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Abstract
The irrational and prolonged use of antibiotics in orthopaedic infections poses a 
major threat to the development of antimicrobial resistance. To combat antimi-
crobial resistance, researchers have implemented various novel and innovative 
modalities to curb infections. Nanotechnology involves doping ions/metals onto 
the scaffolds to reach the target site to eradicate the infective foci. In this conno-
tation, we reviewed silver nanoparticle technology in terms of mechanism of 
action, clinical applications, toxicity, and regulatory guidelines to treat ortho-
paedic infections.
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Core Tip: To overcome antimicrobial resistance, researchers explored the alternate technology to curb infections in musculo-
skeletal disorders. Nanotechnology forms an eye opener in the usage of silver nanoparticles to eradicate infections in 
osteoarticular system.
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INTRODUCTION
Globally, Orthopaedic infections pose a great challenge among orthopaedic surgeons and orthopaedic researchers. In the 
literature, the incidence of infection after orthopaedic surgeries was 1% to 2% in closed fractures and approximately 30% 
in open fractures[1]. Universally, there is no accepted classification for infection after orthopaedic surgeries. To overcome 
these infections, antibiotics were used irrationally which led to antimicrobial resistance (AMR) due to the development of 
biofilm by the micro-organisms[2,3]. Jefferson reported that biofilm formation is due to (1) protection from host defense; 
(2) colonization; (3) local environment benefits; and (4) planktonic cultures as in vitro artifacts[4]. Aparna et al[5] gave 5 
stages of the growth cycle of a biofilm namely stage 1 – attachment phase, stage 2 – irreversible binding phase, stage 3 – 
maturation 1 phase, stage 4 – maturation 2 phase, and stage 5 – cellular dispersion phase.

In humans, 80% of microbial infections are due to non-healing chronic wounds, osteomyelitis, prosthesis- and implant-
related infections, endocarditis, rhinosinusitis, and cystic fibrosis[6-9]. Literature states that both gram-positive and gram-
negative bacteria form biofilms on the surface of medical devices which are E. faecalis, S. aureus, S. epidermidis, S. viridans, 
E. coli, K. pneumoniae, P. mirabilis, and P. aeruginosa[10]. Out of all these organisms, S. aureus and coagulase-negative 
staphylococci pose a greater risk of forming biofilms in orthopaedic implants[11,12], whereas P. aeruginosa sustain and 
survive in harsh environments and forms a resistant biofilm[13].

With the rise of AMR, antibiotic prophylaxis has become ineffective in curbing infections. Novel techniques such as 
nanomedicine, bacteriophage therapy, antimicrobial peptides, sonic therapies, scaffold-loaded nanoparticles, antimi-
crobial adjuvants in the form of silver, electrical and electromagnetic methods, bioacoustic effects, surface modification of 
biomaterials, antimicrobial photodynamic therapies, biosensors, hyperbaric oxygen, and fecal microbiota transplantation 
have been introduced to combat AMR[10,14,15]. With the profound literature evidence of the antimicrobial property of 
silver (Ag), nanotechnology experts doped nanoparticles (NP) with Ag for targeted drug delivery and enhanced 
interaction with the surrounding environment to curb biofilm-producing organisms[16]. In this article, the usage of AgNP 
in curbing orthopaedic infections is narrated.

AGNP TECHNOLOGY
In literature, Ag has been identified to have antimicrobial properties[17-19], but in recent years clinicians have demon-
strated this property in various clinical conditions. The oligodynamic action of Ag refers to the toxic nature of metal ions 
on microbes by integrating with microbial deoxyribonucleic acid (DNA)[20-22]. Few studies have emphasized the precip-
itation of DNA within the microbial cell[23]. Ag exerts antibacterial action by inhibiting cell wall synthesis[24,25].

Recent technologies use NP to load Ag ions which may be used as an antimicrobial agent in a target-specific manner
[23]. AgNP permeates into cells and interferes with the enzymes of bacterial respiratory chains to inhibit ATP production 
and growth of the bacteria[16,26]. The particle size of AgNP determines the bactericidal activity. 10-nm Ag demonstrates 
the complete bacterial interaction, henceforth AgNP exerts a higher bactericidal effect[27]. The mechanism of action of 
AgNP in infections is as follows (as depicted in Figure 1).

Direct contact with microbes through leakage of cellular contents and bacterial death due to the damage of cell 
membrane and higher production of reactive oxygen species and free radical species, release of Ag+ ions through 
interaction with sulfhydryl groups (cysteine) in cell wall proteins and enzymes, induction of bacterial death when Ag+ 
ions in AgNPs by bombarding the electron transport chain in bacterial mitochondria. Entering of Ag+ ions into peri-
plasmic space which leads to the separation of the cytosol from the cell membrane, occurrence of cellular pits after the 
exposure of Ag+ ions, inhibition of ribosomal functions leading to enhanced ROS production, malformation of proteins 
resulting in improper DNA function, antibiofilm activity of AgNPs, and dose-dependent cytotoxic and genotoxic effects 
of AgNP on osteoblasts and impaired cellular viability of AgNPs at 10 µg/g.

To impart biocompatibility of AgNP in musculoskeletal tissues: (1) Biosynthesis process from bacteria, yeast, and 
fungi; (2) physical property adjustment; and (3) biomolecule combinations can be tried.
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Figure 1 Mechanism of action of silver nanoparticles. DNA: Deoxyribonucleic acid.

AGNP IN ORTHOPAEDIC INFECTIONS
Recently, the modification of orthopaedic implants with the application of AgNPs on the surface leads to the prevention 
of implant-associated infections. With the availability of AgNP-coated external fixators, mega prostheses, and AgNP-
coated bone cement, orthopaedic infections are showing a downtrend. Since AgNP-coated orthopaedic implants 
demonstrate antimicrobial activity, the specific molecular mechanism of osteogenic-related cells warrants an 
understanding. Due to dose-dependent cytotoxicity, the effect of AgNP on osteoblast and osteoclast is controversial. 
Aurore et al[28] demonstrated the bactericidal effect of AgNP against non-virulent E.coli and virulent MRSA at non-toxic 
concentrations. Macrophage polarization towards the M1 phenotype enables the cells to kill the engulfed microor-
ganisms. Elevated reactive oxygen species (ROS) responses were found in AgNP-treated osteoclasts. The modification of 
orthopaedic implants by using AgNPs enhances antimicrobial effects through plasma immersion ion implantation (PIII), 
magnetron sputtering, plasma electrolytic oxidation, and 3DP-Ag-containing scaffolds[16].

Tumor prosthesis: In orthopaedic oncology, peri-prosthetic infection rates from 9% to 29%. Due to the immunosup-
pressive environment, this group of patients is more prone to infection than arthroplasty patients. Gosheger et al[29] 
demonstrated a superior antimicrobial effect with a silver-coated mega prosthesis (7% infection rate) than titanium 
prosthesis (47% infection rate) in a rabbit model. Ag coated group showed fewer signs of inflammation as measured by 
ESR, CRP, and neutrophil count. In sarcoma patients, Hardes et al[30] observed 17.6% of infection in the non-silver coated 
mega prosthesis group than 5.6% of infection in silver coated mega prosthesis group. About 38.5% of cases of amputation 
in the non-silver-coated mega prosthesis group were due to deep infections whereas no case of amputation was reported 
in the silver-coated mega prosthesis group. Hence, silver-coated mega prosthesis reduces the risk of further infection in 
oncology cases as they are already in an immunocompromised state. However, large-scale blinded controlled trials have 
to prove the safety and efficacy of infection prevention with the silver-coated prosthesis in orthopaedic oncological cases.

External fixator pins: Pin tract infections mount for 42% of orthopaedic infections which results in loosening of the 
implant, fracture non-union, and osteomyelitis. An in-vitro study demonstrated a 3-log step reduction of S. epidermidis 
biofilm producers when incubating the stainless steel pins coated with AgNP compared with titanium and copper pins 
for 20 h (9). Wassall et al[31] revealed the antimicrobial effects of Ag in Ag-coated pins with the significant reduction of 
adhesion of E. coli, P. aeruginosa, and S. aureus when compared with normal stainless steel pins. Loosening of external 
fixator pins was less frequently found with Ag-coated pins. Hence silver inhibits microbial adhesion by inhibiting the 
formation of the glycocalyx on the surface of the pins.
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Osteomyelitis and infected non-union: Ag ionophoresis act as an adjunct treatment option for osteomyelitis and 
infection in non-union of fractures. The continuous inflow of electrically driven Ag into the infective foci curbs the 
infection and promotes the environment for tissue regeneration. At the end of 3 mo follow-up, radiographic and 
histological analysis revealed neo-osteogenesis in a 6 mm critical bone defect in the femoral diaphysis of rats managed 
with bone graft with BMP-2 coupled with AgNP and poly lactic-co-glycolic acid (PLGA) scaffold injected with 10 CFUs of 
vancomycin-resistant MRSA[32]. Microbial elimination with 2% Ag NP coupled with composite bioscaffold resulted in 
fracture union.

Bone cement: Alt et al[33] proved that nanosilver-coated cement produced a high index of antimicrobial activity against 
S. epidermidis, MRSE, and MRSA. Tiopronin, a stabilizing agent, coupled with AgNP in bone cement expressed a good 
antimicrobial efficacy without displaying any cement-related cytotoxicity[34]. AgNP coated bone cement resulted in 
antibacterial activity against MRSA and decrease the formation of polymer debris in joint replacement[35].

TOXICITY OF AGNP
Though nanotechnology poses a greater advantage in clinical applications, a considerable note of precautions and toxic 
effects are observed with AgNP. The interaction of AgNP with biological media leads to Ag agglomeration and 
dissolution. Doping of Ag into NP results in the induction of toxic responses. The failure of protective coatings on NPs to 
prevent aggregation in biological fluids leads to AgNP instability. In vitro and in vivo AgNP studies demonstrated the 
induction of lung fibroblasts, genotoxicity, chromosomal aberrations, DNA damage, and apoptosis of cells. There is only 
limited evidence for carcinogenicity in any biological tissues.

The interaction of human alveolar basal epithelial cells with AgNP results in the generation of reactive oxygen species, 
reduction of mitochondrial membrane potential and cellular viability, and enhance cellular apoptosis. Exposure to higher 
concentrations of AgNP in human cell lines induces not only cellular apoptosis but also induces cellular morphology and 
genetic mutations. The toxicity of AgNP has been demonstrated in microbes ranging from bacteria, viruses, fungi, and 
algae. AgNP molecules penetrate the skin and blood tube of zebrafish larvae in aggregate form whereas it induces heat 
shock, oxidate stress, and DNA damage in Drosophila melanogaster.

AgNP technology is associated with developmental abnormalities in zebrafish embryos, cytotoxic, and genotoxic 
effects with systemic immunosuppression. AgNP-mediated cytotoxicity with 10 μg/g is observed on primary human 
MSCs and osteoblast cells[36]. In zebrafish, AgNP induced neurotoxicity and persistent abnormal behavior[36]. 
Cytotoxicity of AgNP depends on the particle size of Ag. Literature has documented the cytotoxic effects of Ag of 24 nm 
causing an intrinsic pro-inflammatory response and apoptosis of surrounding cells[36].

Drake et al[37] and Lansdown[38] have done an extensive review of the exposure-related health effects of silver and its 
related compounds in health. The evidence of toxic effects and complications of AgNP in human studies is limited. Silver 
represents occupational health hazards like argyria in long-term exposure[37]. The critical oral dosage of silver varies for 
every individual. The accumulation of silver and nanosilver particles occur in the liver, spleen, kidney, nails, and mucous 
membranes[39]. With the topical application of Ag, the risk of percutaneous absorption is very low as the epidermis is a 
relatively impenetrable barrier[40]. Munger et al[41] performed a cross-over time exposure study with oral AgNP (5-10 
mm) and demonstrated no change in metabolic, hematologic, physical, or morphological findings. However, the toxicity 
of AgNP in humans is understudied.

Due to the increase of AgNP usage in the market, governmental regulations in the United States [Environment 
Protection Agency on the nanomaterials regulation], European Union [European Strategy for Nanotechnology], and 
Canada [Health Canada and Environment Canada] have been implemented[42]. These agencies mentioned that the size 
of AgNP must be ranging from 1–100 nm in at least one spatial dimension[42]. No specific occupational exposure limits 
have been laid by these governmental agencies on AgNPs. Global organizations focus on the safety and sustainability of 
AgNPs in the market for optimal benefits in the community.

RECENT ADVANCES IN AGNP TECHNOLOGY
With the introduction of new fabricating methods, the toxic effects of AgNP are minimized in the microenvironment[43]. 
Doping of copolymers and growth factors with AgNPs is more effective in hastening wound healing. Green-synthesized 
AgNPs are cheaper and eco-friendly for the desired environment. The phytochemicals to be doped with AgNPs have to 
be characterized and seek appropriate regulatory approvals before commercializing the product for preclinical and 
clinical studies[44,45]. The addition of electrospun nanofibers along with AgNP offers a great advantage in curbing the 
infection along with debridement and antibiotics. Once the wound is healed, such electrospun nanofibers provide a naïve 
extracellular matrix in the newly regenerated tissues[46].

With the evolution of 3-D printing technology, the fabrication of scaffolds with Ag coating prevents infections in 
complex orthopaedic cases[47,48]. 3D scaffolds with porous structures are ideal for loading biomolecules and ions for 
targeting the desired site. Doping of AgNP into scaffolds with antimicrobial activity and biocompatibility properties in 
musculoskeletal tissues aids in curbing infection and promoting tissue regeneration as depicted in Figure 2.

3D bioprinting technology dispenses “bio-inks” which contain cells with regenerative potential, scaffolds doped with 
metal/ion nanoparticles, and biomicromolecules in a temporospatial controlled fashion[49,50]. Such bio-inks with antimi-
crobial properties aim at uprooting the infection and facilitating the regeneration of tissues. Damle et al[51] proved the 
proliferation and differentiation of mesenchymal stromal cells when doped with AgNPs which gave further insights in 
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Figure 2  Doping of silver nanoparticles in scaffolds.

osseous tissue engineering. The concept of “Smart Coating” depends on light responsiveness, temperature respons-
iveness, pH responsiveness, and piezo responsiveness for improving osseous integration, inhibting biofilm formation, 
and preventing post-operative complications associated with orthopaedic infections[52].

CONCLUSION
In orthopaedics, AgNP technology has the potential to reduce implant-related orthopaedic infections. Doping AgNP with 
scaffolds and bio-inks must adhere to the regulatory guidelines to avoid toxicity in clinical applications. With the 
evidence of preclinical studies, large-scale blinded controlled trials on AgNP in orthopaedic infections have to be assessed 
for further validation.
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