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ABSTRACT: The effects and risks of microplastics correlate with
three-dimensional (3D) properties, such as the volume and surface area
of the biologically accessible fraction of the diverse particle mixtures as
they occur in nature. However, these 3D parameters are difficult to
estimate because measurement methods for spectroscopic and visible
light image analysis yield data in only two dimensions (2D). The best-
existing 2D to 3D conversion models require calibration for each new
set of particles, which is labor-intensive. Here we introduce a new model
that does not require calibration and compare its performance with
existing models, including calibration-based ones. For the evaluation, we
developed a new method in which the volumes of environmentally
relevant microplastic mixtures are estimated in one go instead of on a
cumbersome particle-by-particle basis. With this, the new Barchiesi
model can be seen as the most universal. The new model can be
implemented in software used for the analysis of infrared spectroscopy and visual light image analysis data and is expected to increase
the accuracy of risk assessments based on particle volumes and surface areas as toxicologically relevant metrics.
KEYWORDS: Microplastics, Image analysis, Particle volume, Volume estimation models, Toxicologically relevant metrics

■ INTRODUCTION
Our ability to accurately measure concentrations of micro-
plastic particles (MP) and their characteristics is a prerequisite
for monitoring spatiotemporal trends and risks of these
particles to human health and the environment.1−4 To date,
concentrations and characteristics of microplastic particles in
our living environment are mainly determined using
spectroscopic techniques.5,6 However, these techniques only
provide information about the particles in two dimensions
(2D), making it difficult to estimate properties that require all
three dimensions (3D), such as particle volume, mass, and
surface area.7 It is precisely these 3D properties that are
necessary to properly determine the transport, effects, and risks
of MP.8−11 For example, based on a growing body of evidence,
recent risk assessments assume that the volume of particles
ingested determines the risk posed by food dilution, whereas
the risk of MP from translocation-mediated effect mechanisms
is assumed to relate to the surface area of the particles.4,12−14

Here, the toxicological implications do not relate to the volume
and area of individual particles, but to the collective volume
and area of the bioavailable mixtures of particles as they occur
in the air we breathe, in our food and drinking water, and in
nature.3,4,15,16 Techniques that directly measure the properties
of 3D particles, such as Raman imaging or AFM, are currently
too labor intensive to be a viable option in the field of MP
studies. Therefore, until better tools are available to start using
those techniques more efficiently, it is crucial to accurately
estimate the surface area and volume of environmental MP

mixtures from 2D data. Only a very limited number of studies
focus on estimating 3D characteristics, such as particle volume,
based on 2D information and then verifying the findings with
measurements of that 3D property.17,18 These studies mainly
focus on evaluating the conversion from 2D to 3D information
for individual particles. As mentioned, for risk assessment, the
accuracy of estimating the volume or surface area of individual
MP particles is of little importance, while knowing those
characteristics for realistic mixtures of MP is more relevant, as
only these realistic mixtures are found in the routes of exposure
for humans and other biota. The accuracy of converting 2D
data to 3D metrics for environmental MP mixtures has been
provisionally evaluated by the work of Primpke et al. (2020),19

Tanoiri et al. (2021),17 and Isobe et al. (2019),20 but there are
reasons to believe that the efficiency and accuracy of these
estimates can be improved. For instance, relative errors will be
smaller when larger particle numbers and masses are
considered. Second, model inaccuracies that could be
detectable on the individual particle level could cancel out
when concerning higher particle numbers. Additionally, a
wider range of measuring methods is available when assessing
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the bulk of a sample rather than a single small particle. Finally,
the 2D−3D conversion methods published so far apply models
containing empirical parameters calibrated on limited sets of
data.17,20,21 This means that it cannot be assumed that the
models have universal character. At the moment, they require
recalibration for each new set of particles the models are
applied to, which is labor-intensive. Two models do not
require calibration,18,22 but these have hardly been verified.18,19

The question is whether modeling approaches are possible that
do not require calibration and still come close to the accuracy
that can be achieved with calibration-based models.

This work aims to further develop and validate mathematical
models required for the conversion of 2D data to 3D
parameters necessary for fate, effect, and risk assessment of
environmentally relevant MP. The special aim of the latter is to
avoid parameters that need calibration so that a potentially
more universal model is obtained. Our second aim is to
develop a new measurement method to estimate the collective

volume of a mixture of environmentally relevant microplastic
particles to evaluate existing and new models for the
conversion of 2D to 3D data. We use volume displacement
and pycnometer measurements to obtain volume data for
various mixtures of individual MP, varying in shape, size,
degree of weathering (surface roughness), and polymer type.
Subsequently, existing models are evaluated and compared
with the results of a new model that does not require
calibration. The reliability of the models is thus evaluated on
the “collective” volume of environmentally realistic MP in all
its dimensions.

■ MATERIALS AND METHODS
General Research Approach. Environmentally realistic

MP (500−5000 μm) from Singapore and Netherlands beaches
were used in this study. The mixture was divided into three
categories (“Primary MP”, “Secondary MP”, and “Fibers”)

Table 1. Overview of Models to Estimate Particle Volume from Two-Dimensional Metrics, Such As Area or Sizea

aV = volume, A = area retrieved from 2D image analysis, M = major axis of the best-fit ellipse, m = minor axis of the best-fit ellipse, PMP = perimeter
of the MP from the 2D image, ki = model calibration parameter. A more detailed explanation of how to use these models is provided as Supporting
Information
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based on MP shape. The categories “Primary MP” and
“Secondary MP” were divided into two size groups: 1−2 mm
and 2−5 mm by sieving. We assume that, for particles with
equal spatial orientation, the conversion of 2D to 3D data after
scaling on the dimensions of the particles is independent of
those dimensions, just as the algorithm for conversion from
radius to the volume of a sphere is the same regardless of the
size of the sphere. Model calibration can then take place with
easily measurable particles, but smaller and larger particles are
also in the application domain. Three subsamples (batches)
were taken for each group of each category. Three more
subsamples with a lower number of MP per group (number of
MP < 30) were also randomly selected for the categories
“PrimaryMP” and “SecondaryMP” to evaluate the relevance of
the number of MP on the collective volume estimate. It was
not possible to apply the same reasoning to fibers, due to
difficulties in volume measurement. All these subsamples were
then photographed and image analyzed to retrieve the 2D
information. Their collective volume was then measured either
with a pycnometer or by using a new method (see section
Measuring Volumes of Diverse Microplastic Mixtures) for
mixtures of particles too large to be analyzed by a pycnometer.
Existing models from the literature were reviewed and
evaluated concerning their ability to describe the data. A
new model for improved estimation of volume is proposed.
The model performances were statistically compared by
applying the F-test.

Overview of Approaches to Estimate Volume from
Two-Dimensional Information. The strategy followed so
far to estimate the volume of MP particles from 2D data is
based on mathematical models. Here, we briefly discuss the
main models used in the literature (Table 1).
Cozar Model. The geometric model by Coźar et al.

(2014)21 assumes that the particles are cubic with equal
sides with length L and a particle depth, or height: H = Kc × L
The value for Kc was set to 0.1.21 The model has been
developed to estimate the volume of ocean plastic MP and to
compare it with measured data from ocean plastics, measuring
0.3−100 mm.21

Isobe Model. Isobe et al. (2019)20 modeled the particles as
cylinders with a diameter equal to the particle length. Height
(H) is assumed to be proportional to the length (L) by an
adjustable shape factor between 0 and 1. This factor was
estimated as KI = 0.4 from calibration against field data
obtained during their study. The study aimed to estimate the
abundance of nonconservative microplastics in the upper
ocean in the size range of 0.2−5 mm.
Medina Model. Medina Faull et al. (2021)18 proposed a

model that assumes MP to be spherical with a diameter equal
to that of a circle that has the same area as that of the particle
in 2D (equivalent sphere diameter, ESD). Modeled volumes
were compared with data obtained by Raman Imaging, for 31
particles, in a size range of 1 to 200 μm. The results were
accurate with an R2 of measured vs estimated volume of 99%.
Simon Model. The most used model is that of Simon et al.

(2018).22 Three assumptions are at the core of the model.
First, the particles are assumed to have an ellipsoidal shape,
with the major and minor axes on the XY plane calculated from
the ellipse that best fits the particle projection on the XY plane
(equivalent ellipse from the 2D area obtained by image
analysis). Second, the particles are assumed to lie at their
lowest energy state (therefore the Z-direction axis is the
smallest dimension). Third, the asymmetry of the ellipsoid in

the ZY plane is assumed proportional to that in the XY plane
hence the axis in the Z direction (i.e., particle height “H”) is
assumed to be in the same ratio to the 2D minor axis (“W” for
width), as the 2D minor axis is to the 2D major axis (“L” for
length) (i.e., H/W =W/L). The model was developed for mass
balance in a wastewater treatment plant, for particles ranging
from 10−500 μm. No validation was run.

Tanoiri Model. Tanoiri et al.(2021)17 applied the Simon
model for large MP in the range of 1 to 5 mm, with a twist.
They used two groups of MP, one for calibration and one for
validation. The z-axis (particle depth or height) was estimated
as a function of the major or minor axis of the best-fit ellipse.
The function was derived with different empirical parameters
for differentMP groups. TheMP groups were defined based on
their shape and chemical characteristics. Due to the particle-
specific calibration, good results were obtained with a total
estimated mass deviating at most 3% from the actual mass of
the MP sample used for validation. The model was applied to
MP samples from a tidal flat at the mouth of the Tsurumi River
(Japan). The calibrated parameters for calculating the z-axis of
the ellipsoid for the MP groups referred to as “fragments” and
“PE/PP pellets” by Tanoiri et al. (2021)17 were also used in
our present study. The work of Tanoiri et al. (2021)17 also
presents the first attempt at model comparison. However, they
assess model reliability for mass, for MP in the 1−5 mm range,
first measuring the mass of each particle individually.

Barchiesi Model. Here we present a new model based on
the Simon model with an additional correction factor for
surface irregularity. The correction factor is based only on the
2D information and does not require calibration with
measured volume data (more details are in the following
section).

The model trialed for fibers is that of Simon et al. (2018)
which assumes a cylindrical shape and a 40% void fraction. The
one proposed by Tanoiri et al. (2021)17 was not implemented
due to the poor performance already shown by Tanoiri et al.
(2021).17 The model proposed by Mintenig et al. (2020)23

that assumes a fixed fiber width of 15 μm was also not
implemented being out of the size range studied.

Volume Estimation from 2D Features without the
Need for Calibration. All of the models proposed and
described in the previous section theoretically require
calibration, except for the Medina and Simon model. All of
the parameters of the Medina and Simon model can be
retrieved from the 2D images, while the other models require a
“best fit” evaluation with measured volume data. However, this
is not always possible or practical. Further conceptual model
improvements can be made based on already-known model
imperfections. For instance, it has been reported that the
Simon model consistently overestimates MP volume or mass,
especially for larger particles.17,19 The Simon model accounts
for particle asymmetry regarding the major dimensions, that is,
inequality of length, width, and/or height. However, there is a
surface irregularity that remains unaccounted for. For instance,
there is a residual lack of fit because the best-fit ellipse does not
capture the actual irregularity in the 2D perimeter. If this
irregularity exists in all three dimensions, then it will also affect
the correctness of the estimated third dimension: particle
depth. These irregularities at the surface relate to possible
microvalleys, cracks, or -pores that are known to exist but are
not detectable through 2D imaging.24−26 In 2D we only see a
cross-section through micropores or valleys in the surface,
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whereas such cracks are not detected in 2D as long as they do
not reach the perimeter.

Here we assume that the extent to which those irregularities
exist in the 2D plane is quantified by the ratio between the
best-fit ellipse perimeter, computed by the first Ramanujan
approximation,27 and the actual perimeter of the MP observed
in the image, and as provided by ImageJ.28 Realizing that these
2D irregularities are reflections of micropores and cracks that
exist in 3D, this unitless correction factor should be applied to
the three space dimensions and therefore is calculated to the
power three (Barchiesi model, Table 1). The correction factor
becomes less relevant as the MP is more regular. When the
particle 2D area is a perfect ellipse or circle, the correction
factor is equal to 1. This refined model is termed the Barchiesi
model (Table 1), and the volume estimate VBarchiesi can be
summarized as VBarchiesi = Cf × VSimon. The model equation is
shown in equation 1, where “M” and “m” are the best-fit ellipse
major and minor axes, respectively, and PMP is the best-fit
ellipse perimeter of the MP particle. Here, the first term refers
to the correction factor (Cf) that accounts for surface
irregularity, whereas the other terms represent the volume of
a perfectly regular ellipsoid as proposed by Simon et al.
(2019)22 (Table 1).
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Diverse Environmentally Realistic Microplastic Sam-
ples Used for Model Evaluation. Beached marine micro-
plastic particles were collected in Singapore (Changi Beach)
and The Netherlands (Hoek van Holland Beach). The plastic
was sorted visually in the laboratory of Wageningen University
by using forceps, and organic matter was removed. Separation
of polymer versus nonpolymer particles was done visually,
assisted by ATR-FTIR Spectroscopy (Agilent Cary 630).
Additionally, expanded polystyrene (EPS) was removed via
flotation in ethanol. Due to the origin of the particles, they
represented an environmentally relevant and diverse mixture,
especially in terms of particle size and shape. MP were
fractionated by size using squared mesh sieves of 1 mm, 2 mm,

and 5 mm. These fractions were subsequently divided into
primary and secondary MP based on their shape: circular and
pellet-shaped MP were categorized as “Primary MP”, whereas
irregularly shaped MP were categorized as “Secondary MP”.
Fibers were separated into a third group, which was not further
fractionated concerning size. Primary MP were found only in
the size fraction 2−5 mm. Three subsamples (batches) were
taken from each size group of Primary and Secondary MP and
from the fiber group to perform image analysis in triplicate
(next section). The mass of MP for each batch varied in the
range: 5.7−7.0 g for primary MP, 4−4.4 g for secondary MP in
the size range 2−5 mm, 0.72−0.84 g for secondary MP in the
1−2 mm range, and 0.015−0.018 g for fibers. The number of
particles varied between 200 and 325 particles.

Additionally, three to four MP were randomly selected for
the size fraction between 2 and 5 mm or 16 to 30 for the size
fraction between 1 and 2 mm. These are termed the “small
samples”. These “small samples” were taken to evaluate the
relevance of the number of MP on the collective volume
estimate. All analyses were carried out in triplicate. Moreover,
to analyze reproducibility, three “throws” were run for each
batch. A “throw” is one deposition of MP on black carton,
followed by Image analysis (see section “MP 2D character-
istics”). The deposition of the particles was obtained by
carefully shaking a small jar containing the particles close to
the black carton until all of the particles were out and the jar
emptied.

Theoretically, throws can lead to different results if particles
are positioned differently while using the same mixture of
particles. However, if the particles are always in their lowest
energy state, with always the same Z-axis as the shortest
dimension, minimal differences can be expected. Fibers were
only thrown once due to their easy embrittlement.

From here onward, we refer to primary MP in the size range
of 2−5 mm as ‘P25’, secondary MP in the size range of 2−5
mm as ‘S25’, and secondaryMP in the size range of 1−2 mm as
‘S12’. Small samples are referred to as P25small, S25small, S12small
according to size. The triplicates (batches) are from now on
indicated by the index “i”, and throws (T) by the index “j”: e.g.,
the results from the “jth” throw of the “ith” replicate (batch) for
group P25 is indicated as Ti,jP25, as shown in Figure 1.

Microplastic 2D Characteristics. The 2D data were
acquired from the image analysis of high-resolution pictures of
the MP. The pictures were taken with a 24.2 megapixel high
resolution camera (Nikon D3200), positioned on a sturdy

Figure 1. Subsampling and data organization (pictures not in scale). Code explanation: ‘P25’ primary MP in the size range of 2−5 mm, ‘S25’
secondaryMP in the size range of 2−5 mm, and ‘S12’ secondary MP in the size range of 1−2 mm. Small samples are referred to as P25small, S25small,
S12small according to size. Only one throw was performed for fibers batches.
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tripod, with a 35 mm or 105 mm focal length Nikon lens
(depending on MP size), at ISO 200, using exposure times and
aperture selected to accommodate the different light
conditions during the day. Lens distortions, if any, were
automatically corrected in-camera. The MP was scattered on a
black carton. Picture postprocessing was done with the
program NX Studio, openly available by Nikon.

The pictures were then analyzed with ImageJ.28 We
developed a new macro that integrates the image thresholding
plug-in with the image analysis plug-in to retrieve the 2D
parameters area, perimeter, and length. Image quality was
monitored by including a ruler and a reference object as an
internal standard in each image. The image analysis process
was modified for the analysis of fibers, to include the use of the
plug-in “ridge detection”.29,30

2D MP characteristics were derived from the particle
dimensions given by the ImageJ plug-in “analyze particles”
(Figure 1).28 The dimensional parameters acquired are “Area”,
”Perimeter”, “Major axis”, “Minor axis”, and “Feret diameter”.
“Major axis” and “Minor axis” represent the major and minor
axis of the best-fit ellipse, which correspond to the parameters
used by Tanoiri et al. (2021)17 (Figure S1 and S2). The Feret
diameter is the longest distance between two points along the
particle perimeter. Other parameters taken into consideration
for MP characterization and comparison are the nondimen-
sional “Circularity” and “Aspect Ratio”. Circularity corresponds
to 4π × area/perimeter2 and Aspect Ratio is the ratio between
the Major and the Minor axis of the best-fit ellipse (Figure S2).
For all of the other parameters included in the models (ki,
Table 1), the best-fit parameters obtained by the different
studies presented in the section Overview of Approaches to
Estimate Volume from Two-Dimensional Information were
used. For particle “length”, the Major axis of the best-fit ellipse
was used, following Tanoiri et al. (2021).17

The length and width of the fibers were obtained by the
“ridge detector” plug-in in ImageJ.30 The Spearman correlation
coefficient was used to evaluate the relation between the Feret
Diameter and Circularity or Aspect Ratio.

Measuring Volumes of Diverse Microplastic Mixtures.
The volume of the MP mixtures was measured by two different
methods, depending on the size and number of particles. A
pycnometer (Ultrapyc 1500e by Quantachrome) was used to
measure the collective volume of diverse particle mixtures in
the size range of 1−2 mm, fibers, and small samples. The
batches of diverse MP in the size range of 2−5 mm were not
analyzable by the pycnometer since they were too big.
Therefore a new method was developed. For these large
particle samples, the collective volume was assessed by weight
differences as follows. The weight (W1) of a volumetric flask
filled with exactly 25.0 mL (V1) of ethanol was measured.
Subsequently, in the same but empty flask, MP with known
weight (WMPs) were added. Then, ethanol was added until a
total (MP plus ethanol) volume of 25.0 mL was reached (V2).
A narrow flask was used such that V1 can be assumed to be
equal to V2, within acceptable error limits. The weight of the
flask with MP and ethanol is measured (W2). The volume of
MP was calculated from (detailed explanation provided as
Supporting Information, Figure S3):

=V
W W W( ( ))

MPs
MPs

et

1 2

(2)

in which, ρet is the density of ethanol. Ethanol was selected as
the liquid of choice due to its lower density than most MP (ρet
= 0.81 g/cm3, ethanol 96% acquired from VWR) which
prevented the MP from floating at the surface. Furthermore,
ethanol has a lower surface tension compared to water, which
facilitates the release of air bubbles that may be present in the
cracks of the MP and between the MPs and minimizes the
occurrence of air pockets in and on the particles.

To maximize reproducibility, a narrow volumetric flask was
used. The weights were measured with an analytical balance of
±0.0001 g precision at constant room temperature. The weight
of the volumetric flask filled with ethanol and MP was taken
after sonication for 15 min, to get rid of air bubbles possibly
embedded at or within the MP. The volumetric flask was then
left at rest for 30 min to return to room temperature (same
temperature as the previous W2 weight measurements).

Quality Assurance for the New Protocol for Volume
Measurement and Image Analysis Automation. The
reliability of the new volume measurement protocol was
checked by testing the replicability of the volume measurement
to validate the underlying hypothesis that V1 = V2. The weight
of a 25.0 mL volumetric flask filled with ethanol was measured
ten times, each time emptied and refilled. Moreover, the
collective volume of glass spheres of 2 mm diameter was also
measured both with the pycnometer and with the new protocol
developed for particle volume measurement. These verification
measurements were run in triplicates. The standard deviation
of the 10 replicates of the weight measurements for the
replicability of the volume acquisition was 0.016%, which is
considered very good for the scope of this study. The
difference between the glass spheres’ volume measurements
run with the pycnometer and with the new ethanol volume
displacement method, was less than 2%. The stability of the
setup for picture acquisition was verified by including a
reference object in each picture, as mentioned. The results of
the automated image analysis were considered acceptable if the
min−max difference of the measurement of the Area of the
reference object was less than 1%. In all other cases, each
image was processed singularly. The resolution was 18.5−19.2
pixels/mm for the 35 mm focal length and 42−44 pixels/mm
for the 105 mm focal length camera lens. All the data were
processed using R Studio or Microsoft Excel.

■ RESULTS AND DISCUSSION
General Characteristics of the Studied Beached

Plastic Particles. The sizes and shapes of the studied
particles were highly diverse, with major axis lengths ranging
from 30 μm to 22 mm, aspect ratios ranging from 1 to 13, and
circularities ranging from 0.05 to 1 (Figure S4). Circularity
decreased, whereas aspect ratio increased with increasing Feret
diameter (Figure S4B, S4C), demonstrating that the smaller
particles were more rounded, which was found earlier for
marine plastic particles.31 Because full and accurate determi-
nation of polymer identity is not necessary for our goal of
estimating particle volumes from 2D image data, this was
limited. The main two polymers detected by ATR-FTIR on a
subsample of 54 particles were PE and PP (33% and 67%,
respectively).

Performance of Models to Estimate MP Volume from
2D Image Analysis Data. The volumes measured by the
pycnometer and by the newly developed protocol are
compared to the modeled volumes based on measured particle
dimensions in 2D (Table 1). The comparison considers the
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performance per group, per batch, and variability among
throws. The performance of the models is evaluated using F-
tests.
Barchiesi Model versus the Best Calibration-Based Model.

We compared the performance of the calibration-based models
with that of the calibration-free Barchiesi model. As
mentioned, the calibration parameters are used as reported
in the studies that proposed the models. Overall, the best
performance is recorded for the Barchiesi model (present
study), followed by the Tanoiri model and then the Simon
model. The performance of all the models tested is provided in
Table 2.

Details on the two best-performing models, the Barchiesi
and Tanoiri models, are reported in Table 3. The results

confirm the ellipsoid as the best generic shape category for MP
for the size range studied, albeit with the additional surface
heterogeneity correction available only in the Barchiesi model.
We observe that the Simon model overestimates particle
volume up to 57%, which is in agreement with earlier
findings17,19 (Table 2).

The calibration-free Barchiesi model performed well for the
groups P25, S25, and S12, showing a group means Vmodeled/
Vmeasured ratio in the interval [0.99−1.06] (Table 3). The
performance of the Barchiesi model was also good on group
mean for the samples with a lower amount of particles (MP n°
3−4 for P25small, S25small, and 26−33 for S12small), with a

Vmodeled/Vmeasured ratio in the interval 0.86 to 0.87. The results
per batch show Vmodeled/Vmeasured always in the interval 0.9−1.1
for the samples with many MP, except S12_B1 which records
an overestimation of 20%. In the case of the small samples, the
Vmodeled/Vmeasured per batch ranges from 0.57 to 1.27 (Table 3).

The Tanoiri model performed well for groups P25, S25, and
S12, showing a group means Vmodeled/Vmeasured ratio in the
interval 0.98−1.02 (Table 3). However, the accuracy dropped
for secondary MP samples with few MP, showing a Vmodeled/
Vmeasured ratio in the interval from 0.70 to 0.91. The results per
batch show Vmodeled/Vmeasured always in the interval 0.9−1.1 for
the samples with many MP. Regarding the small samples, the
Vmodeled/Vmeasured per batch ranges from 0.63 to 0.96 (Table 3).

The standard deviation for the Vmodeled/Vmeasured ratio among
batches per group is usually higher for small samples (Table 3).

Among the two best-performing models, Tanoiri and
Barchiesi, the latter shows a slightly higher variability (Table
3). This means that the error per single batch might be
somewhat higher, although on average it performs very well.
The higher variability might be because there are no fixed
(calibrated) parameters.

For the standard deviation among throws, the Barchiesi
model shows a higher range compared to the Tanoiri model,
with the smallest relative standard deviations of 0.38% up to
10.35%, while this range is 0.47%−2.55% for the Tanoiri
model (Table S1). On this basis, there is therefore no clear
preferred model. For the Barchiesi model, the highest
variability values are recorded for the small samples, which
can be explained in various ways. For instance, the Tanoiri
model may be less sensitive to the particle orientation, which is
a disadvantage if such differences exist. Another relevant aspect
is the performance of the image thresholding algorithm, which
might characterize the dimensions of MP differently if darker
spots are present on different sides of the particle. However,
the high particle number samples have a multiple throw
standard deviation that is always less than 3% for both models
(Table S1; Figure S5). Therefore, estimating the volume on a
larger number of particles is more reliable, also taking into
account the different possible orientations of the MP particles
on the 2D plane and the performance of the image analysis
algorithm.

The performance of the models decreased slightly with
decreasing size for secondary particles, as we observed a higher
standard deviation among batches for both the Tanoiri and the
Barchiesi model. However, the performance on average is still
in the Vmodeled/Vmeasured range of 0.9−1.1 which confirms that

Table 2. Results of Models Performance for MPs Volume Estimate as Average and Standard Deviation per Group of Vmodeled/
Vmeasured

Table 3. Quality of the Tanoiri and the Barchiesi Models in
Estimating Particle Volume, Expressed As the Ratio of
Modeled and Measured Volume, Shown Per Batch (Average
of Throws), with the Mean and Standard Deviation among
Batchesa

aA ratio of 1 represents a perfect fit of the model to the measured
data. “P” Primary MPs, “S” secondary MPs, “small” refers to samples
of few particles (no. 3−16), “12”−“25” are the size range [1−2] mm
and [2−5] mm respectively, as determined by sieving.
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the 2D−3D conversion is independent of particle size, for the
size range studied.

The relative performance of the two best-performing models
was further assessed statistically by testing the statistical
significance of the difference in residual errors of the modeled
volumes (Vmodeled). Because the number of repetitions was low
(three throws), the data was assumed to be normally
distributed rather than that this could be formally demon-
strated. Note that this does not necessarily disqualify the
evaluation, as this can be compensated for by using a stricter p-
level (see below).

The Barchiesi model did show a statistically significant
better performance only for one batch in group S12small,
whereas the Tanoiri model shows a statistically significant
better performance only for one batch in group P25 (α < 0.05)
(Table S3). To reduce the chance of Type II error due to the
lack of demonstrated normality of data, the test was also run
with α < 0.1. In this case, the results of the F test show a
significantly better performance of the Barchiesi model, again
only for one batch of group S12small (α < 0.1) (Table S3).
Instead, the Tanoiri model showed a significantly better
performance in two batches of the group P25 and one batch
P25small (α < 0.1) (Table S3). However, in 88%, i.e., 31 of the
36 cases, neither model is preferable based on statistical criteria
(Table S3). Therefore, it can be concluded that the Tanoiri
model with the original calibrated parameters and the Barchiesi
model without calibration parameters, have comparable
performance in terms of the volume estimation of the particles
analyzed in the present study.

The main difference between the two models is that the
Tanoiri model contains a parameter that must be calibrated.
Calibration is labor-intensive, especially if it is performed
particle by particle. The good performances of the Tanoiri
model for the particles used in the present study may also
relate to the similar origin of the particles. The MP studied
were, in both cases, beached MP, which might have been
subdued to the same weathering processes and therefore show
similar characteristics. This might not be the case for MP in
other environmental compartments, for which specific
calibration is due. However, the Barchiesi model only contains
metrics derived from the 2D image analysis, has fewer, i.e., no
calibration parameters, and, per Occam’s razor, can therefore
be considered as the more universal and preferred model.
Nevertheless, we recommend further testing of this claim.
Performance after Recalibration of Available Models. As

mentioned, several of the evaluated models (Table 1) need to
be calibrated to perform well. However, calibration is often a
cumbersome and time-requiring step, especially if done on a
particle-by-particle basis. We recalibrated the models based on
the present collective volume data and compare the outcomes
with the original parameter values (Table 4). The optimization

was run on the results of each throw of each batch for every
group. The Barchiesi model is not included because this model
does not have calibration parameters.

It appears that for the Tanoiri model, there is a reasonably
good agreement between the original and the reoptimized
parameter values, for four of the six particle mixtures, with a
maximum relative standard deviation of 14% (Table 4).
However, for the Cozar and Isobe models, there are large
differences between the original and the reoptimized parameter
values, while the relative standard deviation is higher: up to
25%. These models thus require recalibration for each new
data set, and their universal character is limited. Even within
the same data set of particles, the optimal value for each throw
varies significantly. This variation suggests the chance of
significant error if the parameters are estimated for the whole
data set from just one throw. Consequently, we recommend
aiming for universal models as much as possible.

Regarding fibers, the model proposed by Simon et al.
(2018)22 performed very well for two of the three samples,
with a ratio of Vmodeled/Vmeasured of 1.07 and 1.1. However, the
third sample showed an overestimation of about 45%. It should
be noted that the measured volume of the fibers is much lower
than the calibration volume for the pycnometer (0.01 vs 0.08
cm3). Therefore, the reliability of the measurement may not be
optimal. Nevertheless, we present the results here for
completeness, and they may be helpful for the future
development of methods for fiber volume estimate validation.

Implications and Outlook. We evaluated available
models to convert 2D Image analysis data into estimates of
the volume of realistic MP particle mixtures. Among the
models evaluated, the best results in the size range analyzed are
offered by those assuming an ellipsoidal shape as the best fit for
the MP shape. The new Barchiesi model, which also accounts
for irregularities in the ellipsoidal surface, showed a remarkably
good fit for the particles studied. This is notable, as it does not
require calibration, making it a relatively more universal model
yet provides as good an approximation of measured particle
volumes as the best available calibration-based model. It also
removes the overestimation of the particle volume, which was
often observed with the existing parameter-free model by
Simon et al. (2018).22 Although we validated the model using
a wide variety of environmentally relevant particles, we
emphasize that the Barchiesi model is more universal than
the other models only for the mixtures and types of particles
studied here. The other models are also valuable, and it cannot
be ruled out that they may work better in some other
situations, for example, with individual particles. We also
recommend further testing of the model, especially for smaller
size classes. Our new and improved methods to measure and
estimate the volume of microplastic mixtures based on 2D
image analysis data can be incorporated into image analysis or

Table 4. Results of the Parameter Optimization for the Tanoiri, Cozar, and Isobe Modelsa

a“Original parameters” relates to the reference value indicated by the authors in the original work.
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IR spectroscopy data analysis software and can be used for the
refinement of fate, effect, and risk assessments.
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