 13407 (2022).

46. J.-F. Aubry et al., “Benchmark problems for transcranial ultrasound simulation: Intercomparison of compres-
sional wave models,” J. Acoust. Soc. Am. 152(2), 1003–1019 (2022).

47. J. L. Robertson et al., “Accurate simulation of transcranial ultrasound propagation for ultrasonic
neuromodulation and stimulation,” J. Acoust. Soc. Am. 141(3), 1726–1738 (2017).

48. M. Miscouridou et al., “Classical and learned MR to pseudo-CT mappings for accurate transcranial
ultrasound simulation,” IEEE Trans. Ultrasonics Ferroelectr. Freq. Control 69(10), 2896–2905 (2022).

Liu et al.: Evaluation of synthetically generated computed tomography for. . .

Journal of Medical Imaging 055001-15 Sep∕Oct 2023 • Vol. 10(5)

https://doi.org/10.1159/000512111
https://doi.org/10.1109/TUFFC.2021.3063055
https://doi.org/10.1109/TUFFC.2021.3063055
https://doi.org/10.1088/1361-6560/ac72ed
https://doi.org/10.1088/1361-6560/ab12f7
https://doi.org/10.3174/ajnr.A6758
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1117/1.JMI.5.4.043504
https://doi.org/10.1016/j.radonc.2020.09.029
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.3389/fonc.2019.00964
https://doi.org/10.1109/JBHI.2021.3103387
https://doi.org/10.1117/12.2612946
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1016/j.neucom.2021.04.060
https://doi.org/10.1117/12.2647443
https://doi.org/10.1109/TUFFC.2017.2651648
https://doi.org/10.1001/jamaneurol.2017.3129
https://doi.org/10.1118/1.4916656
https://doi.org/10.1038/s41598-022-17319-4
https://doi.org/10.1121/10.0013426
https://doi.org/10.1121/1.4976339
https://doi.org/10.1109/TUFFC.2022.3198522


Han Liu received his BS degree in biomedical engineering and electrical engineering at
Rensselaer Polytechnic Institute and his MS degree in biomedical engineering at Yale University.
He is currently pursuing a PhD in computer science at Vanderbilt University. His research
interests are in the broad areas of computer vision, deep learning, and medical image analysis.

Michelle K. Sigona received her BS degree in biomedical engineering from Arizona State
University in 2017. She is currently pursuing a PhD in biomedical engineering at Vanderbilt
University. Her research interests include transcranial focused ultrasound therapies and acoustic
simulations of propagation through the skull.

Thomas J. Manuel is a PhD student developing therapeutic ultrasound for neuromodulation and
drug delivery to the brain. His interests extend to cavitation monitoring systems, MRI guidance
of transcranial ultrasound procedures, and simulations of transcranial ultrasound scenarios.

Li Min Chen, MD, PhD, is professor of radiology and radiological science. Her research inter-
ests focus on using neuroimaging, neuromodulation, transcranial electrophysiology, and tracer
histology to dissect touch and pain circuits in the brain and spinal cord in animal models. She has
served as the PI on NIH and DoD grants and on NIH and NSF grant application review panels.

Benoit M. Dawant, PhD, is the Cornelius Vanderbilt Chair in Engineering and a professor of
electrical and computer engineering at Vanderbilt University. He is an IEEE fellow and the
director of the Vanderbilt Institute for Surgery and Engineering. He has more than 20 year of
experience in the areas of medical image processing and analysis, and image-guided surgical
procedures.

Charles F. Caskey, PhD, has worked in the field of ultrasound since 2004. He received his
doctoral degree for studies on the bioeffects of ultrasound during microbubble-enhanced drug
delivery under Dr. Katherine Ferrara at the University of California – Davis in 2008. He
currently leads an ultrasound laboratory at Vanderbilt University Institute of Imaging Science
where his group focuses on developing new uses for ultrasound, including neuromodulation,
drug delivery, and functional imaging.

Liu et al.: Evaluation of synthetically generated computed tomography for. . .

Journal of Medical Imaging 055001-16 Sep∕Oct 2023 • Vol. 10(5)


