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Abstract

Background: Automated segmentation of individual calf muscle compartments in 3D MR 

images is gaining importance in diagnosing muscle disease, monitoring its progression, and 

prediction of the disease course. Although deep convolutional neural networks have ushered in a 

revolution in medical image segmentation, achieving clinically acceptable results is a challenging 

task and the availability of sufficiently large annotated datasets still limits their applicability.

Purpose: In this paper, we present a novel approach combing deep learning and graph 

optimization in the paradigm of assisted annotation for solving general segmentation problems 

in 3D, 4D, and generally n-D with limited annotation cost.

Methods: Deep LOGISMOS combines deep-learning-based pre-segmentation of objects of 

interest provided by our convolutional neural network, FilterNet+, and our 3D multi-objects 

LOGISMOS framework (layered optimal graph image segmentation of multiple objects and 

surfaces) that uses newly designed trainable machine-learned cost functions. In the paradigm 

of assisted annotation, multi-object JEI for efficient editing of automated Deep LOGISMOS 

segmentation was employed to form a new larger training set with significant decrease of manual 

tracing effort.

Results: We have evaluated our method on 350 lower leg (left/right) T1-weighted MR images 

from 93 subjects (47 healthy, 46 patients with muscular morbidity) by fourfold cross-validation. 

Compared with the fully manual annotation approach, the annotation cost with assisted annotation 

is reduced by 95%, from 8 hours to 25 minutes in this study. The experimental results showed 

average Dice similarity coefficient (DSC) of 96.56 ± 0.26% and average absolute surface 

positioning error of 0.63 pixels (0.44 mm) for the five 3D muscle compartments for each leg. 

These results significantly improve our previously reported method and outperform the state-of-

the-art nnUNet method.

Conclusions: Our proposed approach can not only dramatically reduce the expert’s annotation 

efforts but also significantly improve the segmentation performance compared to the state-of-the-
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art nnUNet method. The notable performance improvements suggest the clinical-use potential of 

our new fully automated simultaneous segmentation of calf muscle compartments.

I. Introduction

In humans, the muscles of the lower leg between the knee joint and the ankle support 

weight-bearing activities such as walking, running and jumping. Anatomically, this group 

is composed of five individual muscle compartments shown in Fig. 1(a): Tibialis Anterior 

(TA), Tibialis Posterior (TP), Soleus (Sol), Gastrocnemius (Gas) and Peroneal Longus (PL)1. 

Structural and volumetric changes of these compartments provide valuable information 

for the diagnosis, severity, and progression evaluation for various muscular diseases such 

as myotonic dystrophy type 1 (DM1), an inherited disorder characterized by progressive 

muscle weakness, myotonia, and dystrophic changes2. DM1 is the most common form of 

muscular dystrophy that begins in adulthood and causes severe fatty degeneration of calf 

muscle in most patients3. Magnetic resonance (MR), which offers non-invasive imaging of 

muscles with high sensitivity to dystrophic changes, has been widely used in the clinic for 

muscular disease diagnosis and follow-up evaluation3,4. Traditional structural assessment of 

multiple individual muscles invariably resorts to manual tracing5,6, which is arduous, time-

consuming, and limiting in large research and clinical settings. Automated segmentation of 

multiple individual calf muscles is therefore essential for developing quantitative biomarkers 

of muscular disease diagnosis and progression.

Past calf muscle segmentation research is relatively sparse. Valentinitsch et al.7 proposed a 

three-stage method using unsupervised multi-parametric k-means clustering to segment calf 

muscle regions and subcutaneous fat for determining subcutaneous adipose tissue (SAT) and 

inter-muscular adipose tissue (IMAT). Yao et al.8 combined deep learning with a dual active 

contour model to accurately locate the fascia lata and segment multiple tissue types for 

quantifying calf muscle and fat volumes. Amer et al.9 employed deep learning to segment 

the whole calf muscle region where IMAT and healthy muscle are classified afterward 

by deep convolutional auto-encoders. All these entire muscle-region segmentation methods 

are mainly proposed to separate muscle, SAT and IMAT for estimating fat infiltration into 

muscular dystrophies.

However, the segmentation of individual muscle compartments is more desirable for 

assessing the progression of different neuromuscular diseases10. For example, it has been 

shown that individual skeletal muscle may be affected differently by DM111. It is necessary 

to improve the efficiency and utility of muscle MRI as a marker of muscle pathology12.

Automated 3D segmentation of individual calf muscle compartments is challenging and 

attempts in this field are rare. As shown in Fig. 1(b-e), muscular dystrophy introduces 

substantial variations of shape, texture and grayscale appearance to a part of or the entire 

calf region in addition to the already existing substantial variations due to the flexible nature 

of the muscles and leg’s position in the scanner. Ghosh et al.13 fine-tuned a pre-trained 

AlexNet on 700 3D MR images to predict two parameters representing the contour of the 

leg muscles and achieved an average DSC of 0.85 ± 0.09. However, the network must 

be trained separately for each leg muscle and the whole method can not learn from the 
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features while training all kinds of muscles together. Hiasa et al. 14 proposed a general 

automated segmentation of individual muscles by using Bayesian convolutional neural 

networks with the U-Net architecture. They achieved a DSC of 0.891 ± 0.016 and an 

average surface distance of 0.994 ± 0.230 mm over 19 muscles in the set of 20 CTs. The 

method can be used in the active-learning framework to achieve considerable reduction in 

manual annotation cost. Wong et al.15 proposed the presence-masking strategy that created 

labels from each label image across multiple datasets and then applied these masks to 

loss function during training to remove influence of unannotated classes. This strategy 

reduced the costs involved in manual annotations and resulted in a DSC of 0.706 – 0.905 

for 6 muscle group segmentations in a partially labeled calf-muscle dataset containing 22 

left calves acquired from healthy subjects. More recently, Guo et al.16 proposed a novel 

neighborhood relationship-aware fully convolutional network (FCN), called FilterNet, for 

automated segmentation of individual calf muscle compartments and reached an average 

DSC of 0.90 ± 0.01 on 40 T1-weighted 3D MR images of 11 healthy and 29 diseased 

subjects. This approach was used in clinical research12.

Although the aforementioned approaches reported acceptable segmentation performance 

by applying deep learning methods, several critical issues remained to be settled. 1) 

Availability of sufficiently large annotated datasets represents a bottleneck limiting their 

application, especially in large clinical settings where new data accumulates continuously. 

Annotation (manual tracing) of medical images is not only arduous and time-consuming 

but also requires costly specialty-oriented knowledge and skills. 2) There is still room for 

improvement of deep learning-based calf segmentation approaches. 3) Undesirable regional 

inaccuracies remain in the deep learning segmentation due to the lack of global-information-

aware optimization.

Considering the complementary advantages of deep learning and graph-based methods, 

the nature of their combination is ideally suited for solving the above issues. Deep 

learning methods offer state-of-the-art accuracy in medical image segmentation although 

they are not explicitly topology-aware and significant annotation effort is needed for 

their training. Graph-based algorithms maintain pre-segmentation topology, deliver globally 

optimal solutions, and may be combined with efficient interactive adjudication if needed – 

but they lack a good way to guide the necessary graph construction and cost function design 

if starting from scratch; reasonable initialization is required. In this paper, we present a 

novel approach combining deep learning and graph optimization in the paradigm of assisted 

annotation to address these issues.

Compared with previously reported approaches, the contributions of our work can be 

summarized as follows.

1. Assisted annotation with efficient adjudication substantially decreases expert 

manual tracing effort when forming annotated training sets.

2. FilterNet+ extends the underlying FilterNet approach, significantly improves the 

segmentation performance and outperforms the state-of-the-art methods.
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3. Deep LOGISMOS substantially improves the performance of 3D calf muscle 

compartment segmentation by utilizing FilterNet+ pre-segmentation and new 

machine-learned cost functions.

II. Methods

II.A. Assisted Annotation

Fig. 2 shows the workflow of our assisted annotation approach that employs the iterative 

loop to achieve the best use of the existing and efficient way of adding new annotated 

datasets. This approach a) starts with a small training set, b) uses it to create the initial 

version of an automated calf segmentation method, c) employs this method to automatically 

segment additional unannotated images, some of which are likely segmented inaccurately at 

first. These automated segmentations are d) expert-corrected using Just-Enough-Interaction 

(JEI) functionality of LOGISMOS18 and combined with the previous training set, thus e) 

forming a new larger training set of expert-annotated images, which are iteratively used to 

create next versions of the automated calf segmentation method in step “b”. The assisted 

annotation steps (“b–e”) are repeated until the desired performance is achieved or all data 

are annotated.

The process of creating new versions of the automated calf segmentation (step “b” above) 

relies on the following sub-steps in each iteration of the assisted annotation loop: 1) deep-

learning based approximate pre-segmentation of calf muscle compartments; 2) deep-learning 

based design of LOGISMOS cost functions; 3) design of multi-object JEI for efficient 

editing of automatically-segmented calf compartments.

II.B. FilterNet+: DL-Based Pre-Segmentation

Pre-processing—The region of interest (ROI) was extracted by cropping data to the 

region of nonzero values corresponding to left and right legs. Z-score normalization was 

applied to intensities of all images of individual legs to reduce inter-subject variations. 

Because of the newly designed large variety of data augmentation and robust training, the 

bias field correction19 and right-left mirroring processing steps used in16 can be eliminated 

without performance degradation. All pre-processing steps were completely unsupervised 

and were automatically carried out without any user intervention.

FilterNet+—Fig. 3 illustrates the network architecture of FilterNet+. The success of 

previously reported original FilterNet16 was attributed to the enhancement of neighborhood 

relationship brought by the increased convolution receptive field, resolution-preserving skip 

connections and explicitly edge-aware regulation. FilterNet was extended to FilterNet+ 

by introducing three main novel contributions: 1) Network architecture adaptation to the 

properties of the calf muscle dataset – the networks was configured with a deeper topology 

to increase the receptive field size for more effective extraction of contextual information 

and, due to the initial resolution discrepancy between axes at the input image whose size and 

spacing is 256 × 256 × 24 and 0.7 × 0.7 × 7 mm respectively, we applied the kernel size 

of one for convolution and pooling operation along each axis until the feature map spacing 

became isotropic. As a result, adequate aggregation of spatial and contextual information 
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is guaranteed; 2) Deeply-supervised nets (DSN)20 simultaneously minimize classification 

errors and improve the directness and transparency of the hidden layer learning process. 

As shown in Fig. 3, additional deep supervised layers along the expansive path and each 

deep supervision output are used for loss computation with a corresponding downsampled 

ground truth. This way, the supervised layers play a supervisory role in the process of 

training and guide the network to learn more precise residual information at different 

resolutions; 3) in order to constrain both the regional character and boundary positioning 

of the segmentation, we designed a new loss function L that combines regional loss Ldice, 

multi-class cross-entropy loss LCE, and edge loss Le during deeply supervised training. Given 

a network with M deeply supervised layers (M = 5 in the proposed method), the training 

objective is to minimize loss L across all resolutions:

L = ∑
m = 1

M 1
2m − 1Lm , (1)

where m is the index number of a deeply supervised layer and Lm is the loss of that layer. 

The index number increases with the decrease of the resolution and the supervised layer with 

highest resolution is set as 1 (the final layer in Fig. 3). The loss Lm is designed as:

Lm = (1 − λe)(λdLdice
m + LCE

m ) + λeLe
m , (2)

where Ldice
m , LCE

m  and Le
m are the dice similarity loss, multi-class cross-entropy loss and 

edge gate loss at layer m, respectively. λe is an adjustable weight reflecting the strength of 

edge-aware regularizations through training and λd is a non-negative weighting coefficient to 

balance Ldice
m  and LCE

m . Ldice originates from DSC as in21:

Ldice = − 2
∣ N ∣ ∑

n ∈ N

Y nY n

∑i ∈ Y nY i
n + ∑i ∈ Y nY i

n
, (3)

where N = 6, Y n is the predicted label for class n from the softmax output, Y  is one-hot 

encoding of the ground truth, i ∈ Y  represents voxels of the foreground in the segmentation 

map. Note that the ground truth at layer m for loss computation is also downsampled 

correspondingly to match the resolution of the softmax output at that layer. Incorporation 

of dice loss is beneficial for the model to consider the loss information both locally and 

globally and as a result, improve the edge continuity between calf muscles. We conducted 

a line search λd ∈ {0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0} for the value of the weighting 

coefficient and λd = 1.0 was selected as maximizing segmentation performance in validation 

experiments.

Edge gate loss Le is the differences (L1-norm) between the derived edge maps and the true 

edge maps which are generated by our 2D trainable convolution kernels, edge gate FLρG. 

FLρG is a trainable variant of a Laplacian of Gaussian filter (LoG) and can be used as a 

convolution in the network. It is defined as
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FLoG(I ∣ σ) = KG(σ) ∗ ρ(KL ∗ I) , (4)

where I is the input image, KL and KG represent Laplacian and Gaussian smoothing 

operations, respectively, and σ is the learned parameter of the Gaussian kernel. * is the 

convolution operation and ρ is a variant of non-linear hard tanh function that restricts the 

output into range [0, 1]:

ρ(x) =
0, x < 0
x, 0 ≤ x ≤ 1
1, x > 1

. (5)

The edge gate module was implemented by convolution layers with designed kernels inside 

the network. In the training process, kernel KL remains unchanged and kernel KG is updated 

with trainable parameter σ, initially set as 1. The edge gate can effectively extract valuable 

edge information from predicted region labels Y  and ground truth Y  to derive the edge 

maps. The edge gate loss Le is imposed to constrain the edge-based error to enhance the 

neighborhood relationships of calf muscle compartments and further improve topological 

correctness of the results. Importantly, the edge gate builds a linkage between Deep 

Learning and LOGISMOS. The linkage has an effect on the cost function of LOGISMOS to 

further improve its segmentation accuracy (Section II.C.).

Post-processing—Raw 3D object segmentation produced by the network shows local 

inaccuracies (small holes, coarse boundaries), which can be easily improved by simple 

post-processing refinement. Post-processing included two iterations of recursive Gaussian 

image filter (σ = 2) and hole filling by enforcing single-component connectivity of each 

segmented calf compartment. The refined FilterNet+ yielded approximate pre-segmentation 

of calf compartments, the performance of which was evaluated separately and was also 

further used for initialization and graph construction of the subsequent Deep LOGISMOS 

steps.

II.C. Deep LOGISMOS

LOGISMOS (Layered Optimal Graph Image Segmentation for Multiple Objects and 

Surfaces) is a general approach for optimally segmenting multiple n-D surfaces that 

mutually interact within and/or between objects22,23. Like other graph-search-based 

segmentation methods, the LOGISMOS approach first builds a graph that contains 

information related to the desired boundaries of the target objects in the input images 

and then searches the graph for a segmentation solution24. With the DL-based (FilterNet+) 

pre-segmentation, the remaining key issue is how to capture relevant information about the 

target object boundaries in a graph and how to search the graph for the optimal surfaces 

of the target objects. To perform simultaneous multi-compartment 3D segmentation of calf 

muscles, the main steps of LOGISMOS are: 1) 3D mesh is generated from DL-based 

pre-segmentation that gives useful information about the topological structures of the target 

objects and is considered the approximation to the (unknown) surfaces for target object 

boundaries by probability map thresholding and marching cubes algorithm. The triangulated 
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mesh is computed to specify the structure of the base graph that defines the neighboring 

relations among voxels on the sought surfaces. 2) A weighted directed graph is built on 

the vectors of voxels in the image. Each such voxel vector corresponds to a list of nodes 

in the graph (graph columns) and is normal to the mesh surface at mesh vertices. 3) The 

cost function for LOGISMOS uses on-surface costs that emulate the unlikeness of the 

graph node residing on the desired surface. 4) A single multi-object graph is constructed by 

linking five specific-object subgraphs (each representing one muscle compartment), while 

incorporating geometric surface constraints and anatomical priors. 5) The graph construction 

scheme ensures that the sought optimal surfaces correspond to an optimal closed set in the 

weighted directed graph25 and the optimal solution is found by standard s-t cut algorithms 

as the closed set of nodes, one node per column, with a globally optimal total cost. Because 

steps (1, 2, 5) are all generic and the performance of LOGISMOS is mainly determined by 

steps (3 and 4), in this work, we mainly focus on initializing the graph by using DL-based 

pre-segmentation that serves as a good target-object shape prior and on designing relevant 

cost functions that determine accurate optimal surface localization, yielding the overall Deep 

LOGISMOS approach (Fig. 4).

Graph construction—Fig. 5 illustrates the geometric constraints in graph construction 

of a single object and for two interacting objects. The smoothness constraint Δs defines 

the maximum allowed difference between node locations in two neighboring columns 

of the same surface. Smaller Δs causes the surface to be smoother. Surface separation 

constraints, Δl and Δu, determine the bounds of distances between two surfaces on 

the corresponding columns. More related work about graph construction can be found 

in18,22,23. Different from the traditional implementation that relies on interactively defined 

initial approximate segmentation, we overcame the manual-design limitations by using the 

FilterNet+ segmentation to initialize LOGISMOS. FilterNet+ pre-segmentation provides 

approximate segmentation of each calf muscle compartment as 3D mesh surfaces, defines 

their topology, and mutual relationships. Graph columns are constructed along the directions 

normal to the mesh surfaces. To incorporate the spatial relationships between muscle 

compartments as object separation constraints, the column orientations of subgraphs 

associated with individual compartments are specially designed as shown in Fig. 6(a), where 

the columns are built from inside to outside for TA and Sol, and outside to inside for TP, 

Gas and PL. This special orientation scheme utilizes anatomical prior knowledge about the 

muscle compartments to avoid formation of frustrating cycles26.

Machine learning cost design—Let the cost of node k on column j of surface i
be cs(i, j, k), the total cost for a given surface function s(i, j) that chooses an on-surface 

node for each column is Cs = ∑i = 1
n ∑j = 1

m cs(i, j, s(i, j)). The objective of segmentation is 

to find the optimal s(i, j) that globally minimizes Cs. Designing appropriate cost functions 

is crucial for graph-based segmentation methods. The cost function cs, for each graph 

node, must reflect the likelihood that the sought target surface passes through that node. 

Intensity derivatives and inverse of image gradient magnitudes are typical for edge-based 

cost functions. An advanced version of edge-based cost function27 utilized a combination 

the first and second derivatives of the image intensity function. These cost functions are 
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commonly human-expert designed and limit the accuracy of the segmentations. Machine 

learning derived cost functions are better suited for segmentation of objects with complex 

patterns. Here we used a cost function which is jointly learned from segmentation examples 

in combination with utilizing the independently learned FilterNet+ parameters. As shown in 

Fig. 3, the edge gate FLρG was trained globally on the predicted labels Y  and the ground truth 

Y  to derive edge maps which constrain the edge-based error in the loss function L (Equation 

(2)). Since the optimized edge gate can effectively extract the edge-based information under 

the regional constraint, we adopt the edge features derived on the input calf images by 

the ultimate edge gate as the machine-learned features in the trained LOGISMOS cost 

function, i.e., cs = FLρGtrained. As shown in Fig. 6(b), the edge features by the trained edge gate 

effectively highlight the boundaries of multiple compartments of calf muscles. These cost 

values are then used by the min-cut/max-flow graph optimization algorithms to determine 

the locations of the optimal surfaces.

Deep LOGISMOS segmentation—The constructed graph in the LOGISMOS system 

integrates shape prior from the refined FilterNet+ pre-segmentation, object separation 

constraints, geometric smoothness constraints, and learned costs for each node by the 

newly machine-learned cost function design, and the globally optimized segmentation is 

guaranteed by the graph optimization. The final simultaneous segmentation of all 5 calf-

muscle compartments is obtained by optimal hyper-surface detection in polynomial time22.

Just-Enough Interaction – Deep LOGISMOS+JEI—Deep LOGISMOS not only 

generates segmentations that outperform the state-of-the-art DL results, but also provides 

JEI capability not readily available in DL segmentation. When necessary refinements are 

needed to adjudicate results of the automated Deep LOGISMOS, JEI can be utilized 

by experts to guide the graph optimization process and thus efficiently improve the 

segmentations. The dynamic nature of the underlying algorithm is utilized to edit the 

segmentation result via interactive modification of local costs. Since JEI modifications, 

i.e., the user-defined segmentation-surface points and local cost modifications, directly 

interact with the underlying graph framework, the global optimality for every interaction 

is guaranteed and existing geometric constraints are still satisfied when handling multiple 

objects and surfaces. In practice, user interaction on one 2D slice is often enough to 

correct segmentation errors three-dimensionally in its neighboring 2D slices and thus reduce 

the amount of human effort. In addition, due to the existence of embedded inter-object 

constraints, in regions where multiple compartments are close to each other, editing is only 

needed on one compartment. More details about the design of the JEI architecture are 

covered in28. LOGISMOS+JEI approaches have been successfully applied in29,30 and are 

useful in reducing the inter-observer and intra-observer variability.

III. Experimental Methods

III. A. Data

Only 40 lower leg T1-weighted MR images from 40 subjects were initially available (11 

healthy, 23 DM1, 2 pre-DM1, 4 Juvenile Onset DM1 or JDM), the same data set as 

reported in16. Over the course of a longitudinal DM1 study, some of the initial subjects were 
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rescanned and new subjects added, with additional 135 MR images acquired with the same 

scanning parameters, increasing the annotated set size to 175 images of 350 lower legs from 

93 subjects (47 healthy, 35 DM1, 6 Pre-DM1, 5 JDM). MR image size was 512×512×30, 

voxel size 0.7×0.7×7 mm, acquisition used the first echo of a 3-point Dixon gradient echo 

sequence, TR=150 ms, TE=3.5 ms, FOV=36 cm, bandwidth 224 Hz/pixel, scan time 156 s.

III.B. Independent standard

The initial set of 40 annotated MR datasets (80 legs) was fully manually traced by experts in 

3D Slicer31 and each annotation took approximately 8 hours on average. This set was used 

for the initial stage of training Deep LOGISMOS to deliver decent automated segmentations 

of the five calf compartments. The remaining 135 MR datasets were sequentially segmented, 

their segmentations reviewed and – if needed – interactively corrected by experts using Deep 

LOGISMOS+JEI (Section II.C.), and served as additional training data used in the assisted 

annotation training loop (Fig. 2). The average time of reviewing and editing each 3D MR 

image used in the assisted annotation loop steps was approximately 25 minutes – expert 

effort decreased by 95%.

III.C. Experimental Setting

Multiple experiments were designed to compare the performance of the proposed method 

with nnUNet32 (state-of-the-art medical image segmentation framework) and two popular 

transformer-based approaches (TransUNet and Cotr) to demonstrate the contribution of our 

new approach. Similarly, to demonstrate the improvements achieved by assisted annotation, 

we compared performance on differently sized datasets (fully traced or assist-annotated). 

The following methods were compared, the numeric index specifies the number of training 

datasets used:

• nnUNet_80: The nnUNet32 baseline approach, 40 subjects, 80 legs.

• nnUNet_350: The nnUNet baseline approach using the fully-assisted annotation 

of 93 subjects, 350 legs.

• TransUNet_80: The transformer-based TransUNet approach33, 40 subjects, 80 

legs,

• TransUNet_350: TransUNet approach using the fully-assisted annotation of 93 

subjects, 350 legs.

• CoTr_80: The transformer-based CoTr approach34, 40 subjects, 80 legs.

• CoTr_350: CoTr approach using the fully-assisted annotation of 93 subjects, 350 

legs.

• FilterNet+_80: FilterNet+ approach, 40 subjects, 80 legs.

• FilterNet+_350: FilterNet+ approach using the fully-assisted annotation datasets 

of 93 subjects, 350 legs.

• DeepLOGISMOS_80: Deep LOGISMOS method using FilterNet+_80 results as 

pre-segmentation.
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• DeepLOGISMOS_350: Deep LOGISMOS method using FilterNet+_350 results 

as pre-segmentation.

To further assess the effectiveness of the machine-learned features by the trained edge 

gate, we compared the proposed method with manually designed traditional cost functions 

including 2nd image derivatives, Laplacian filter and Sobel edge detection filter.

Given a limited-size dataset, 4-fold cross-validation was used to evaluate the performance 

of each tested approach with the 4 groups created randomly at the subject level so that data 

(legs) from the same subject were never simultaneously used for both training and testing. 

That means that for a dataset of 80 (350) legs, training was based on 60 (262) legs and 

testing was done in 20 (88) legs, repeated 4 times.

Each image segmentation method design uses specific parameters that influence its behavior. 

In all tests, the same parameters were used in the corresponding steps of each method. 

In FilterNet+, to increase the robustness and generalization of the network, resizing and 

small patching are avoided. The input image patches have the same size (256×256×24) as 

the cropped ROI from the localized one-leg-area. A larger variety of data augmentation 

techniques including scaling, mirror, rotations, elastic deformation, multiple Gaussian 

operations, etc. are randomly applied to boost the training and prevent overfitting.

FilterNet+ training loss parameter λe was initially set as 0.001 and increased ten fold every 

10 epochs, the batch size was 4. The initial learning rate of the Adam optimizer was 3 

× 10−4. Training of FilterNet+ was improved by introducing the widely used strategies 

including dropout35, Kaiming initialization36 and Adam optimizer37,38. The learning rate 

was reduced by 5 when the monitored exponential moving average of the training loss 

stopped improving in 20 consecutive training epochs. To increase the robustness of the 

network predictions, in the inference steps, one image was mirrored along all valid axes in 

3D space and the segmentation result was obtained by averaging all corresponding outputs 

from the 8 networks. FilterNet+ was implemented using PyTorch platform39 and trained 

on Nvidia Tesla V100 GPU with 32 GB memory. LOGISMOS graph columns consisted 

of 17 nodes spaced 0.35 mm apart. LOGISMOS smoothness constraints were set as 2 

node-to-node distances, corresponding to 0.7 mm.

III.D. Quantitative Analysis

To comprehensively evaluate the segmentation performance and allow method-to-method 

comparisons, DSC and Jaccard Similarity Coefficient (JSC) evaluated region-based 

accuracy, absolute surface-to-surface distance (ASSD, in pixels) and relative surface-to-

surface distance (RSSD, in pixels) assessed boundary-based accuracy. ASSD and RSSD 

measure the distances between the surface of the automated segmentation and the 

independent standard. Because of the order-of-magnitude difference between the XY 

plane in-slice resolution (0.7 mm) and the Z plane slice distance (7 mm), the surface-to-

surface distances were calculated on the XY planes slice-by-slice. To allow meaningful 

comparisons, scores for ASSD and RSSD were calculated as

SASSD = α−ASSD × 100 , SRSSD = α− ∣ RSSD ∣ × 100 , (6)
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where α is an application-specific parameter empirically chosen as 1.111 to reach 

approximate linearity and maximum score of 1.0 when the two surfaces match (at zero 

distance). Given the four indices: DSC, JSC, SASSD, and SRSSD, the final comprehensive score 

was defined as

Sfinal = 0.25 × (DSC + JSC + SASSD + SRSSD) . (7)

Higher Sfinal indicates better comprehensive performance in the combined regional and 

boundary-positioning respect. Additionally, ASSDmax95, was evaluated as the 95th percentile 

of the absolute distance between two surfaces of each compartment. Performance indices 

were averaged for left and right calf muscle compartments and reported as mean±standard 

deviation. For statistical comparisons between methods, paired t-tests were used, p value < 

0.05 denoted statistical significance.

IV. Results

The performance comparisons of the ten tested methods are listed in Table 1 and also 

visualized in Fig. 7. Compared with nnUNet framework, FilterNet+ achieved significantly 

better results in terms of DSC, JSC, ASSD, RSSD, ASSDmax95, as well as the comprehensive 

Sfinal. Compared to FilterNet+_80, DeepLOGISMOS_80 offered yet additional tremendous 

improvement of all indices with statistical significance. In particular, ASSD and RSSD 

segmentation quality scores increased substantially after the LOGISMOS steps resulting 

in improved values of Sfinal. On the 350-leg (93-subject) dataset obtained by assisted 

annotation, both the FilterNet+_350 and DeepLOGISMOS_350 outperformed the methods 

using 80-leg dataset while the advantages of FilterNet+ compared to nnUNet diminished. 

Notably, DeepLOGISMOS_80 was superior to all methods using the 350-leg dataset except 

for the DeepLOGISMOS_350. The performance increase with the smaller dataset attests to 

the effectiveness of our proposed DeepLOGISMOS method. Similarly, compared to Filter-

Net+350 alone, DeepLOGISMOS_350 demonstrated overall improvements with consistent 

statistically significant differences. The 95th percentile of the ASSD values (ASSDmax95), 

representing the locally most severe segmentation inaccuracies, also decreases significantly 

for all 5 segmented muscle compartments.

Table 2 shows the performance comparison between different cost functions in Deep 

LOGISMOS. Deep LOGISMOS using the machine-learned features by the trained edge 

gate outperformed other approaches that combined deep learning pre-segmentation and 

LOGISMOS with manually designed cost functions.

Fig. 8 displays four cross-sectional segmentation examples from images of four subjects – 

healthy control, Pre-DM1, DM1, and JDM. The comparisons show that the most advanced 

DeepLOGISMOS_350 avoids almost all of the segmentation inaccuracies present in the 

results of the other methods.

Table 3 gives the average inference times for a typical 512×512×30 sized MR image 

by different methods. The high efficiency of Deep LOGISMOS+JEI utilizing assisted 

annotation suggests its high clinical-use potential. Importantly, since graph s-t cut 
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optimization can be applied iteratively without restarting the optimization process from 

scratch, each JEI interaction used to regionally modify the respective local/regional graph 

costs generates new graph optimization solution iteratively and very efficiently in close-to-

real time. The whole pipeline helps experts decrease time required to carefully 3D-annotate 

all 5 calf-muscle compartments on a volumetric MR image from 8 hours to 25 minutes.

V. Discussion

V.A. Ablation Study

Table 1 and Fig. 7 show the superiority of our deep learning method in comparison 

with the nnUNet method and the transformer-based methods. In agreement with the 

ablation study principles, the results are methodically ordered from the state-of-the-art 

results from the nnUNet framework, then introducing improvement in the FilterNet+_80 

approach, combining FilterNet+ with LOGISMOS optimization, and finally proceeding 

further to employing assisted annotation to increase the training sizes in FilterNet+_350 and 

DeepLOGISMOS_350 approaches. Fig. 8 demonstrates that segmentation inaccuracies in 

the nnUNet method tend to be alleviated in FilterNet+. Deep LOGISMOS segmentations 

exhibit additional increases in accuracy, surface smoothness, and topologic superiority 

as shown in Fig. 8. For the DM1 subject, while the Gas compartment segmented 

by FilterNet+_80 still spreads into the surrounding tissue, this problem is resolved by 

DeepLOGISMOS_80 due to the addition of machine-learned features in the cost function 

(Section II.C.). Similarly, benefiting from LOGISMOS graph optimization, the disjoint TP 

segmentation in the JDM subject by FilterNet+ is corrected by the Deep LOGISMOS 

approach. Two main reasons may be causing the performance difference between TransUNet 

and Deep LOGISMOS: 1) Transformer-based methods usually require much more data 

than pure CNN models to achieve good accuracy, and 2) TransUNet encodes tokenized 

image patches by CNN layers and extracts global context from the input sequence of CNN 

feature map via the usage of Transformer – compared to the original U-Net model, low-level 

fine-grained details could be insufficient due to only a few layers of CNN if the model 

is not pre-trained well; in such a case, localization capabilities of the transformer frame 

and segmentation capabilities of the CNN layers may be limited and thus yield lower 

performance.

Table 2 assesses the effectiveness of the machine-learned features by the trained edge gate 

in LOGISMOS and shows that the three manually designed cost functions achieve different 

performance levels. FilterNet+ performance would degrade if the subsequent LOGISMOS 

used Sobel edge detector as its cost function, while employing the Laplacian filter would 

keep the performance at the same level. Although utilizing 2nd intensity derivatives of the 

image as the cost function improves FilterNet+ results, it is still outperformed by employing 

the edge gate. Obviously, the machine-learned derived cost functions are better suited for 

segmentation of objects with complex pattern.

The improvements of the observed segmentations are partly due to the creation of the larger 

dataset of 350 samples by manually refining (JEI) segmentation results of the dataset of 

80 samples. The superiority of training on a larger dataset, indicating the effectiveness of 

assisted annotation, is further shown in FilterNet+_350 and DeepLOGISMOS_350 (Table 
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1, Fig. 7). LOGISMOS+JEI based assisted annotation, in the process of providing larger 

training datasets, dramatically reduces the annotation effort of human experts. In all four 

examples in Fig. 8, most of the errors in the earlier segmentation approaches are successfully 

resolved by FilterNet+_350 and DeepLOGISMOS_350.

V.B. Generalizability of combining Deep LOGISMOS and assisted annotation

The power of our work in combining deep learning pre-segmentation and graph-optimality 

seeking Deep LOGISMOS trained on data produced by efficient assisted annotation was 

demonstrated in the case of segmenting human calf muscle compartments on MRI. The 

combination of DL and LOGISMOS is not simply using the output of DL pre-segmentation 

as the input to LOGISMOS. DL and LOGISMOS have complementary roles. DL achieves 

state-of-the-art medical image pre-segmentation. LOGISMOS+JEI (graph-based method) 

achieves globally optimal solution that allows to efficiently refine segmentation results if 

needed. LOGISMOS itself lacks a good way to to guide the necessary graph construction 

and cost function design steps – it requires reasonable initialization. Therefore, the proposed 

Deep LOGISMOS combines the strengths and interlinks the two components as follows. 1) 

DL pre-segmentation provides useful topology and shape information for graph construction 

in LOGISMOS. 2) The machine-learned edge gate not only improves the accuracy of 

pure DL results but also impacts the cost function of LOGISMOS to further improve 

the LOGISMOS segmentation accuracy. As a result, globally optimal results are obtained 

effectively. 3) LOGISMOS provides JEI capability to optionally adjudicate segmentation 

results in close-to-real time. The overall performance of Deep LOGISMOS is improved 

compared to sole DL approaches.

Alternatively, other deep convolutional neural network architectures can be integrated 

into the Deep LOGISMOS framework to utilize information linkages between deep 

learning and graph optimization. Further strengthened by the inherently incorporated 

Deep LOGISMOS+JEI based assisted annotation (Fig. 2), its effectiveness and efficiency 

in reducing the annotation effort and optimizing the segmentation model are clearly 

visible from the achieved segmentation improvements (Section IV.). Note of course, that 

detailed understanding of LOGISMOS is not necessary to appreciate this work and the 

Deep LOGISMOS+JEI method used here for assisted annotation is not the only one 

applicable. The idea of training-segmentation-annotation iterative epochs can be generically 

incorporated into supervised learning methods or one can elect to employ suggested 

annotation approaches40. Given this inherent generalizability of Deep LOGISMOS and 

the assisted annotation paradigm, these strategies can be further integrated and the machine-

learned deep segmentation features and the machine-learned LOGISMOS cost functions 

applied to various segmentation tasks to benefit both the segmentation processes and those 

leading to assisted annotations.

V.C. Future work

Although we showed that assisted annotation helps experts reduce the effort of manual 

tracing substantially (from 8 hours to 25 minutes per 3D image), the total time and 

effort of reviewing and editing a large dataset can not be neglected either. There are 

two promising directions to further relieve the annotation effort problem: active learning41 

Zhang et al. Page 13

Med Phys. Author manuscript; available in PMC 2024 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and quality assessment without ground truth. The approach of quality assessment without 

the ground truth focuses on further reducing the human effort in searching for small 

segmentation errors in a large 3D image by automatically locating likely segmentation errors 

on the volumetrically visualized object surfaces. Afterward, the identified likely-erroneous 

locations can be used as feedback to guide the network to prevent similar errors. As a 

result, the time of reviewing and editing the segmentations to produce new annotations 

can be significantly reduced. Sample-Incremental-Learning (SIL) can become a promising 

direction for large datasets and limited computation resources because SIL would help the 

models balance old and new data without retraining on all samples. Furthermore, due to the 

complementary advantages of DL and graph-based methods, potential interactions between 

the two components could be considered to additionally benefit the optimization process.

VI. Conclusion

A hybrid framework combining the main advantages of our convolutional neural network 

FilterNet+ with those of our graph-based LOGISMOS approach, further supported by Deep 

LOGISMOS+JEI assisted annotation, was reported. The presented comparative performance 

assessment demonstrated an improved performance obtained during simultaneous multi-

compartment 3D segmentation of calf muscle compartments on 3D MRI. By maximizing 

the value of an original small dataset of fully annotated MR images of 80 lower legs, 

and by initially training a Deep LOGISMOS segmentation method on this small dataset, 

we have designed and employed an efficient assisted annotation strategy that decreased 

the average annotation time required to 3D-annotate 5 calf-muscle compartments on a 

volumetric 512×512×30 MR image from 8 hours to 25 minutes – a 95% reduction of human 

expert effort. Our Deep LOGISMOS method trained on a larger dataset of 350 assisted-

annotated legs then outperformed all other tested deep learning and graph-optimization 

approaches in the region-based voxel labeling, boundary-based surface positioning, and 

the final comprehensive performance score. The experimental results showed an average 

Dice similarity coefficient (DSC) of 96.56 ± 0.26% and an average absolute surface 

positioning error of 0.63 pixels (0.44 mm) for the five 3D muscle compartments for each 

leg. These results significantly improve our previously reported method and outperform 

the state-of-the-art nnUNet method. The notable performance improvements suggest the 

clinical-use potential of our new fully automated simultaneous segmentation of calf muscle 

compartments.
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Figure 1: 
Examples of T1-weighted MR images of calf muscle cross sections and corresponding 

expert segmentations of TA, TP, Sol, Gas and PL. (a) Normal subject. (b-c) Patients with 

severe DM1. (d) Patient at risk for DM1 (PreDM1). (e) Patient with juvenile onset DM1 

(JDM). Best viewed in color.
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Figure 2: 
Workflow of the proposed Deep LOGISMOS segmentation framework in the scheme of 

assisted annotation. Processing steps in blue, datasets in orange. (a)–(e) modules correspond 

to steps given in Section II.A. Best viewed in color.
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Figure 3: 
The basic 3D FilterNet+ architecture. The input X is a 256×256×24 3D image patch cropped 

from the whole 256×512×30 3D pre-processed image of one leg. The size of output Y p

is 6×256×256×24. The segmentations are optimized by Ldice, cross-entropy LCE and edge 

constraints Le. The trainable edge gate learns the muscle compartment boundary-related 

parameter σ from Y  and Y , used later as an image-learned component of the LOGISMOS 

cost function (Section II.C. and Fig. 4). Best viewed in color.
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Figure 4: 
Schematic diagram of the Deep LOGISMOS method. Best viewed in color.
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Figure 5: 
Geometric constraints in graph construction. (a) Inter-column and intra-column arcs link 

graph nodes from columns built along the column direction through the pre-segmented 

surface mesh S1. Each mesh vertex is associated with a column of nodes and p and q
represent the coordinates of the mesh vertices where columns are built. Columns located 

in the same triangle polygon are neighboring columns. The inter-column arcs are deployed 

between neighboring columns to enforce surface smoothness constraints Δs. (b) Inter-surface 

arcs model the separation constraint between the two interacting surfaces S1 and S2. The 

column ColS1, p from S1 interacts with ColS2, p from S2 and Δl and Δu restrict the minimum and 

maximum distances between the surface-connected nodes of the two columns, respectively. 

Best viewed in color.
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Figure 6: 
(a) Graph column orientations. (b) The machine-learned edge features by the trained edge 

gate from the original image. Best viewed in color.

Zhang et al. Page 22

Med Phys. Author manuscript; available in PMC 2024 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7: 
Performance comparison for the segmentation of five calf muscle compartments from 

different experiments. Best viewed in color.
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Figure 8: 
Examples of segmentation overlaid with MR images. Each row shows a representative 2D 

cross-sectional slice from images of subjects with a given status (healthy/diseased). The red 

rectangles highlight regions with segmentation errors. In the control subject, the incorrect 

segmentation between TP and Sol in nnUNet_80 is mostly alleviated in FilterNet+_80 and 

corrected in DeepLOGISMOS_80. In the Pre-DM1 example, the shrunk TP segmentation in 

FilterNet+_80 is guided by DeepLOGISMOS_80 to the correct position at the boundaries. In 

the severe DM1 case, the infiltrates of Gas into the subcutaneous adipose tissue visible for 

both nnUNet and FilterNet+ methods is solved by the Deep LOGISMOS method. Similarly, 

in the JDM case, disconnected TP by FilterNet+ method is substantially alleviated by 

Deep LOGISMOS. Throughout all the examples, segmentation improvements are noticeable 

for each more advanced method from the nnUNet to Deep LOGISMOS methods in the 

same dataset, for which muscle compartments segmented are increasingly better agreeing 

with the ground truth. In the DM1 and JDM case, DeepLOGISMOS_80 even outperforms 

nnUNet_350 and FilterNet+_350. Best viewed in color.
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Table 1:

Evaluation indices for five calf muscle compartments from different segmentation methods and training 

datasets. * and ** denote results of paired t-tests vs. nnUNet_80, and nnUNet_350, respectively. See Section 

III.C. for details of the compared methods. Bolded values represent statistically significant improvements in 

comparison with the compared approaches.

TransUNet_80 nnUNet_80 CoTr_80 FilterNet+_80 DeepLOGISMOS_80

Mean±STD p value* Mean±STD Mean±STD p value* Mean±STD p 
value*

Mean±STD p value*

DSC (%) 92.39±0.68 ≪0.001 92.93±0.38 93.06±0.30 ≪0.001 93.35±0.34 0.124 95.55±0.34 ≪0.001

Jaccard (%) 86.75±0.96 ≪0.001 87.01±0.62 87.1±0.69 ≪0.001 87.71±0.56 0.115 91.66±0.57 ≪0.001

ASSD 
(pixel)

1.50±1.38 ≪0.001 1.18±0.78 1.15±1.36 ≪0.001 1.15±0.77 0.579 0.80 ±0.75 ≪0.001

ASSD Score 86.72±0.93 ≪0.001 88.60±0.64 88.72±1.01 ≪0.001 88.89±0.63 0.534 92.18±0.63 ≪0.001

RSSD 
(pixel)

0.35±1.27 ≪0.001 −0.09±0.78 0.16±0.79 ≪0.001 −0.13±0.71 0.361 0.14±0.64 ≪0.001

RSSD Score 94.63±0.81 0.02 94.74±0.53 94.93±0.53 0.008 95.28±0.49 0.135 96.83±0.50 ≪0.001

ASSDmax95 6.87±5.33 ≪0.001 5.23±3.87 4.94±4.32 ≪0.001 4.92±3.87 0.244 4.25±4.33 ≪0.001

Final Score 90.12±0.78 ≪0.001 90.82±0.50 90.95±0.75 ≪0.001 91.31±0.47 0.178 94.05±0.48 ≪0.001

TransUNet_350 nnUNet_350 CoTr_350 FilterNet+_350 DeepLOGISMOS_350

Mean±STD p 
value**

Mean±STD Mean±STD p 
value**

Mean±STD p 
value*

*Mean±STD p 
value**

DSC (%) 94.06±0.37 0.007 94.38±0.34 94.44±0.35 0.60 95.57±0.27 0.050 96.56±0.26 ≪0.001

Jaccard (%) 88.99±0.58 0.003 89.52±0.51 89.64±0.55 0.48 90.81±0.44 0.051 93.45±0.43 ≪0.001

ASSD 
(pixel)

1.02±0.75 0.006 0.95 ±0.78 0.96±0.63 0.61 0.94 ±0.64 0.708 0.63 ±0.62 ≪0.001

ASSD Score 90.10±0.59 ≪0.001 90.73±0.53 90.57±0.54 0.35 91.75±0.48 0.909 93.77±0.48 ≪0.001

RSSD 
(pixel)

0.14±0.70 ≪0.001 −0.13±0.81 0.16±0.60 ≪0.001 −0.19±0.63 0.014 0.07±0.58 ≪0.001

RSSD Score 96.32±0.52 0.017 95.92±0.52 96.49±0.47 ≪0.001 97.22±0.43 0.051 97.71±0.42 ≪0.001

ASSDmax95 5.50±5.46 ≪0.001 4.39±3.57 4.81±3.42 ≪0.001 4.18±3.15 0.049 3.50±3.46 ≪0.001

Final Score 92.37±0.48 0.07 92.63±0.43 92.79±0.45 0.29 93.84±0.37 0.121 95.37±0.38 ≪0.001
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Table 2:

Evaluation indices for five calf muscle compartments from different cost functions in Deep LOGISMOS and 

training datasets. * and ** denote results of paired t-tests vs. EdgeGate_80, and EdgeGate_350, respectively. 

Bolded values represent statistically significant improvements in comparison with the compared approaches.

Sobel_80 Laplacian_80 2nd Derivative_80 EdgeGate_80

Mean±STD p value* Mean±STD p value* Mean±STD p value* Mean±STD

DSC (%) 91.71±0.35 ≪0.001 93.93±0.34 ≪0.001 94.10±0.36 ≪0.001 95.55±0.34

Jaccard (%) 84.86±0.55 ≪0.001 88.75±0.57 ≪0.001 89.06±0.60 ≪0.001 91.66±0.57

ASSD (pixel) 1.39±0.76 ≪0.001 1.10±0.74 ≪0.001 1.04±0.78 ≪0.001 0.80 ±0.75

ASSD Score 86.61±0.59 ≪0.001 89.29±0.60 ≪0.001 89.90±0.64 ≪0.001 92.18±0.63

RSSD (pixel) −0.35±0.83 ≪0.001 0.41±0.64 ≪0.001 0.13±0.68 0.0367 0.14±0.64

RSSD Score 93.12±0.50 ≪0.001 95.09±0.51 ≪0.001 96.15±0.51 0.07 96.83±0.50

ASSDmax95 4.54±3.42 0.27 5.11±3.86 0.0015 5.15±3.72 ≪0.001 4.25±4.33

Final Score 89.08±0.45 ≪0.001 91.76±0.46 ≪0.001 92.3±0.50 ≪0.001 94.05±0.48

Sobel_350 Laplacian_350 2nd Derivative_350 EdgeGate_350

Mean±STD p value** Mean±STD p value** Mean±STD p value** Mean±STD

DSC (%) 94.06±0.37 0.007 95.53±0.27 ≪0.001 95.69±0.28 ≪0.001 96.56±0.26

Jaccard (%) 88.99±0.58 0.003 91.15±0.44 ≪0.001 91.45±0.47 ≪0.001 93.45±0.43

ASSD (pixel) 1.02±0.75 0.006 0.92 ±0.62 ≪0.001 0.86±0.65 ≪0.001 0.63 ±0.62

ASSD Score 90.10±0.59 ≪0.001 91.45±0.48 ≪0.001 92.00±0.51 ≪0.001 93.77±0.48

RSSD (pixel) 0.14±0.70 ≪0.001 0.34±0.60 ≪0.001 −0.021±0.63 ≪0.001 0.07±0.58

RSSD Score 96.32±0.52 0.017 96.42±0.44 ≪0.001 97.40±0.44 ≪0.001 97.71±0.42

ASSDmax95 5.50±5.46 ≪0.001 4.38±3.25 ≪0.001 4.46±3.22 ≪0.001 3.50±3.46

Final Score 92.37±0.48 0.07 93.64±0.38 ≪0.001 94.14±0.40 ≪0.001 95.37±0.38
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Table 3:

Average inference times for a 512 × 512 × 30 sized MR image.

Method TransUNet nnUNet CoTr FilterNet+ Deep LOGISMOS

Time (s) 10.80 3.14 13.64 4.69 11.83
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