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Significance

Cancers acquire multiple 
mutations that cooperate to drive 
carcinogenesis. One could imagine 
that each new alteration would 
increase fitness. However, many 
previous studies across diverse 
evolutionary systems have found 
that fitness landscapes are 
rugged, where a mutation is 
advantageous only in specific 
genetic contexts. Characterizing 
cancer fitness landscapes would 
aid our understanding of 
tumorigenesis. By coupling tumor 
barcoding with genome editing, 
we describe the fitness landscapes 
of combinatorial inactivation of 
three tumor suppressor genes 
that lead to oncogene-negative 
lung adenocarcinoma. We find 
that the fitness landscape of 
Nf1;Rasa1;Pten is fully accessible, 
with each mutation increasing 
fitness in any order. Fully 
accessible landscapes make 
evolution to complex genotypes 
more probable while hindering 
our ability to predict the order of 
adaptive mutations.
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Cancer genomes are almost invariably complex with genomic alterations cooperating 
during each step of carcinogenesis. In cancers that lack a single dominant oncogene 
mutation, cooperation between the inactivation of multiple tumor suppressor genes can 
drive tumor initiation and growth. Here, we shed light on how the sequential acquisition 
of genomic alterations generates oncogene-negative lung tumors. We couple tumor 
barcoding with combinatorial and multiplexed somatic genome editing to characterize 
the fitness landscapes of three tumor suppressor genes NF1, RASA1, and PTEN, the 
inactivation of which jointly drives oncogene-negative lung adenocarcinoma initiation 
and growth. The fitness landscape was surprisingly accessible, with each additional 
mutation leading to growth advantage. Furthermore, the fitness landscapes remained 
fully accessible across backgrounds with the inactivation of additional tumor suppressor 
genes. These results suggest that while predicting cancer evolution will be challenging, 
acquiring the multiple alterations that drive the growth of oncogene-negative tumors 
can be facilitated by the lack of constraints on mutational order.

cancer evolution | mouse models | quantitative | fitness landscapes

Fitness landscapes are a helpful conceptual aid in understanding evolutionary processes 
(1). In a fitness landscape, genotypes are represented as nodes on a graph such that two 
genotypes are connected by an edge if they differ by a single allele and thus each genotype 
can be reached from the other by a single alteration (2). Fitness values of each genotype 
are shown as an extra (height) dimension with adaptation represented as a hill-climbing 
adaptive walk. The key properties of evolutionary adaptation, such as its predictability 
and the ability of adaptation to reach the fittest genotype in a deterministic walk, are 
determined by the shape of the landscape, specifically by its ruggedness (3). The ruggedness 
of the fitness landscape is defined by the frequency of sign epistasis, a phenomenon where 
a mutation is advantageous in one genetic context but disadvantageous in another. Sign 
epistasis determines whether an adaptive walk can end up stalled on a local fitness peak 
and whether only some combinations of mutations are sequentially adaptive. Intriguingly, 
many previous studies found that rugged fitness landscapes are common across diverse 
evolutionary systems (3–7). This suggests that early adaptive mutations can strongly affect 
the direction of the adaptive process and limit the accessible adaptive paths (SI Appendix, 
Fig. S1) (8).

Cancers are driven by the sequential acquisition of genetic driver mutations and thus 
are canonical examples of adaptive walks on a fitness landscape. Nonetheless, full fitness 
landscapes for cancer remain poorly understood due to the difficulty of inferring the fitness 
of growing tumors, the combinatorially large numbers of intermediate genotypes for even 
moderately genetically complex tumors, and the fact that tumors are generally analyzed 
once they have accumulated a large number of mutations with the order of the early steps 
hidden from the study. Despite the importance of defining the properties of cancer fitness 
landscapes for understanding tumorigenesis, we currently lack experimental systems to 
quantify the fitness of nascent tumors of diverse sequential genotypes growing in vivo. 
Defining cancer fitness landscapes could help to determine cancer progression and its 
therapeutic vulnerabilities. Human cancer genomics has uncovered genomic alterations 
that are mutually exclusive with one another, and we and others have found sign epistasis 
between oncogene and tumor suppressor mutations that suggests that cancer fitness land­
scapes might be rugged and not fully accessible (9–11).

Oncogene-negative tumors represent ~20% of lung adenocarcinoma cases and affect 
~150,000 patients each year worldwide (12–15). These tumors lack oncogene mutations, 
and a large fraction of them could be driven by the combinatorial inactivation of 
tumor-suppressive genes (15, 16). We recently identified combinatorial inactivation of Nf1 
(neurofibromatosis 1), Rasa1 (RAS p21 protein activator 1), and Pten (phosphatase and tensin 
homolog) and activation of MAP Kinase (MAPK) and PI3 Kinase (PI3K) pathway as a 
potent driver of a subset of oncogene-negative lung tumors (15). While oncogene-negative 
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tumors represent a large fraction of lung cancer, they likely require 
the coincident inactivation of multiple tumor suppressor genes to 
drive growth comparably to a single oncogene alteration. This raises 
the question of the extent to which genetic interactions among 
individual tumor suppressor mutations affect fitness during cancer 
evolution. Does inactivation of each gene confer a growth benefit 
regardless of genetic context, and hence form a fully accessible 
fitness landscape, or do they form a rugged fitness landscape where 
only certain orders of mutations are favored by selection?

Here, we characterized the full fitness landscape of autochtho­
nous oncogene-negative lung tumors with combinatorial inacti­
vation of the NF1, RASA1, and PTEN tumor suppressor genes. 
We used combinatorial and multiplexed somatic CRISPR/Cas9 
genome editing and tumor barcoding to quantify the accessibility 
of the Nf1, Rasa1, and Pten triple-mutant genotype via all possible 
single steps. We further investigated how the shape of the fitness 
landscape is affected by the inactivation of other tumor suppressor 
genes. We uncover an unexpectedly smooth landscape that remains 
accessible even in the presence of additional tumor suppressor 
alterations.

Results

Quantitative Analysis of the Size and Number of Tumors of 
Each Stepwise Genotype toward Nf1;Rasa1;Pten Triple-Mutant 
Lung Tumors. To quantify the impact of diverse genotypes on 
tumor initiation and growth, we developed a method based 
on tumor barcoding coupled with high-throughput barcode 
sequencing (Tuba-seq) (17–19). Tuba-seq uses lentiviral-based 
DNA barcoding coupled with CRISPR-Cas9 genome editing 
and genetically engineered mouse alleles to generate and quantify 
the number and size of tumors of many different genotypes in 
parallel (SI Appendix, Fig. S2A). Each lentiviral vector encodes 
Cre recombinase, a single guide RNA (sgRNA), as well as a two-
component barcode region with a fixed sgRNA identifier (sgID) 
that labels the vector and a random barcode (BC) that uniquely 
tags each clonal tumor that arises from the initial transduced cell.

We previously used Tuba-seq to identify combinations of tumor 
suppressor genes whose inactivation is capable of driving lung ade­
nocarcinoma in the absence of oncogene mutations. Specifically, 
we identified that coincident inactivation of Nf1, Rasa1, and Pten 
is a potent driver of oncogene-negative lung adenocarcinoma (15). 
To investigate the contribution of single, double, and triple muta­
tions of Nf1, Rasa1, and Pten to the genesis of oncogene-negative 
lung adenocarcinomas, we previously initiated tumors in 
R26LSL-Tomato;H11LSL-Cas9 (TC) and Trp53f/f;TC mice with a pool of 
eight uniquely dual barcoded lentiviral vectors with sgRNAs tar­
geting Nf1, Rasa1, and Pten (Fig. 1A). This pool contains lentiviral 
triple sgRNA vectors that target each gene alone, in pairwise com­
binations, and all three together (Lenti-sgTSTriple-pool/Cre, Fig. 1A) 
(15). These mice developed thousands of clonal tumors of different 
genotypes (SI Appendix, Fig. S2 B and C). Our previous Tuba-seq 
analysis indicated that most of the tumor burden in TC and Trp53f/

f;TC mice was from tumors with concomitant inactivation of all 
three tumor suppressor genes (15). However, we had not previously 
used our high-resolution tumor barcoding data to build a fitness 
landscape to understand the potential evolutionary paths to the 
triple-mutant state, nor had we compared the tumorigenic potential 
between the p53-proficient and -deficient backgrounds.

The Fitness Landscape of Nf1;Rasa1;Pten Triple-Deficient Lung 
Tumors is Completely Accessible. Generating Tuba-seq data 
on tumors initiated with lentiviral vectors that create all possible 
combinatorial mutations of Nf1, Rasa1, and Pten should enable the 

generation of a complete fitness landscape across all genotypes. We 
approximated the relative fitness of each genotype by calculating 
the growth rate using data on tumor number and size (Fig.  1B 
and Methods). Across these three tumor suppressor genes, there are 
six possible paths on the landscape, i.e., six possible routes from 
the genotype with the lowest fitness to the one with the highest 
fitness (SI  Appendix, Fig.  S3A). As anticipated, we found that 
Nf1;Rasa1;Pten triple-mutant tumors had the highest relative fitness 
in TC mice (Fig. 1C). Interestingly, all mutational routes leading to 
the Nf1;Rasa1;Pten triple-mutant genotype were accessible, with each 
additional mutation increasing fitness beyond the fitness of the less 
complex genotypes of origin (Fig. 1C). These results are consistent 
with a model in which inactivation of each tumor suppressor gene 
is advantageous on all backgrounds regardless of whether the other 
two tumor suppressor genes are wild-type or mutant.

To assess the robustness of our relative fitness estimates, we per­
formed a series of additional experiments. As an initial negative 
control for our method, we analyzed the tumors initiated with 
Lenti-sgTSTriple-pool/Cre in control Kras (Kirsten rat sarcoma 
virus)LSL-G12D;T (KT) mice, which lack Cas9 (Fig. 1A). In these 
mice, all sgRNAs are inert, and tumors with different sgIDs have 
the same genotype. As anticipated, our method uncovered a fitness 
landscape that was not accessible and that lacked the gains in fitness 
for tumors initiated with vectors with sgRNA targeting increasing 
numbers of tumor suppressor genes (Fig. 1D). Next, we performed 
a different method in which we used bootstrap resamples of mice 
as well as tumors, which had minimal impact on the overall signif­
icance of the fitness differences across the landscape in TC mice 
(SI Appendix, Fig. S3B).

In lung cancer models using lentiviral vectors, a small percent 
of tumors arise from cells that were transduced by more than one 
vector (15, 17). In the context of our experiments to map fitness, 
these multiple transduction events could impact tumor growth 
(except for tumors with the Nf1;Rasa1;Pten triple vector as they 
have the maximum numbers of possible mutations). We know 
that multiple infections must occur as we observe a small number 
of tumors containing the triple sgInert vector. These tumors are 
certainly the result of this vector cotransducing an initial cell with 
a vector that encodes one or more tumor suppressor gene targeting 
sgRNAs. We performed a series of analyses that take into account 
the expected rates of multiple transduction events and corrected 
our data to account for this effect. The number of sgInert tumors 
in TC mice was used to calculate the rate of coinfection in our 
experiments. We then used the rate of coinfection to remove a 
fraction of tumors of each genotype, picking the tumors to remove 
based on the size distribution of Nf1;Rasa1;Pten triple-mutant size 
distribution (Methods). Importantly, the landscape remained acces­
sible regardless of correction for multiple transduction events 
(SI Appendix, Fig. S3C) as well as when we used an alternate 
method to correct for the impact of multiple transduction events 
(SI Appendix, Fig. S3D, see Methods). Our results show that the 
observed accessibility of the fitness landscape is robust to different 
methods that correct for multiple transduction events. These 
results are also consistent with experimental evidence from our 
previous study in which single- and double-mutant genotypes lead 
to some neoplastic growths in vivo (15).

Trp53-Deficiency Reduced Tumor Initiation without Impacting the 
Fully Accessible Landscape. In oncogenic KRAS, EGFR (Epidermal 
growth factor receptor), and BRAF (B-Raf proto-oncogene, serine/
threonine kinase)-driven lung cancer models, Trp53 inactivation 
increases tumor initiation/early tumor growth and tumor size (10, 
18, 20). Our data allowed us to test whether Trp53 inactivation 
has a similar effect on the growth of oncogene-negative tumors, 
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especially in case of the potent Nf1;Rasa1;Pten triple-deficient 
tumors. Similarly to the effects in the oncogene-driven tumors, 
multiple metrics of tumor size indicated that all tumors, as well as 
the Nf1;Rasa1;Pten triple-deficient tumors, were larger in Trp53f/

f;TC mice relative to TC mice (Fig. 2 A, B, and F and SI Appendix, 
Fig. S4 A–D and F). In contrast, Trp53 inactivation reduced overall 
tumor number (i.e., number of tumors estimated to have >50 
neoplastic cells), as well as Nf1;Rasa1;Pten triple-deficient tumor 
number (Fig. 2 C, D, and F and SI Appendix, Fig. S4F). These results 
agree with our previous visual analysis of surface tumor number 
in these mice (15) (Fig. 2E and SI Appendix, Fig. S4E). However, 
the reduction in tumor initiation is the opposite of the effect of 
Trp53-deficiency in oncogenic KRAS, BRAF, and EGFR-driven 
lung cancer models (9, 10, 18). Thus, Trp53 inactivation has a 
uniquely divergent effect on tumor initiation and tumor size in 
oncogene-negative tumors.

Next, we mapped the fitness landscape of Nf1, Rasa1, and Pten 
mutations on the background of Trp53 deficiency in Trp53f/f;TC 
mice. Similar to our observations in Trp53-proficient TC mice, 
the Nf1;Rasa1;Pten triple-mutant genotype had the highest relative 
fitness. Importantly, despite the overall effects of Trp53 deficiency 

on tumor number and size, the landscape remained fully accessible 
(Fig. 2G and SI Appendix, Fig. S5 A–C).

Quantification of the Overall Tumorigenicity of the Nf1;Rasa1;Pten 
Triple-Mutant Genotype across Lkb1- and Keap1-Deficient 
Backgrounds. While the fitness landscape of Nf1;Rasa1;Pten lung 
tumors was fully accessible in Trp53-proficient and -deficient 
backgrounds, changes in the genetic background often influence 
epistatic interactions and thus change landscape accessibility. 
Therefore, we next quantified whether the effects of combinatorial 
Nf1, Rasa1, and Pten inactivation change on other genetic 
backgrounds. We chose loss-of-function mutations in Keap1 
and Lkb1(Stk11) which are known tumor suppressor genes that 
are frequently mutated in human lung cancer and have been 
shown to suppress growth in models of oncogenic KRAS-driven 
lung adenocarcinoma (17, 18, 21–23). We initiated tumors with 
Lenti-sgTSTriple-pool/Cre in TC, Keap1f/f;TC, Lkb1f/f;TC and control 
KrasLSL-G12D;T mice (Fig. 3A). After 3 mo of tumor growth, we first 
analyzed tumor burden by direct fluorescent imaging and histology. 
Unexpectedly, Keap1f/f;TC mice developed many fewer tumors than 
TC mice as assessed by direct fluorescence and histology (Fig. 3 B 

Cre
sgRNA

sgID-BC

Tuba-seq analysis

3 months

hU6mU6bU6

sgNeo1-sgNeo2-sgNT

sgNf1-sgRasa1-sgPten

sgNf1-sgRasa1-sgNT
sgNf1-sgNeo2-sgPten
sgNeo1-sgRasa1-sgPten

sgNf1-sgNeo2-sgNT
sgNeo1-sgRasa1-sgNT
sgNeo1-sgNeo2-sgPten

In
er

t
1 

T
S

2 
T

S
3 

T
S

Lenti-sgTSTriple-pool/Cre

sgRNA
sgRNA

A

C

B

R26LSL-Tomato;H11LSL-Cas9(TC)(N=10, 4x105 ifu)
Trp53flox/flox;TC (N=10, 4x105 ifu)

KrasLSL-G12D;T (KT)(N=5, 8x104 ifu)

D
TC mice

KT mice
(Cas9-negative controls)

R
el

at
ai

ve
 F

itn
es

s

R
el

at
iv

e 
F

itn
es

s

Number of tumor suppressor
targeting sgRNAs

1.0

1.1

1.2

1.3

1.4

1.5

0 1 2 3

1.0

1.1

1.2

1.3

1.4

1.5
1.6

sgNf1
sgRasa1
sgPten

Number of tumor suppressor
targeting sgRNAs

0 1 2 3

sgNf1
sgRasa1
sgPten

Tuba-seq analysis Tuba-seq analysis

Define relative titer
of each lentiviral vector
in Lenti-sgTSTriple-pool/Cre

Calculate expected number
 of cells with each vector
at initiation (#startgenotype)

Determine the absolute 
number of neoplastic cells 

with each vector 
(i.e each genotype)

(#endgenotype)

Relative Fitness = Fitnessgenotype/FitnessInert

Fitnessgenotype = log2(#endgenotype/#startgenotype)

TC or
Trp53flox/flox;TC KT

Fig. 1. The fitness landscape of Nf1;Rasa1;Pten oncogene-negative lung adenocarcinoma is fully accessible. (A) Schematic of barcoded triple sgRNA vectors 
in the Lenti-sgTSTriple-pool/Cre pool for CRISPR/Cas9-mediated inactivation of all combinations of Nf1, Rasa1, and Pten in R26LSL-Tomato;H11LSL-Cas9 (TC), Trp53flox/flox;TC 
mice, and Cas9-negative KrasLSL-G12D;T (KT) mice. sgNeo1, sgNeo2, and sgNT are inert sgRNAs. The number and size of tumors initiated with each vector can be 
quantified by tumor barcoding coupled with high-throughput barcode sequencing (Tuba-seq). Mouse genotype, mouse number, and viral titer (ifu; infectious 
units) are indicated. Tuba-seq was performed on bulk tumor-bearing lungs 3 mo after tumor initiation. Data were generated in Yousefi, Boross et al., Cancer 
Research 2022. (B) Overview of our method to calculate the relative fitness of each cancer genotype (Methods). (C and D) Fitness landscape for TC (C) and KrasLSL-

G12D;T (Cas9-negative control) (D) mice. Fitness for tumors of each single and double-mutant genotype, as well as those with all three tumor suppressor gene 
targeting sgRNAs are shown relative to the triple inert vector. Green arrows indicate increased fitness, red arrows indicate reduced fitness, and the solid lines 
indicate significance (P value < 0.05). Whiskers show 95% CIs from bootstrap resampling of tumors.

http://www.pnas.org/lookup/doi/10.1073/pnas.2303224120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2303224120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2303224120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2303224120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2303224120#supplementary-materials


4 of 9   https://doi.org/10.1073/pnas.2303224120� pnas.org

and C). Conversely, Lkb1f/f;TC mice visually had many tumors that 
appeared somewhat larger than those in TC mice (Fig. 3 B and C).

Next, we performed Tuba-seq on tumor-bearing lungs and 
quantified the effect of Keap1 and Lkb1 deficiency on overall 
tumor initiation and size. Keap1 inactivation decreased overall 
tumor number by ~80%, while modestly reducing tumor size 
(Fig. 3 D–G and SI Appendix, Fig. S6 B and C). The impact of 
Keap1 inactivation on tumor number and size was consistent 
across all tumors, as well as when we assessed only Nf1;Rasa1;Pten 
triple-deficient tumors (Fig. 3 D–G). Thus, Keap1 inactivation 
has an overall negative effect on tumorigenesis driven by inacti­
vation of Nf1, Rasa1, and/or Pten with the greatest impact on 
tumor initiation and/or very early tumor growth.

The impact of Lkb1 inactivation was even more interesting. 
Lkb1 inactivation decreased overall tumor number by >95% 
(Fig. 3 F and G), which seemed at odds with the gross examina­
tion of the tumor-bearing lung. However, the small number of 
tumors that did form were much larger than those in TC mice, 
with Nf1;Rasa1;Pten triple-mutant tumors in Lkb1;TC having 

>15-fold greater median tumor size than in TC mice (Fig. 3 D 
and E). This dramatic increase in size reconciles the visual obser­
vation of similar numbers of tumors in Lkb1;TC and TC mice, 
while quantitative analysis by Tuba-seq data indicated that 
Lkb1;TC mice had many fewer tumors (Fig. 3 H and I and 
SI Appendix, Fig. S6 D and E).

Landscape Accessibility Is Largely Robust to Changes in the 
Genetic Background. As the Lkb1- and Keap1-deficient bac­
kgrounds had substantial effects on overall oncogene-negative 
lung tumor growth in our experimental model, we next 
characterized their impacts on the fitness landscapes. Due to 
the very low number of tumors for less complex (inert, single 
and double mutant) genotypes on the Lkb1f/f;TC background, 
we could not construct a fitness landscape (SI Appendix, Fig. S7 
A and B). However, our method allowed us to generate fitness 
landscapes for the tumors in TC, Keap1;TC, and control KT 
mice. The landscape in TC mice was similar to that generated 
from our initial cohort of TC mice and the landscape in the 
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well as those with all three tumor suppressor targeting sgRNAs are shown relative to the triple inert vector. Green arrows indicate increased fitness, red arrows 
indicate reduced fitness, and the solid line indicates significance (P-value < 0.05). Whiskers show 95% CIs from bootstrap resampling of tumors.

http://www.pnas.org/lookup/doi/10.1073/pnas.2303224120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2303224120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2303224120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2303224120#supplementary-materials
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control KT Cas9-negative mice was again very flat (Fig.  4A 
and SI  Appendix, Fig.  S8D). Interestingly, in the Keap1-
deficient background, the landscape remained fully accessible 

(Fig.  4B). These effects were consistent across our different 
analysis methods (SI  Appendix, Fig.  S8 A–C). Thus, despite 
greatly reducing tumor initiation, the ability of each additional 
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Fig. 3. Inactivation of the KEAP1 or LKB1 “tumor suppressors” reduces Nf1;Rasa1;Pten oncogene-negative tumor initiation with divergent effects on tumor size. 
(A) Schematic of experiments to assess the effect of Keap1 and Lkb1 inactivating background mutations on combinations of Nf1;Rasa1;Pten inactivation. Mouse 
genotype, mouse number, and viral titer (ifu; infectious units) are indicated. Tuba-seq was performed on bulk tumor-bearing lungs 3 mo after tumor initiation. (B) 
Representative light and fluorescence images of lung lobes from the indicated genotypes of mice. Lung lobes are outlined with white dotted lines. (Scale bars, 4 mm.) 
(C) The number of tumors (Tomatopositive tumors > 0.5 mm in diameter) quantified by direct counting. Each dot represents a mouse, and the bar is the median. The 
genotypes of the mice are indicated. **P < 0.01; and n/s, P > 0.05 (not significant) based on a bootstrap resampling. (D and E) Effect of Keap1 or Lkb1 inactivation on 
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>50 neoplastic cells relative to the median of TC values). Each dot represents a mouse. Data from all tumors are shown. (I) Comparison of the relative tumor size 
determined from Tuba-seq (the median number of neoplastic cells relative to the median of TC values) with the relative tumor number from Tuba-seq (the number 
of clonal expansions with >50 neoplastic cells relative to the median of TC values). Each dot represents a mouse. Data from all tumors are shown.

http://www.pnas.org/lookup/doi/10.1073/pnas.2303224120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2303224120#supplementary-materials
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mutation to increase fitness on the path to the Nf1;Rasa1;Pten 
triple-deficient state was maintained.

Despite the overall accessibility of the fitness landscape in both 
Keap1-proficient and -deficient backgrounds, the impact of addi­
tional mutation was not identical. In particular, the relative fitness 
of tumors of the different double-mutant genotypes was different, 
with Nf1;Rasa1 being the most fit in the TC and Trp53;TC back­
ground and Nf1;Pten being the most fit in the Keap1;TC back­
ground (Fig. 4C). Thus, changes in the genetic background did 
impact the topology of the landscape, but it remained fully 
accessible.

Discussion

Our results suggest that the combinatorial inactivation of Nf1, 
Rasa1, and Pten forms a fully accessible fitness landscape. Thus, 
any of the six evolutionary routes is possible, with the inactivation 
of each gene increasing fitness beyond the preceding genotype. 
The overall lack of sign epistasis makes predicting cancer evolution 
challenging. On the other hand, while oncogene-negative tumors 
require the inactivation of multiple tumor suppressor genes to 
substitute for the lack of a strong oncogene alteration, gaining 
fitness advantage from each additional alteration increases the 
probability of acquiring all of the required mutations. Human 

genomics data suggest that oncogene-negative lung adenocarci­
noma with high MAPK and PI3K pathway activation is likely 
generated from combinatorial mutations in diverse components 
of these pathways further expanding the available paths to the 
tumorigenic state (15).

Contrary to the fitness landscapes we mapped in this study, the 
landscapes of many other evolutionary systems are rugged and 
exhibit sign epistasis between mutations (3–7). Mutations often 
have pleiotropic effects, with some effects being advantageous and 
other effects being detrimental. In one genetic context the benefi­
cial effects can outweigh the detrimental effects, while in a different 
genetic context, this can be reversed. This leads to sign epistasis 
and a rugged fitness landscape. Why is the oncogene-negative fit­
ness landscape smooth and thus fully accessible? We speculate that 
this could be because somatic cells and neoplastic cells in vivo are 
far from the highest possible fitness and individual tumor suppres­
sor gene mutations have relatively weak effects. The combined 
effect could create sufficiently linear behavior of all the individual 
tumor suppressor mutations without encountering any significant 
curvature of the fitness function. This is often not the case for the 
large effect mutations observed in experimental evolution of micro­
organisms or in the tumor suppressor effects on the oncogene-driven 
tumors. Further studies assessing more extensive cancer fitness 
landscapes across multiple backgrounds will be required to 
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determine whether our landscapes are flat patches in a much larger 
and conceivably rugged landscape or if the lack of sign epistasis is 
a more general aspect of cancer fitness landscapes.

While the fitness landscape of combinatorial Nf1, Rasa1, and 
Pten inactivation remained fully accessible and robust to inactiva­
tion of Trp53, Keap1, or Lkb1, those alterations dramatically 
changed overall tumor initiation and growth. Comparing the effects 
of Trp53, Keap1, and Lkb1 inactivation on Nf1;Rasa1;Pten mutant 
tumors with their impact on various oncogene-driven tumors 
underscores the context-dependency of these effects (9, 10, 18). 
Trp53 inactivation increased tumor size but had a negative effect 
on the initiation of oncogene-negative tumors. This observation is 
in contrast to the universally positive effect of Trp53 deficiency on 
multiple models of oncogene-driven lung cancer (9, 10, 18, 20). 
Interestingly, while LKB1 and KEAP1 are generally regarded as 
tumor suppressors, several lines of evidence suggest that their role 
in cancer is more complex and context dependent (24). Lkb1 and 
Keap1 inactivation has been shown to have detrimental effects on 
in vivo lung tumor initiation and growth across different genetic 
contexts (9, 10, 25, 26). Thus, while the detrimental effect of Lkb1 
and Keap1 inactivation on initiation/early growth and the positive 
effect of Lkb1 inactivation on the growth of oncogene-negative 
tumors could not have been predicted, it is consistent with these 
“tumor suppressors” having highly context-dependent effects. The 
cell type of origin could also change how genetic interactions impact 
carcinogenesis, and while the majority of lung tumors initiated by 
lentiviral vectors arise from surfactant protein C expressing cells, it 
is conceivable that the rare large tumors that form in Lkb1f/f;TC 
mice could arise from another cell type. The interactions between 
genotype-specific effects and cell type of origin will be an area of 
interesting future work.

Human tumors likely evolve through states in which tumor sup­
pressor genes are heterozygously inactivated. However, as 
CRISPR/Cas9-genome editing generally generates homozygous 
gene inactivation, we could only study homozygous mutations in 
tumor suppressor genes. In the future, deciphering where the mul­
tiple middle steps of heterozygous mutants fall within cancer fitness 
landscapes will improve the resolution. The effects of heterozygous 
genotypes are likely to fall within the range of their homozygous 
counterpart and therefore are unlikely to render the fitness landscape 
inaccessible. Additionally, studies on the temporal dynamics of 
tumor growth could lead to an even better understanding of the 
dynamic process of early-stage cancer growth in vivo.

Similar analyses of human lung cancer tumorigenesis will require 
large numbers of genotyped samples from early oncogene-negative 
lesions, preferably with longitudinal sampling. Most human tumors 
have complex genotypes, often including multiple inactivating alter­
ations. While human cancer genomics data can be leveraged to find 
interactions among genotypes, finding statistical enrichment/deple­
tion becomes extremely challenging with higher-order interactions 
(8). Modeling complex cancer genotypes in genetically engineered 
mouse models has been greatly facilitated by somatic CRISPR/Cas9 
genome editing; however, broad-scale quantitative analysis of com­
plex cancer genotypes remains limited (15, 20). Generating defined 
combinatorial alterations in vivo allows not only the analysis of 
tumorigenesis driven by these complex genotypes but also the assess­
ment of contribution of each stepwise genomic alteration to tumor 
fitness and evolution. Quantitative and comprehensive fitness maps 
of other genotypes (within and beyond lung cancer) could uncover 
general rules of how driver alterations interact and affect cancer 
evolution by creating rugged and smooth cancer fitness landscapes. 
While libraries of vectors with pairs of sgRNAs have been broadly 
employed (27–31), generating large pools of vectors to inactivate 
greater numbers of genes while maintaining the ability to perform 

highly-quantitative clonal-level analysis will require additional 
methods. In the future, the analysis of tumors with a comprehensive 
combination of many other genotypes coupled with molecular pro­
filing and external interventions like therapies should illuminate the 
underlying biology of adaptation and uncover exploitable 
vulnerabilities.

Methods

Animal Studies. The use of mice for the current study has been approved by 
the Institutional Animal Care and Use Committee at Stanford University, protocol 
number 26696. KrasLSL-G12D/+ [Jax # 008179 (K)], R26LSL-tdTomato(ai9) [Jax # 007909 
(T)], and H11LSL-Cas9 (Jax # 026816), Keap1flox, Lkb1 flox (Jax # 014143), and Trp53flox 
(Jax # 008462) mice have been previously described (32–38). All mice were on a 
C57BL/6:129 mixed background. Tumors were initiated by intratracheal delivery 
of Lenti-Triple-sgRNA/Cre vectors. Mice were allowed to develop tumors for 3 mo 
after viral delivery.

Tumor Barcode Sequencing and Analysis. Tuba-seq libraries were generated 
as described previously (15). Briefly, genomic DNA was isolated from bulk tumor-
bearing lung tissue followed by PCR amplification of the sgID-BC region from 32 μg  
of bulk lung genomic DNA using Q5 Ultra II High-Fidelity 2× Master Mix (New 
England Biolabs, M0494X). Unique dual-indexed primers were used to amplify 
each sample followed by purification using Agencourt AMPure XP beads (Beckman 
Coulter, A63881). The libraries were pooled based on lung weights to ensure even 
reading depth and sequenced (read length 2 × 150 bp) on the Illumina HiSeq 2500 
or NextSeq 500 platform (Admera Health Biopharma Services). Tuba-seq analysis of 
tumor barcode reads was performed as previously described (37, 39).

Histology and Immunohistochemistry (IHC). Lung lobes were inflated with 4% 
formalin and fixed for 24 h, stored in 70% ethanol, and then paraffin-embedded. 
We used 4-μm-thick sections for hematoxylin and eosin staining and IHC. Anti-
RFP (Rockland, 600-401-379), anti-TTF1(Abcam, ab76013), anti-UCHL1(Sigma, 
HPA005993), and anti-TP63 (Cell Signaling Technology, 13109) IHC was performed 
using the Avidin/Biotin Blocking Kit (Vector Laboratories, SP-2001), Avidin-Biotin 
Complex kit (Vector Laboratories, PK-4001), and DAB (3,3’-diaminobenzidine) 
Peroxidase Substrate Kit (Vector Laboratories, SK-4100) following standard 
protocols.

Calculation of Relative Fitness of Each Genotype of Tumors. Fitness of each 
tumor genotype was approximated by the growth rate of tumors. Fitness was 
calculated for each tumor genotype in a given mouse strain by considering the 
expected number of cells with each lentiviral vector at the start of the experiment 
(#startgenotypemouse—strain) and the number of neoplastic cells with each lentiviral 
vector after tumor growth at the end of the experiment (#endgenotypemouse—strain).

Fitnessgenotypemouse strain = log2

(

#endgenotypemouse−strain
#startgenotypemouse−strain

)

.

#endgenotype_mouse—strain is the sum of all neoplastic cells in all tumors of that gen-
otype at the end of the experiment from all mice of a given strain (for example 
TC mice in Fig. 1).

#endgenotypemouse−strain = sum
(

neoplastic cell#genotypemouse−strain
)

.

#startgenotype_mouse—strain is the expected number of cells of that genotype at the start 
of the experiment. #startgenotype_mouse—strain was determined from the number of 
tumors with each viral vector (titergenotype) from KT Cas9-negative control mice. In 
KT mice, the number of tumors with each vector (number of unique BCs associ-
ated with each sgID) represents the exact titer of each vector (titergenotype) in the 
Lenti-sgTSTriple-pool/Cre pool. Data from KT mice were used to calculate the rela-
tive titer across genotypes. To put #startgenotype in the context of the most potent 
genotype in the given mouse strain, we normalized the number of tumors with 
each lentiviral vector in KT mice (titergenotype) to the number of Nf1;Rasa1;Pten 
triple-mutant tumors in KT mice (titerNf1;Rasa1;Pten) and then multiplied this by 
the total number of Nf1;Rasa1;Pten triple-mutant tumors across all mice of a 
given strain (TumorNumberNf1;Rasa1;Pten_mouse—strain). Thus, #startgenotype_mouse—strain 
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represents the titer-corrected expected number of tumors of that genotype if 
that genotype was as potent as triple Nf1:Rasa1;Pten mutation in that strain. 
As an example, #start for single mutant genotype Nf1 in TC mice (#start Nf1_TC) 
was calculated as

#startNf1TC =

titerNf1
titerNf1;Rasa1;Pten

× TumorNumberNf1;Rasa1;PtenTC .

Finally, we calculated “Relative Fitness” within each mouse strain by normalizing 
the fitness of each genotype to the fitness of tumors with the lentiviral vector with 
three Inert sgRNAs (Lenti-sgNeo1-sgNeo2-sgNT/Cre; inert tumors).

relative fitnessgenotypemouse−strain =

log2

(

#endgenotypemouse−strain
#startgenotypemouse−strain

)

log2

(

#endinertmouse−strain
#startinertmouse−strain

) .

The above defined measure is a commonly used fitness definition (31, 39–42) 
that integrates tumor number and tumor size in a manner that translates into how 
different genotypes of tumors grow and get selected for during tumor growth. 
Additionally, we generate landscapes using other approximations of fitness which 
generally reproduce our main results by showing fully accessible landscapes 
(SI Appendix, Fig. S9).

To test our fitness measure’s ability to identify sign epistasis, we used as a pos-
itive control our previous finding of Lkb1 inactivation having a positive effect in 
KRAS-G12D-driven lung cancer but a negative effect in EGFR-L858R-driven lung 
cancer (9). We reanalyzed the data using our fitness measure and find significant 
sign epistasis (SI Appendix, Fig. S10)

Methods to Control for Multiple Transductions. The most potent genotype 
in our experiments was the Nf1;Rasa1;Pten triple-mutant generated by trans-
duction with the Lenti-sgNf1-sgRasa1-sgPten/Cre vector. We found in our in vivo 
experiments that a small percent of tumors arise from lung epithelial cells that 
were initially transduced by more than one lentiviral vector (15). We refer to 
these as multiple transductions. Multiple transductions hinder our ability to esti-
mate fitness because a subset of tumors identified as a given genotype (e.g., Nf1 
single-mutant tumors which arise from a cell transduced with the Lenti-sgNf1/
Cre vector) are in fact double mutants or even Nf1;Rasa1;Pten triple-mutant due 
to multiple transduction of the initial cells with a vector with complementary 
sgRNAs (e.g., with the Lenti-sgNf1-sgRasa1-sgPten/Cre vector). To quantify the 
fraction of tumors that arise from multiple transductions (multiple transduction 
rate), we calculated the ratio of the number of tumors with greater than a given 
number of neoplastic cells (minimum cell number cutoff, X) for a given genotype 
versus the number of tumors with greater than the same minimum cell number 
cutoff for triple mutants:

number of tumors> X neoplastic cellsgenotype

number of tumors> X neoplastic cellsNf1;Rasa1;Pten
.

As we increase the minimum cell number cutoff (X), the ratio will decrease and 
asymptotically approach the true multiple transduction rate. The reason behind 
this is that as we increase the minimum cell number cutoff, the proportion of 
tumors cotransduced with the most potent triple-mutant genotype among all our 
tumors increases, as the larger the tumor, the less likely it is to be from a genotype 
other than the Nf1;Rasa1;Pten triple mutant. Therefore, the minimum ratio across 

all minimum cell number cutoff (X) values was used as the multiple transduction 
rate. The multiple transduction rate provides us the expected number of tumors 
(n) for any given genotype that are the result of multiple transductions. Next, 
to control for the effect of multiples transduction, we used the distribution of 
Nf1;Rasa1;Pten triple-mutant tumors to remove the n tumors from the data for 
each other genotype. For the n tumors to remove, we took the n-quantiles of the 
Nf1;Rasa1;Pten triple-mutant tumor size distribution. For each of these quantile 
values, we chose the tumor of the given genotype that was closest to the quan-
tile in size and remove that tumor from the dataset for the given genotype. We 
used the sgInert multiple transduction rate in TC mice for all genotypes and all 
mouse strains in all analysis and figures except Figs. 2 E and F and 3 H and I and 
SI Appendix, Figs. S2 B and C, S3 C and D, S4 E and F, S5 A and B, S6 D and E, S7 
A and B, and S8 A and B. This is logical, as multiple transductions should not be 
influenced by the sgIDs, sgRNA sequences, or mouse genotypes. Furthermore, 
we do not expect growth of tumors with Lenti-sgInert/vectors in TC mice, unless 
those initial cells have multiple transductions that occur with vectors with tumor 
suppressor gene targeting lentiviral vectors.

As an alternative method, we also quantified the multiple transduction rate for 
all genotypes of tumors separately and used that for multiple transduction cor-
rection (multiple transduction correction Method #2, see SI Appendix, Figs. S3C, 
S5B, and S8B). The results and conclusions were unchanged when we used this 
alternate multiple transduction correction method.

Statistical Analysis. All statistical analyses were performed using the R software 
environment. For all bar plots showing relative tumor size and tumor number 
and for fitness landscape plots, P values and 95% CIs (represented by whiskers) 
were calculated using bootstrap resampling (10,000 repetitions). Bootstrapping 
was done by random resampling with replacement of all the tumors in all of 
the mice of a given strain. When indicated in the figure legend and in cases of 
barplots showing tumor number, a nested bootstrap approach was used where 
first all the mice from a given strain were resampled with replacement, and then, 
all tumors in this virtual mouse cohort were resampled again with replacement.

Data, Materials, and Software Availability. Tuba-seq barcode sequencing data 
from the experiment in Figs. 1 and 2 have been previously deposited in NCBI’s 
Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) (GSE174393) 
(43). Tuba-seq barcode sequencing data from the experiment in Figs. 3 and 4 
have been deposited in NCBI’s Gene Expression Omnibus (GSE223678) (44).
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