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ABSTRACT: Developing advanced onsite wastewater treatment
systems (OWTS) requires accurate and consistent water quality
monitoring to evaluate treatment efficiency and ensure regulatory
compliance. However, off-line parameters such as chemical oxygen
demand (COD), total suspended solids (TSS), and Escherichia coli
(E. coli) require sample collection and time-consuming laboratory
analyses that do not provide real-time information of system
performance or component failure. While real-time COD analyzers
have emerged in recent years, they are not economically viable for
onsite systems due to cost and chemical consumables. This study
aimed to design and implement a real-time remote monitoring
system for OWTS by developing several multi-input and single-
output soft sensors. The soft sensor integrates data that can be
obtained from well-established in-line sensors to accurately predict key water quality parameters, including COD, TSS, and E. coli
concentrations. The temporal and spatial water quality data of an existing field-tested OWTS operated for almost two years (n = 56
data points) were used to evaluate the prediction performance of four machine learning algorithms. These algorithms, namely, partial
least square regression (PLS), support vector regression (SVR), cubist regression (CUB), and quantile regression neural network
(QRNN), were chosen as candidate algorithms for their prior application and effectiveness in wastewater treatment predictions.
Water quality parameters that can be measured in-line, including turbidity, color, pH, NH4

+, NO3
−, and electrical conductivity, were

selected as model inputs for predicting COD, TSS, and E. coli. The results revealed that the trained SVR model provided a
statistically significant prediction for COD with a mean absolute percentage error (MAPE) of 14.5% and R2 of 0.96. The CUB model
provided the optimal predictive performance for TSS, with a MAPE of 24.8% and R2 of 0.99. None of the models were able to
achieve optimal prediction results for E. coli; however, the CUB model performed the best with a MAPE of 71.4% and R2 of 0.22.
Given the large fluctuation in the concentrations of COD, TSS, and E. coli within the OWTS wastewater dataset, the proposed soft
sensor models adequately predicted COD and TSS, while E. coli prediction was comparatively less accurate and requires further
improvement. These results indicate that although water quality datasets for the OWTS are relatively small, machine learning-based
soft sensors can provide useful predictive estimates of off-line parameters and provide real-time monitoring capabilities that can be
used to make adjustments to OWTS operations.
KEYWORDS: onsite wastewater treatment system, machine learning, soft sensor, water quality, wastewater monitoring

1. INTRODUCTION
Onsite wastewater treatment systems (OWTSs) serve at least
20% of residences in the United States, and many developing
countries rely on onsite systems to an even greater extent.1

Traditional OWTSs, such as septic tanks, cesspools, subsurface
infiltration systems, aerobic treatment units, and sand filters,
have been used as reliable sanitation systems for decades. More
recently, advanced treatment technologies, such as electro-
oxidation and membrane bioreactors, have been applied as
OWTSs.2 Although modern OWTSs are highly effective at
wastewater treatment, older systems and ones lacking adequate
maintenance have been linked to nutrient pollution of ground
and surface waters along with pathogen outbreaks.3−5 For

OWTSs, water quality parameters and pathogen measurements
require manual sampling, transport, and lab analyses, which are
both costly and time-consuming. Moreover, monitoring
multiple sites for these parameters can be expensive, potentially
leading to delayed detection of system failure and undetected
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contamination of the surrounding environment.6 It is crucial to
develop novel monitoring solutions for OWTSs that enable
significant reductions in sampling and analysis costs as well as
provide emergency notifications to the responsible parties
during performance deficiency events. These steps are needed
to ensure that public and environmental health are protected
from harmful contaminants.

Most large-scale wastewater treatment plants (WWTPs)
have in-line water quality sensors, such as pH, dissolved oxygen
(DO), temperature, oxidation−reduction potential (ORP),
electrical conductivity (EC), and turbidity to monitor
treatment efficacy, stability, and process control and to identify
process abnormalities.7−9 Advancements in sensor technolo-
gies have made the real-time estimation of relevant ions in
WWTP processes, such as nitrate (NO3

−) and ammonium
(NH4

+), possible with the use of ion-selective electrodes.
However, parameters such as chemical oxygen demand
(COD), total suspended solids (TSS), and pathogens still
lack a reliable and cost-effective in-line sensor equivalent.
Although analyzers and spectral absorbance-based instruments
for COD and TSS exist, these tools have time delays and
require frequent maintenance when exposed to the high
loading rates of organics, metals, and salts that make up
wastewater.10−12 This burden can be eliminated by incorporat-
ing additional equipment, such as compressors, that provide
automated blasts of compressed air to remove biofilms on the
sensor surface.13,14 However, most analyzers have limitations
on sample concentration and quality. For example, one
commercial in-line COD analyzer can only measure a fixed
concentration range between 40−500 mg/L and the TSS in
the water sample cannot exceed 0.1 g/L.13 Due to the high
capital, maintenance, and chemical costs associated with in-line
analyzers, along with the measurement limitations imposed by
interference restrictions, their use is primarily confined to large
WWTPs. Consequently, these analyzers become extremely
cost-prohibitive for smaller facilities like OWTSs.

Most recently, significant progress has been made in the
development of data-driven modeling approaches for waste-
water treatment process control and monitoring using artificial
intelligence-based methods such as machine learning (ML).
Data-driven soft sensors use a combination of real-time data
inputs and mathematical models to estimate complex
parameters when the correlated parameters can be measured
in real-time. Studies have highlighted the potential of soft
sensors to predict challenging off-line parameters in
WWTPs.15−19 These studies include soft sensors for
monitoring floc size to control coagulant dosage,20 monitoring
of Escherichia coli (E. coli) concentrations,21 monitoring the
COD and TSS of restaurant effluent,22 and predicting
treatment efficiency.23 However, these studies have all focused
on centralized WWTPs, while OWTS has been largely
neglected. The challenge of applying soft sensors to OWTS
is largely due to the infrequency of data collection. WWTPs
have the advantage of frequent data collection, whereas data
collection for OWTSs is often infrequent and limited due to
financial constraints and challenges in accessing remote
locations. OWTSs may be sampled only 1−4 times a year
depending on local regulations,24,25 while some advanced
OWTSs may be sampled only once every five years.26

Although there is no minimum dataset size for soft sensor
development, large data sets generally enhance the prediction
robustness of ML algorithms. In cases where dataset size is
limited, the selection of a suitable dataset that encompasses a
diverse range of operations and features becomes crucial. This
enables the algorithms to capture a wider spectrum of patterns
and relationships that may otherwise fall beyond their typical
boundaries.27,28

In this study, two years of water quality data from an
advanced OWTS operating in a South African informal
settlement was used to develop data-driven soft sensors. The
field trial data were used to train the ML regression algorithms,
which were developed to predict off-line water quality
parameters, including COD, TSS, and E. coli. By estimating

Figure 1. Process schematic for the NEWgenerator and the five sampling points for each treatment step (Influent, AnMBR, Permeate, Post-NCS,
and Effluent). The modules inside the dashed line were housed in a shipping container.
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these off-line parameters, operators can make predictions of
the quality and safety of their effluent and allow for early
detection of process abnormalities. The study utilized the
water quality parameters from the OWTS dataset to train and
evaluate four ML regression models, namely, partial least
square regression (PLS), support vector regression (SVR),
cubist regression (CUB), and quantile regression neural
network (QRNN). The performance of each ML algorithm
was evaluated for predicting COD, TSS, and E. coli
concentrations independently as a multi-input and single-
output soft sensor, with one model developed for each
parameter. The spatial prediction performance was also
assessed across the four treatment processes used within this
specific OWTS, including anaerobic digestion, ultrafiltration,
adsorption, and electrochlorination. A discussion is presented
on the overall performance and limitations of the ML model
prediction and gives suggestions to further enhance the
prediction power of soft sensors for remote OWTS
monitoring.

2. MATERIALS AND METHODS

2.1. System Configuration
The water quality data used in this study was obtained from an
existing field-tested OWTS called the NEWgenerator (NG), which is
operated at an informal settlement in the eThekwini Municipality of
South Africa to treat blackwater and yellow water for almost 2 years.
The system design, experimental conditions, operation, and perform-
ance have been described by Shyu et al.29 and Castro et al.30 In
summary, the system comprised of three main treatment processes: an
anaerobic membrane bioreactor (AnMBR), a nutrient capture system
(NCS), and an electrochlorinator (Figure 1).

2.2. Field Water Quality Data Collection
Water quality results were sampled from the five sampling points of
the NG, including system influent (Inf), AnMBR, permeate (Perm),
post-NCS (P-NCS), and effluent (Eff). Each sampling point was
sampled on a weekly basis, unless otherwise noted (Table S1). During
the field test, sampling and analysis followed standard methods
described by the American Public Health Association.31 Seven water
quality parameters conventionally available for in-line measurements
were selected for the development of three soft sensor models to
predict TSS, COD, and E. coli. The water quality parameters used
included NH4

+, NO3
−, pH, EC, turbidity, color, and temperature. The

parameters COD, TSS, NH4
+, and NO3

−, were measured according to

Methods 5220D, 2540D, 4500-nh3, and 4500-no3, respectively. E. coli
was measured using the Quanti-Tray system (IDEXX, Quanti-Tray
2000, USA) with a detection limit of 1 MPN/100 mL. As most of the
E. coli data for the Eff and P-NCS samples were below the detection
limit (BDL), omitting these observations would reduce the prediction
accuracy of the soft sensors. Therefore, a substitution method was
used to input the BDL data into the regression model. This method
replaced the BDL data with a value of 1 MPN/100 mL, which in
practice has no significant difference with the true unknown values.
The pH and EC were measured with a multi-parameter probe (Hach,
HQ40D, USA). The color and turbidity of the water samples were
measured with a colorimeter (Hach, Color Test Kit Model CO-1,
USA) and a turbidimeter (Hach, 2100Q IS, USA). Temperature was
measured with an in-line sensor (HOBO, S-TMB-M002, USA) and
included the daily average ambient air temperature and the daily
average temperature in the AnMBR.

2.3. Statistical Analyses for Water Quality Data
During the field trial, the NG did not operate continuously due to
maintenance events and holidays that caused some system shutdowns
and restarts. The summer vacations during December of 2018 and
2019 and the NCS maintenance performed in August 2019 and
January 2020 caused prolonged shutdowns of the NG. A detailed
description of all events can be found in Castro et al.30 In total, water
quality data for 56 weeks were available for model development and
testing. Welch’s t test was used to identify non-steady state water
quality data of individual parameters by selecting two consecutive data
points after each significant restart event. In addition, a z-score
analysis on the daily water quality parameters was used to detect any
non-steady state conditions that may have resulted from the restart
events. The z-score is a statistical technique commonly used to
identify data outliers by measuring the differences between the
standard deviations and observations from the mean of the
distribution.32 The formula for this calculation is as follows:

=z y y( )/i i (1)

where yi is the observed value, yi ̅ is the mean of observed values, and σ
is the standard deviation of observed values.

2.4. Machine Learning Algorithms
Four ML algorithms were selected for developing the soft sensors,
including PLS, SVR, CUB, and QRNN. These algorithms have
successfully been implemented in wastewater treatment applications
with a track record of high prediction accuracy.27,33−35 However, their
selection for this study was based on their exceptional performance
across a wide range of data scenarios, their ability to accommodate
diverse feature distributions, and their capacity to handle complex

Figure 2. Soft sensor development framework was comprised by the following five steps: (i) statistical analysis and dataset preprocessing; (ii)
model input selection using the Pearson’s correlation coefficient and Recursive Feature Elimination method (RFE); (iii) model development,
including cross-validation for metrics tuning and model calibration; (iv) model testing for ML algorithms to compare the prediction accuracy; and
(v) final soft sensor models for COD, TSS, and E. coli prediction.
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correlations. These characteristics make them potentially suitable for
application in the context of OWTS. All models were trained,
evaluated, and validated in R 4.2.0.36 The four ML algorithms were
implemented using the ‘caret’ package.37 The PLS (package: ‘pls’) is a
linear regression model based on the dimension reduction method38

and was selected as an advanced linear model to compare the
prediction performance with other models. The hyperparameter,
principal components (ncomp), was tuned to improve the prediction
and avoid overfitting. The SVR (package: ‘svmRadial’) is a statistical
learning-based approach that transforms the original variables into a
high-dimensional space and separates them by defining a hyperplane.
The radial basis function kernel for SVR was selected in this study due
to its ability to model complex non-linear relationships between
parameters and its flexibility in optimizing the hyperparameters.39

Two hyperparameters were used, inducing the kernel (sigma) and
class weights (cost) to control the shape of the decision boundary and
balance the margin-maximizing and error-minimizing objectives. The
CUB (package: ‘cubist’), which is an extension of the decision trees,
works by recursively partitioning the input data into regions, then
fitting a linear model to the data within each region. The final
outcome of CUB is obtained by combining the predictions of the
individual linear models.40 The CUB model was selected as it can
represent non-linear relationships between variables. This study
optimized the hyperparameters in the CUB model by including
iterative model trees created in sequence (committees) and nearest
neighbors to both improve the model accuracy and to avoid
overfitting the model. The QRNN (package: ‘qrnn’) is an extension
of a neural network specifically designed for linear quantile regression.
The QRNN model can effectively capture non-linear relationships
and non-normally distributed parameters, allowing it to estimate
different quantiles of the output distribution and provide more
accurate predictions. The ability to model different quantiles also
enables the QRNN to capture the variability in the data.34 Due to the
size limitation of the trained dataset, two hyperparameters, hidden-
layer node (n.hidden) and predictive density from quantiles (penalty),
were tuned to avoid model overfitting.

2.5. Soft Sensor Model Development
The dataset (n = 56) with eight input parameters (sampling points,
NH4

+, NO3
−, pH, EC, turbidity, color, and temperature) and three

output parameters (COD, TSS, and E. coli) were used to train the soft
sensor models for predicting the water quality throughout the system.
The framework for developing the three models (Figure 2) follows
five main steps: (i) statistical analysis and dataset preprocessing; (ii)
model input selection using the Pearson’s correlation coefficient and
Recursive Feature Elimination method (RFE); (iii) model develop-

ment including cross-validation for metrics tuning and model
calibration; (iv) model testing for ML algorithms to compare the
models’ prediction accuracy; and (v) final soft sensor models for
COD, TSS, and E. coli prediction.

Considering the wide range of input and output variables in the
dataset (Table S1), a standardization procedure was conducted before
fitting the ML algorithm to reduce noise and increase the
comparability of input variables. This involved centering and scaling
the variables. Centering subtracted the mean from each data point,
resulting in variables with a mean of zero. Scaling the variables
involved dividing each data point by the standard deviation of the
variable, which ensured that all variables were on the same scale. This
standardization preprocessing made the variables comparable and
further reduced the impact of differences in parameter weights on the
performance of the ML algorithms.

Pearson’s correlation coefficient with significance testing and RFE
technique were used to identify correlations between the variables
during the variable selection step. This was performed to detect and
remove redundancy and avoid overfitting issues before training the
ML algorithms.41 The RFE is a feature selection algorithm that selects
and iteratively tests the input variables of different datasets by training
in the ML algorithm to remove redundant parameters and identify the
most relevant variables for predicting the output variables.42 This
makes the RFE better enabling to accurately define non-linear
correlations than the Pearson’s correlation coefficient.

In the soft sensor development process, 70% of the dataset was
randomly selected and used to train the models, while the remaining
30% was used to test the trained models.

In model cross-validation and hyperparameter tuning, considering
the cost of increased computational time and the slowdown in the
downward trend of RMSE with k, a stratified 15-fold cross-validation
resampling method was selected and employed to predict and
enhance the prediction performance of each model (Figure S1). This
approach randomly divides the training dataset into 15 partitions, fits
the model to a dataset consisting of 14 of the original 15 partitions,
and uses the rest for verification to estimate the error and determine
the performance of each model when fitting the training dataset.43

The ‘expand.grid’ function in R was used to grid search and determine
the best hyperparameters for specific algorithms during model training
process.36

To assess the regression model performance, standard residuals,
root mean square error (RMSE) (eq 2), coefficient of determination
(R2) (eq 3), and mean absolute percentage error (MAPE) (eq 4)
were selected to quantifiably analyze the prediction performance of
the models.44

Figure 3. Water quality characteristics for (A) COD, (B) TSS, and (C) E. coli in each sampling point and the post-restart event t test. The five
sampling points were influent (Inf), AnMBR, permeate (Perm), post-NCS (P-NCS), and effluent (Eff). The lines in the whisker plot indicate
medians, boxes 25th and 75th percentiles. A paired samples t test was used to compare measurements between the post-restart events and the
normal operations water quality characteristics. “ns” = p > 0.05, “*” = p ≤ 0.05, “**” = p ≤ 0.01, “***” = p ≤ 0.001, “****” = p ≤ 0.0001.
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where yi is the observed value, xi is the predicted value by the model,
yi ̅ is the mean of all observed values, and n is the number of samples.

To observe and prevent overfitting of the model, the R2 and scatter
plots were used to compare the measured and predicted values of the
training and testing datasets for each model. The scatter plots depict
the predicted values plotted against the true values, with an ideal
scenario exhibiting a 1:1 alignment along a best-fit line. Additionally,
RMSE and MAPE were used to evaluate the final soft sensor model.
Both RMSE and MAPE metrics are commonly used to assess the
performance of the models but differ in how they weight errors. While
RMSE emphasizes larger errors, MAPE gives equal weight to all
errors, regardless of their magnitude.21 As the models were used to
predict water quality parameters, which can impact both human and
environmental health, it is crucial to minimize large errors. Therefore,
the prediction with the lowest RMSE was given priority as the optimal
model. In addition, to ensure the usefulness of the soft sensors, a
MAPE below 25% was considered acceptable for use.

3. RESULTS

3.1. Field Data Preprocessing
Three major restart events occurred during the field trial that
caused abnormal spiking of several water quality parameters.29

Two of the NCS’s maintenance events had a significant impact
on system performance as indicated by substantial peaks in the
z-score (Figure S2). The system returned to steady state
operation after two weeks, as indicated in the z-score analysis.
These two events created significant data outliers, which are
known to negatively affect the predictive performance.45 The
difference between steady state operation and post-event
operation was further confirmed by Welch’s t test (Figure 3).

Welch’s t test revealed significant differences in the temporal
COD and TSS concentrations across several sampling points,
including the P-NCS and Eff samples where adsorption and
electrochlorination were the main treatment steps, respectively.
For P-NCS and Eff samples, a notable distinction was observed
between the COD levels during normal operation and post-
events (p ≤ 0.001 and p ≤ 0.01). This disparity was attributed
to biofilm detachment within the NCS during periods of
dormancy and washout of COD from the AnMBR upon
system restart. Similarly, the TSS in the Eff also showed
significant differences after the events (p ≤ 0.01) likely due to
washout of biological growth from the NCS during the system
restart. To obtain the best prediction for normal operating
conditions, two weeks of water quality data after the two NCS
maintenance events were removed from further evaluation,
decreasing the total dataset from 56 to 52 points.
3.2. Input Selection and Model Development
The pH and temperature variables showed a weak negative
correlation with the three desired output variables, COD, TSS,
and E. coli, in the Pearson’s correlation analysis (Figure 4). The
correlation coefficients between temperature and COD, TSS,
and E. coli were −0.13, −0.12, and −0.05, respectively, while
for pH, they were −0.27, −0.22, and −0.12. The results

showed negative correlations between temperature and pH and
the output parameters. However, these results were not
statistically significant (p > 0.05). The low correlations
observed between temperature and the output variables may
be the result of using the average daily temperature, which
does not accurately represent the specific temperature at the
time of sample collection. Surprisingly, the low correlation of
the output parameters with pH was unexpected, considering
that fluctuations in pH are known to affect biological treatment
systems, particularly anaerobic digestion.46 However, the lack
of significant correlation with pH was generally attributed to a
minimal fluctuation in pH (Table S1).

On the other hand, turbidity, color, and NO3
− showed a

strong positive correlation (coefficients >0.70) with the three
output variables. The strong correlation (p ≤ 0.0001) between
the output parameters and turbidity and color was expected as
high values of either parameter often indicating contaminated
water samples.21,47 With regards to NO3

−, its strong correlation
with the three output variables may be attributed to the carbon
and nitrogen ratios necessary for biological nitrogen cycling in
the NG system. Changes in NO3

− concentrations are expected
to follow the rates of nitrification and denitrification occurring
across the treatment train. These processes directly affect the
COD and TSS in the water sample as denitrification utilizes
COD as a source.46

The RFE feature selection method was applied to each of
the four ML algorithms to identify and rank important input
variables in predicting COD, TSS, or E. coli (Table 1 and
Figure S3). The results of the RFE were similar to Pearson’s
correlation analysis. Temperature was the least selected
variable among all ML algorithms. The PLS was the only
algorithm that identified temperature as a variable for
predicting COD and E. coli, although it was relatively
insignificant when compared to other variables. The second
least selected variable was pH. When predicting E. coli
concentrations, none of the algorithms selected pH as an
important input variable.

Figure 4. Heat map of the Pearson correlation coefficient and Welch’s
t test p-value between each variable. Red colors denote a positive
correlation, whereas blue represents a negative correlation. “*” = p ≤
0.05, “**” = p ≤ 0.01, “***” = p ≤ 0.001, “****” = p ≤ 0.0001.
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The RFE results showed that EC was selected last by most
ML algorithms when predicting COD and TSS. These results
agreed with the Pearson’s correlation analysis which observed
correlation coefficients of less than 0.3 (p ≤ 0.01) between EC
and all output variables. However, RFE analysis identified EC
as an important variable for predicting E. coli in all ML
algorithms. The correlation found between EC and E. coli
offers similar results to the Lambrou et al.15,16 study, which
used low-cost sensors to track E. coli in drinking water. In this
study, EC significantly changed when E. coli was detected and
may have been caused by the fluctuating chlorine concen-
tration in the municipal water supply. A higher concentration
of chlorine has higher EC and can effectively reduce E. coli in
water and even wastewater, and this correlation may be non-
linear, which was not observed in the Pearson’s correlation.

Although the Pearson correlation results showed a weak
negative linear correlation between pH and the three output
variables, pH still played an important role in predicting COD
and TSS, as indicated by the RFE analysis. Therefore,
temperature, which had a poor correlation with all three
output variables, was not selected as an input variable for
model development. The final selected input variables for
developing the soft sensor included the sampling step,
turbidity, color, pH, NH4

+, NO3
−, and EC.

3.3. Model Prediction of the Field Water Quality

Among the models, SVR showed the best performance for
COD prediction with the lowest RMSE of 270 mg/L,
indicating its superior predictive accuracy over the other
models (Figure 5A−D). Furthermore, the R2 of the testing
dataset was 0.96, indicating that the model was likely not
overfitted. This is consistent with the R2 value obtained for the
training dataset, which was 0.99 (as shown in Table S2), and
the slight degradation observed is within the expected range.
The CUB model also demonstrated acceptable prediction
accuracy, with a RMSE of 285 mg/L and R2 of 0.94. For COD
prediction, the SVR model also had the best MAPE with
14.5%. Although the best MAPE exceeded 10%, it was still
acceptable given that the COD concentrations spanned from
0.5 to 5820 mg/L.

The top-performing model for TSS prediction was CUB,
achieving a test RMSE of 55 mg/L and R2 of 0.99 (Figure 5E−
H). In contrast, the PLS linear model had a poor prediction on
TSS, particularly for concentrations lower than 100 mg/L.
Meanwhile, the QRNN had poor predictions for high

concentrations (>500 mg/L) of TSS. The SVR and CUB
models both had a low MAPE of 24.1 and 24.8%, respectively.
The SVR model had a higher RMSE than the CUB model but
a lower MAPE, which could be attributed to its larger error
when predicting higher TSS concentrations.

Although the SVR model had the lowest RMSE of 7.38 ×
106 MPN/100 mL and R2 of 0.83, which was the best
performing model for E. coli prediction, it can be seen from the
high RMSE that all models had inaccuracies when predicting E.
coli (Figure 5I−L). This low prediction accuracy is likely due
to the significant concentration differences between the
sampling points (Table S1). After membrane filtration and
chlorination, the E. coli concentrations were often BDL, which
caused the Perm, P-NCS, and effluent samples to lose variation
in their concentrations. As variations are essential to train
predictive models, this resulted in high E. coli concentrations
dominating the dataset, which skewed the regression models.
This is particularly true for PLS, where most predictions fell in
the 105 to 107 MPN/100 mL range. QRNN also had
predictions that were around 104 MPN/100 mL, while SVM
and CUB could predict lower concentrations of E. coli,
although their accuracy was not ideal. Overall, the SVR model
was the best at predicting COD, and the CUB model was the
best at predicting TSS. The accuracy in E. coli prediction could
be improved by applying methods such as a classification, log-
transformation, or joint discrete-continuous model that
consider a wider range of concentration differences during
model development, such as those observed across the
multiple sampling points used in this study.
3.4. Additional Observations from the Model Prediction

Apart from the comparative evaluation of the models, the
spatial prediction performance was also assessed across the five
sampling points (Table 2 and Figures S4−S6). According to
the findings presented in Table 2, the SVR exhibited superior
prediction performance across most sampling points when
predicting COD, surpassing the performance of the other
models. However, it was evident that the SVR model had
limitations in predicting the COD concentration for Inf
samples. The CUB shows the lowest RMSE and highest R2,
indicating that the decision tree/linear-based CUB had better
predictions for high COD concentrations. The prediction
accuracy of all models decreased for all post-membrane stages
(Perm, P-NCS, and Eff) compared to the COD predictions of
the AnMBR. However, considering that the system’s average

Table 1. RFE Results for the Input Variables for Predicting COD, TSS, and E. colia

variable (unit)
model

structure
sampling

point
color

(Pt/Co)
turbidity
(NTU) pH

EC
(mS/cm)

NH4
+

(mg/L)
NO3

−

(mg/L)
temperature

(°C)

COD (mg/L) PLS 1 4 5 3 − − 2 6
SVR 4 2 1 6 7 5 3 8
CUB 2 − 1 7 3 5 4 6
QRNN 4 2 1 6 − 5 3 −

TSS (mg/L) PLS − 1 2 − 3 4 5 −
SVR 4 2 1 6 7 5 3 −
CUB 6 4 1 7 5 3 2 −
QRNN 4 2 1 7 6 5 3 −

E. coli (MPN/100 mL) PLS 6 1 2 − 3 4 5 7
SVR − 3 2 − 1 5 4 −
CUB − 2 1 − 3 4 5 −
QRNN 5 3 2 − 1 − 4 −

aThe values represent the variable in the order of importance for the specific ML algorithm. The “−” in the table represents a variable that was not
selected as an input variable while getting the lowest RMSE in each algorithm REF analysis.

ACS Environmental Au pubs.acs.org/environau Article

https://doi.org/10.1021/acsenvironau.2c00072
ACS Environ. Au 2023, 3, 308−318

313

https://pubs.acs.org/doi/suppl/10.1021/acsenvironau.2c00072/suppl_file/vg2c00072_si_002.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsenvironau.2c00072/suppl_file/vg2c00072_si_002.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsenvironau.2c00072/suppl_file/vg2c00072_si_002.pdf
pubs.acs.org/environau?ref=pdf
https://doi.org/10.1021/acsenvironau.2c00072?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


P-NCS and Eff COD concentration was 117.74±90.80 and
127.48 ±87.34 mg/L, respectively, the SVR had the most
accurate predictions of all models, with a RMSE of 31 and 37
mg/L for P-NCS and Eff.

Compared to the other models, the CUB showed excellent
prediction performance for Inf TSS concentration, with a
RMSE of 48 mg/L. The CUB was stronger at identifying non-
linear relationships by decision tree-based modeling and
achieved more accurate predictions.48 When modeling the
post-membrane treatment steps, the CUB maintained some
accuracy; however, the RMSE of the SVR model was lower
than the CUB model.

As mentioned previously, the prediction performance of E.
coli was poor, especially when concentrations were BDL, as was
the case in Perm, P-NCS, and Eff. The R2 was less than 0.01,

indicating that the model’s accuracy was extremely low.
Replacing the BDL E. coli data with 1 MPN/100 mL, or any
discrete value between 0 and 1 MPN/100 mL, was not an ideal
solution for improving the regression predictions. The
measured E. coli levels spanned several orders of magnitude,
ranging from 1 to 1.54 × 108 MPN/100 mL. Although
appropriate methods exist for processing data BDL, such as
censored regression and dropping observations, which can
obtain unbiased estimators of the model parameters, these
methods were not applicable to this study as the missing BDL
data were not random. However, it does indicate that ML
classification can be useful in predicting whether pathogens in
the effluent exceed a regulatory threshold. This approach can
be a relevant strategy for monitoring OWTS operation.22

Further discussion on using classification ML algorithms to

Figure 5. Model prediction for COD, TSS, and E. coli. (A−D) PLS, SVR, CUB, and QRNN for COD; (E-H) PLS, SVR, CUB, and QRNN for
TSS; (I−L) PLS, SVR, CUB, and QRNN for E. coli. The blue and yellow data points represent the training and testing datasets, respectively. The
black dashed lines represent the line of equality (y = x). The comparative evaluation among these models showed that the SVR had the best
prediction performance for COD and E. coli; the CUB had the best prediction for TSS.
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predict E. coli can be found in Supplementary Information
(Section A.6), where the results indicate that the classification
model achieves far superior prediction performance than the
regression model.

4. DISCUSSION AND LIMITATIONS
This study aimed to develop soft sensor models for monitoring
the off-line water parameters of COD, TSS, and E. coli in
OWTSs. The models were trained and evaluated with 2 years
of field test data from an existing OWTS. The results showed
that the SVR had the best prediction accuracy for COD, while
the CUB was the most effective for predicting TSS
concentrations. However, due to E. coli levels spanning several
orders of magnitude and the majority of algorithms being
skewed by high values, the prediction results for E. coli were
unsatisfactory and require further improvement. The best soft
sensor models for predicting COD and TSS values were
determined as having a MAPE of below 25%, which was
considered acceptable performance for water quality monitor-
ing of an OWTS. Furthermore, it was discovered that the
different ML algorithms had variable predictive performance
based on the sampling point and concentration levels due to
changes in the chemical composition of the water samples. For
instance, the CUB model demonstrated excellent accuracy in
predicting high concentrations of COD and TSS. This can be
attributed to the treatment effectiveness of the wastewater
samples as they underwent the various treatment processes
across the NG system.

This study highlights the potential of using in-line sensors
and datasets of limited size to develop a soft sensor for
monitoring the treatment performance of an OWTS by
predicting critical off-line water quality parameters. The failure
of OWTSs can often be attributed to their lack of a strict
management plan and performance monitoring. OWTS
operation and maintenance are usually the responsibility of
homeowners or, in rare cases, local government/non-
governmental organizations. These entities are often over-
burdened with other requirements, so lapses in maintenance

and monitoring are common.49 Utilizing ML tools to develop a
soft sensor for OWTSs can provide critical performance data
to operators or stakeholders in remote and challenging areas.
This would allow operators to know when the OWTS needs to
be serviced and would avoid negative environmental effects
caused by system failures.

However, the unavoidable limitations of ML predictions are
that they tend to be site-specific. Changes in the physical and
chemical characteristics of water quality at different sites can
cause discrepancies in the soft sensor’s predictions and would
require model calibrations between sites and applications.
Although the soft sensor developed in this study achieved
acceptable prediction results with only 56 data points,
increasing the amount of raw data would reduce noise and
uncertainty leading to more robust models. While the post-
restart event data were omitted in this study, they may be
incorporated in future soft sensors to indicate non-steady state
operation and when system maintenance is needed. It is worth
noting that the NH4

+ and NO3
− measurements used in this

study were obtained through standard colorimetry rather than
ion-selective electrodes. If ion-selective electrodes were used,
the model’s accuracy might be impacted due to sensor drift
and ion interference. It should also be noted that the soft
sensors developed by this study relied on properly maintained
and calibrated sensors and analytical methods. However, as the
resources to maintain in-line sensors will not always be
available for OWTS systems, a long-term study is required to
investigate how sensor maintenance frequency can impact
predictive performance of the models. Schneider et al.50

compared the accuracy of three maintained and unmaintained
in-line sensors, including pH, DO, and ORP, and indicated
that the soft sensor based on the unmaintained sensors could
still achieve a final prediction accuracy of over 90%. Lastly, the
predictive performance of the model can be improved by
adding additional variables, such as the system’s hydraulic
loading rate (HRT), flow rate, ORP, DO, free chlorine
concentrations, UV254, and so on. HRT and flow are
important parameters when designing the degradation rate of

Table 2. Comparative Evaluation of Testing Dataset RMSE and R2 of COD, TSS, and E. coli in Each Sampling Point

sampling point model structure

COD (mg/L) TSS (mg/L) E. coli (MPN/100 mL)

RMSE R2 RMSE R2 RMSE R2

influent PLS 536 0.52 214 0.30 9.05 × 106 0.32
SVR 522 0.29 152 0.69 1.04 × 107 0.01
CUB 322 0.82 48 0.97 8.86 × 106 0.02
QRNN 452 0.45 208 0.51 6.30 × 106 0.16

AnMBR PLS 503 0.85 518 0.39 1.23 × 107 0.01
SVR 177 0.98 154 0.91 9.81 × 106 0.01
CUB 595 0.80 100 0.96 8.60 × 106 0.12
QRNN 294 0.94 602 0.34 1.19 × 107 0.02

permeate PLS 245 0.26 122 0.25 3.80 × 106 0.03
SVR 93 0.75 2.2 0.57 2.93 × 105 0.29
CUB 107 0.11 3.2 0.69 6.44 × 103 0.28
QRNN 241 0.16 12 0.32 5.53 × 103 0.13

post-NCS PLS 150 0.68 37 0.20 1.21 × 106 <0.01
SVR 31 0.85 1.5 0.68 6.46 × 103 <0.01
CUB 63 0.65 3.3 0.46 1.16 × 103 <0.01
QRNN 56 0.67 18 0.22 4.57 × 103 <0.01

effluent PLS 127 0.37 69 0.09 1.81 × 106 <0.01
SVR 37 0.94 4.4 0.75 1.85 × 103 <0.01
CUB 55 0.88 4.24 0.81 1.19 × 103 <0.01
QRNN 56 0.88 14 0.20 5.63 × 103 <0.01
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substrates in a bioreactor; a lower HRT or higher flow rate
usually results in insufficient contact time between the
substrate and microbes, which lowers treatment efficiency.51

There are relatively stable ORP and DO sensors, which are
used in WWTPs to control aeration and nitrification
processes.52 For free chlorine concentrations and UV254,
these two parameters are often used to monitor treatment
processes when detecting the chlorination residual and organic
matter in drinking water. Increasing the number of in-line
sensors as well as the sampling datasets can improve the soft
sensor prediction accuracy to a certain degree. However,
further model applications to other OWTS are needed to
assess the site specificity of the results. Overall, the soft sensors
developed with ML algorithms and the real field test data in
the study are the steppingstone for future development for
OWTS monitoring. These ML-based soft sensors provide real-
time monitoring that can be used to make adjustments to
OWTS operations in remote areas for effective onsite
treatment of wastewater.
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