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Abstract

Knee cartilage and bone segmentation is critical for physicians to analyze and diagnose 

articular damage and knee osteoarthritis (OA). Deep learning (DL) methods for medical image 

segmentation have largely outperformed traditional methods, but they often need large amounts of 

annotated data for model training, which is very costly and time-consuming for medical experts, 

especially on 3D images. In this paper, we report a new knee cartilage and bone segmentation 

framework, KCB-Net, for 3D MR images based on sparse annotation. KCB-Net selects a small 

subset of slices from 3D images for annotation, and seeks to bridge the performance gap between 

sparse annotation and full annotation. Specifically, it first identifies a subset of the most effective 

and representative slices with an unsupervised scheme; it then trains an ensemble model using the 

annotated slices; next, it self-trains the model using 3D images containing pseudo-labels generated 

by the ensemble method and improved by a bi-directional hierarchical earth mover’s distance 

(bi-HEMD) algorithm; finally, it fine-tunes the segmentation results using the primal-dual Internal 

Point Method (IPM). Experiments on four 3D MR knee joint datasets (the SKI10 dataset, OAI 

ZIB dataset, Iowa dataset, and iMorphics dataset) show that our new framework outperforms 

state-of-the-art methods on full annotation, and yields high quality results for small annotation 

ratios even as low as 10%.

Keywords

Knee cartilage and bone segmentation; Sparse annotation; Ensemble learning; 3D MR images

1. Introduction

Osteoarthritis (OA) is a prevalent chronic disease caused by the damage and degeneration of 

cartilages. It is estimated that 20% of Americans may suffer from various levels of OA by 

2030. Magnetic resonance imaging (MRI) has become a common technique for studying and 
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assessing changes within the knee joint, including cartilages and bones. Fig. 1 illustrates the 

anatomical structure of the knee joint.

Considering the knee joint anatomy, the femoral cartilage (FC), tibial cartilage (TC), patellar 

cartilage (PC), and menisci (M) are the main tissues affecting the knee joint health. To 

quantitatively measure the thickness of the knee cartilages and identify the bone–cartilage 

interface, accurate cartilage and bone segmentation is needed.

To capture the detailed structure of the knee anatomy, 3D MR images are commonly 

scanned at high in-plane resolution. However, labeling 3D MR images is very time-

consuming.

In this paper, we propose a new framework, KCB-Net, for segmenting knee cartilages 

and bones in 3D MR images with sparse annotation. We first encode each 2D slice in an 

unlabeled training set of 3D images into a feature vector in an unsupervised manner. Second, 

a subset of the most representative slices (based on a given annotation ratio) for the training 

set is selected for experts to label. Third, we train three 2D modules using the selected 

labeled slices. Fourth, preliminary pseudo-labels of the training set are generated by the 

trained 2D modules, which are further used to train a 3D module. Fifth, we ensemble the 

three 2D modules and one 3D module, and generate pseud-labels of the entire training set, 

which are used to re-train the four modules and the 3D ensemble model for a few iterations. 

The feature maps generated by the ensemble model are post-processed to produce the final 

segmentation results.

We conduct experiments on four 3D MR knee joint datasets (the SKI10 dataset, OAI ZIB 

dataset, Iowa dataset, and iMorphics dataset; see Section 4). Our experiments show that with 

full annotation, our new KCB-Net framework outperforms state-of-the-art full annotation 

methods, and with sparse annotations, KCB-Net yields high quality results even with very 

sparse annotation ratios (e.g., 10%).

2. Related work

Automated and semi-automated methods for knee joint segmentation have been investigated 

for several decades. Shape models, graph optimization approaches, and deep learning 

(DL) methods exhibited high performance in recent years. 3D graph based methods are 

well suited for knee cartilage segmentation. Yin et al. (2010) proposed a layered optimal 

graph image segmentation for multiple objects and surfaces (LOGISMOS) framework to 

simultaneously segment multiple interacting surfaces of objects by incorporating multiple 

spatial interrelationships of surfaces in a D-dimensional graph. Kashyap et al. (2017) 

extended the LOGISMOS framework to simultaneously segment 3D knee objects for 

multiple follow-up visits of the same patient — effectively performing optimal 4D (3D 

+ time) segmentation. Xie et al. (2022) proposed a primal–dual Internal Point Method (IPM) 

to first learn the parameters of the surface cost functions for the LOGISMOS algorithm and 

then solve an optimization problem for the final segmentation.

Several deep convolutional neural network (CNN) approaches showed close-to-human 

level performance. Liu et al. (2018) proposed a fully automatic musculoskeletal tissue 
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segmentation method that integrates CNN and 3D simplex deformable approaches to 

improve the accuracy and efficiency. Ambellan et al. (2019) combined the strengths of 

statistical shape models and CNN to successfully segment knee bones/cartilages. Tan et al. 

(2019) proposed a method to first extract the regions of interest (ROIs) for three cartilage 

areas and then fuse the three ROIs to generate fine-grained segmentation results. Couteaux 

et al. (2019) presented an approach to localize and segment knee menisci and classify MRI 

slices based on tears in anterior and posterior menisci and their orientations using Mask 

R-CNN (He et al., 2017).

Zheng et al. (2019) proposed a 3D segmentation method that ensembles three 2D models 

and one 3D model (called base-learners). It first trains the base-learners using labeled data, 

and ensembles the base-learners by training a meta-learner (Yu et al., 2017). It then re-trains 

the base-learners and meta-learner with pseudo-labels to obtain a 3D segmentation model. 

However, such base-learners still rely on fully annotated 3D data. Zheng et al. (2020b) 

further proposed a sparse annotation strategy to select the most representative 2D slices for 

annotation. It first encodes each slice into a low-dimensional vector, and prioritizes the slices 

based on their representativeness in a set of 3D images. Next, three 2D modules and one 

3D module (a 3D FCN (Çiçek et al., 2016) are trained, and pseudo-labels of the unlabeled 

data are generated using the base-learners. A Y-shape DenseVoxNet (Yu et al., 2017) is 

used to train a meta-learner, which ensembles the 2D and 3D modules. Zheng et al. (2020a) 

then extended this sparse annotation strategy, and designed a K-head FCN to compute the 

pseudo-label uncertainty of each slice and rule out highly uncertain pixels in the subsequent 

training process.

3. Method

3.1. Overview

Our KCB-Net combines and extends previously reported ensemble learning (Zheng et al., 

2019) and sparse annotation (Zheng et al., 2020b) methods for 3D segmentation. Fig. 2 

shows its main steps.

(1) Representative slice selection: As in Zheng et al. (2020b), each 2D slice in every 

major orientation red(i.e., axial, coronal, or sagittal) in the entire set W  of 3D training 

images is encoded as a low-dimensional latent vector, and all slices are prioritized by their 

representativeness. The top-ranked k slices are selected as the ones, in which to perform 

expert annotations.

(2) Base-learner training and pseudo-label generation: As in Zheng et al. (2019), 

three 2D modules, one for each axial, sagittal, or coronal orientations, are trained on the 

selected and annotated slices. Once 2D modules are trained, pseudo-labels are assigned to all 

remaining un-annotated slices in W  and a 3D module is trained. K-UNet mechanism (Chen 

et al., 2016) is newly used to extract multi-scale features. Each module extracts information 

across different scales to support fine-scale feature extraction. Instead of using sparse 3D 

FCN (Çiçek et al., 2016) as in Zheng et al. (2020b), we utilize 3D Attention UNet (Oktay 

Peng et al. Page 3

Med Image Anal. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



et al., 2018), which uses labels of the expert-annotated slices and pseudo-labels of all the 

un-annotated slices.

As in Guo et al. (2021), an edge-aware branch is added to the 3D module to increase 

the weights of cartilage and bone surface locations. To explore the appearance consistency 

among consecutive slices and further improve the quality of the pseudo-labels generated, the 

H-EMD method (Liang et al., 2022) is newly enhanced by incorporating a bi-directional 

hierarchical earth mover’s distance (bi-HEMD) when generating pseudo-labels of the 

un-annotated slices. Our bi-HEMD method first produces object candidates by applying 

multiple threshold values on the probability maps, and then selects object instances by 

minimizing the earth mover’s distance based on a reference set of the object instances.

(3) Ensembling and self-training : Following the pseudo-label generation, 2D and 

3D modules are ensembled by training a 3D Y-shape DenseVoxNet (Zheng et al., 2019) as 

a meta-learner using the original input images and pseudo-labels, which learns the target 

object segmentation from the labels/pseudo-labels. The output of the ensemble model is 

utilized to iteratively re-train the modules in Step (2) and the ensemble model in Step (3), 

repeated until convergence.

(4) Post-processing : We newly add a post-processing step exploiting the task-specific 

characteristics that knee bones and cartilages are anatomically adjacent with one other. 

A fine-tuning network (Xie et al., 2022) that incorporates the surface interrelationships 

between adjacent bones and cartilages is trained by taking the probability maps generated in 

Step (3) as input and the pseudo-labels as the learning targets. The fine-tuning network is 

optimized using the IPM algorithm (Xie et al., 2022).

3.2. Representative slice selection

Identifying a small-enough set of the most representative 2D slices for annotation that 

subsequently facilitates the segmentation method training is critical for the success of our 

proposed approach. This section presents our slice selection scheme, called representative 

annotation (RA).

Medical experts often annotate a 3D image by choosing one orthogonal plane (axial, 
coronal, or sagittal) and labeling the corresponding slices one by one. It may, however, be 

beneficial to annotate 2D slices along each of the three orthogonal planes. Fig. 3 illustrates 

the slice selection method.

3.2.1. Slice representation—For a specified annotation ratio (e.g., 10% of all slices), 

to select the most representative slices to label, we first need to efficiently represent the 

slices. Medical image slices can commonly be represented as latent feature vectors of a 

much smaller size compared to the original 2D image matrix. By comparing slices using 

their latent vectors, not only can we reduce the computation cost but also extract their most 

useful information.

We utilize an auto-encoder as the representation extractor for the slices in our 3D training 

image set W , which learns efficient features in an unsupervised manner and conducts 
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a lossy compression in the encoding process. It learns to store relevant information 

and disregard noise. This auto-encoder consists of two parts: An encoder produces a 

compressed knowledge representation x for an input image (or slice) I; a decoder takes 

the representation x as input and outputs x as a reconstruction of the original image. The 

entire auto-encoder model is optimized by minimizing the sum of the reconstruction error 

ℒ(x, x), which measures the differences between the original image and the reconstruction 

produced, and a regularization term for alleviating overfitting. This can be formulated as:

ϕ∗, ψ∗ = arg min
ϕ, ψ

(ℒ(x, x) + λ1 × ∑
i = 1

M
wi

2), (1)

where ℒ is the reconstruction loss between x and x, λ1 is a scaling parameter for the 

regularization term ∑i = 1
M wi

2 to adjust the trade-off between the sensitivity to the input and 

overfitting, wi is the i parameter of the auto-encoder, and ϕ and ψ are the parameters of the 

encoder and decoder, respectively.

To facilitate a fast training and convergence of the auto-encoder, we use a ResNet-101 

(He et al., 2016) pre-trained on ImageNet (Deng et al., 2009) as the encoder backbone. A 

light-weight decoder (ResNet-50 He et al., 2016) is added to map the latent vectors to the 

original input space. Since slices along each orthogonal plane will be selected, we train the 

auto-encoder using all the slices of the 3D training set W  along the three orthogonal planes.

3.2.2. Prioritizing the slices—After training the auto-encoder, we measure the 

representativeness of each slice in the 3D training image set W  as in Zheng et al. (2020b). 

First, we feed a 2D slice I to the encoder, and take the generated latent vector f as the 

representation of the slice I. Second, we define and compute the similarity between two 

slices Ii and Ij as Sim(Ii, Ij) = cosine(fi, fj), where fi and fj are the latent vectors of Ii and Ij

respectively, and cosine denotes cosine similarity.

Next, a subset S of slices is selected from all the slices S(W ) of the set W  (for an annotation 

ratio or a given size of S). The representativeness of S with respect to W  is defined as:

F (S, W ) = ∑
I ∈ S(W )

max
Is ∈ S

(Sim(Is, I)) . (2)

Finding an optimal slice subset S was formulated as a maximum cover problem in Zheng et 

al. (2020b), which is NP-hard, and a polynomial time approximation solution was obtained 

using a greedy method. Suppose a subset S′ is the most representative for the images in W . 

The next choice (if needed) is a slice I∗ in the remaining slice set S(W ) − S′ that maximally 

increases the representativeness of the new subset S′ ∪ {I∗}, i.e.,

I∗ = arg max
I ∈ (S(W ) − S′)

(F (S′ ∪ {I}, W ) − F (S′, W )) . (3)
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This selection process puts all the slices in W  in decreasing order based on their 

representativeness. The slices with better representativeness have higher priorities for 

annotation.

3.3. Base-learner training and pseudo-label generation

After the representative slice selection, the selected slices are labeled by experts, which we 

denote as SL = {Sl1, Sl2, …, SIN}, where lN is the number of slices selected.

Our 2D module follows the structure of KCBAC-Net (Gu et al., 2021), since it outperforms 

other state-of-the-art 2D segmentation networks (e.g., UNet++ Zhou et al., 2018, TransUNet 

Chen et al., 2021, etc.) on our datasets in the experiments. This 2D module is a sequence 

of K complete bipartite networks with asymmetric convolutions, which exploits multi-scale 

features and enhances the capability of standard convolution on extracting discriminative 

features. A bipartite network structure (Chen et al., 2017), K-UNet scheme (Chen et al., 

2016), asymmetric convolutions (Ding et al., 2019), and deep supervision (Lee et al., 2015) 

are integrated into this module.

A 2D segmentation model can have a relatively large receptive field, but it does not utilize 

the interactions between consecutive slices well, which may result in spatial slice-to-slice 

inconsistency. Hence, we follow the ensemble method in Zheng et al. (2019) and train a 3D 

module, which produces smoother 3D results.

We choose 3D Attention UNet (Oktay et al., 2018) as the backbone for our 3D module, 

since it outperforms other well-known 3D segmentation networks (e.g., 3D U-Net (Çiçek et 

al., 2016, DenseVoxNet Yu et al., 2017, TransUNet 3D Chen et al., 2021, UNet++ 3D Zhou 

et al., 2018, etc.) on our datasets in the experiments.

Similar to our 2D modules, we apply the K-UNet design (Chen et al., 2016) and build a 3D 

K-AttentionUNet as our 3D module to exploit 3D multi-scale features. In our 3D module of 

3D K-AttentionUNet, the coarse features extracted by one AttentionUNet submodule are fed 

to the next AttentionUNet submodule to obtain fine-grained features.

For knee joint segmentation, the bone and cartilage boundaries are often more important 

than other areas, since they usually serve as the main criteria to measure whether and/or 

how much a cartilage is damaged. Hence, we add an edge-aware regulation to our 3D 

K-AttentionUNet to force the network to focus more on the object boundary areas. Fig. 4 

shows the structure of our edge-aware 3D K-AttentionUNet. The edge gate FLρG is defined 

as:

FLρG(I) = kG ∗ ρ(kL ∗ I), (4)

where kG and kL represent the Gaussian smoothing kernel and Laplacian kernel respectively, 

* denotes convolution, and ρ is an activation function.

The loss function of our 3D module is defined as:
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ℒ = Lregion + λ2Ledge, (5)

where Lregion and Ledge are the cross entropy losses of the region branch and edge branch 

respectively, and λ2 is a scaling parameter to regularize the edge branch.

We first train our three 2D segmentation modules using the selected labeled slices for each 

of the three orthogonal planes, and generate the probability maps of the unlabeled slices 

using the three trained 2D modules. We then train our 3D edge-aware K-AttentionUNet 

using the 3D images in W  that contain both the labeled slices and unlabeled slices that are 

now “labeled”. Specifically, the pseudo-labels produced by the three 2D modules are first 

improved by the bi-HEMD algorithm in Section 3.4. Then, the probability maps attained by 

the three 2D modules are averaged to generate the pseudo-labels used for training our 3D 

module. These four trained segmentation modules generate their pseudo-labels respectively 

for all the unlabeled slices. For simplicity, we average the results of these four modules as 

the probability map for each 3D image in W .

3.4. Bi-directional hierarchical earth mover’s distance

After training our three 2D modules, probability maps of all the unlabeled slices in W
are obtained. One observation on the 3D knee images is that the appearances of bones 

and cartilages between consecutive slices are often similar in size and shape. Exploring 

such appearance similarity can help improve the pseudo-label quality. Hence, we apply 

the hierarchical earth mover’s distance (H-EMD) method (Liang et al., 2022) that uses 

many threshold values of the probability map for each unannotated slice and exploits the 

appearance consistency between consecutive slices to optimize the pseudo-labels.

The H-EMD method (Liang et al., 2022) takes two key steps. (i) Candidate instance 

generation: For a set of v threshold values, {tℎ}ℎ = 1
v , from the probability map of a slice 

Si in a 3D image, produce a set ICi of possible object instance candidates. These object 

candidates can be organized into a forest structure F i. Also, a reference set Ri − 1 of object 

instances is built on the slice Si − 1 (obtained iteratively). (ii) Candidate instance selection: 

For each pair of an instance candidate in F i and a reference instance in Ri − 1, compute their 

matching score as the cosine distance between their instance feature vectors. The goal is 

to maximize the sum of the weighted matching scores between the candidate set ICi and 

reference set Ri − 1 to select the “best” object instances for the slice Si. This can be solved by 

integer linear programming. For a dataset with n different classes, a feature vector for each 

instance candidate is defined as (x, y, z, v1, …, vn), whose first three items are the coordinates 

of its center pixel and the last n items are for an n-D one-hot vector denoting the category of 

the instance.

Rather than using the Euclidean distance as in Liang et al. (2022), our method applies cosine 

distance, since our vectors contain two different types of information, which make the Si

distance unsuitable to measure the differences between these vectors.
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Similar to the bi-directional RNN in Chen et al. (2016), we perform the H-EMD process 

in two opposite directions (bi-HEMD). That is, for any two labeled slices Sj and i < j in a 

3D image, Si + 1, Si + 2, …, Sj − 1, we apply H-EMD along the direction of Sj − 1, Sj − 2, …, Si + 1, and 

along K. With the bi-HEMD process, the pseudo-labels generated by the 2D modules are 

improved, which are then used to train the 3D module in Section 3.3.

3.5. Tuning the final 3D model using pseudo-labels

We now have three 2D K-FCNs and one 3D axial-FCN trained with labeled or pseudo-

labeled slices along the coronal, sagittal, and M planes. Next, we produce the probability 

maps of each 3D image W  in W  using these four FCN modules, denoted as maxial, mcoronal, 

msagittal, and m3D, respectively. These probability maps are averaged, and the results are used to 

train our 3D meta-learner. This meta-learner is a Y-shaped K-DenseVoxNet (Yu et al., 2017) 

that is aware of the raw images and their pseudo-labels so as to ease overfitting. Fig. 5 shows 

our meta-learner.

After training our 3D meta-learner, we apply the self-training strategy in Zheng et al. (2019) 

to further improve the model performance. In this self-training process, the segmentation 

results of the meta-learner are regarded as pseudo “ground truth” of the unlabeled slices, 

which are used to re-train the 2D/3D base-learners (the three 2D base-learners are re-trained 

with the “labeled” slices along the three orthogonal planes). Note that the base-learners are 

first trained in the step of Section 3.3. Here, we apply the SGD optimizer and a smaller 

learning rate to ensure the robustness and convergence of the entire training process. The 

loss function LCE of the 3D meta-learner (see Fig. 5) is defined as the cross-entropy between 

the predictions and input pseudo-labels. The base-learners are re-trained, and generate four 

versions of pseudo-labels for each 3D image in W , which are averaged and used to train 

the meta-learner again. We repeat this self-training process for a few iterations, until the 

meta-learner performance no longer improves, giving rise to our final 3D model.

3.6. Post-processing using IPM

Instead of applying the softmax function to the final probability maps, we further perform 

some post-processing to fine-tune the probability maps. One observation is that the surfaces 

of bones and cartilages are mutually “coupled” in some areas, within which the topology 

and relative positions of the bones and cartilages are known and the distances between them 

are within specific ranges. Furthermore, physicians care more about the “coupled” areas 

since osteoarthritis is usually caused by damages of the knee cartilages in such areas. Thus, 

we apply the IPM method (Xie et al., 2022) by incorporating the surface interrelationships 

between the bones and cartilages into the segmentation process to further improve the 

segmentation performance. An advantage of the IPM method over traditional graph based 

methods is that it parameterizes the surface cost functions in the graph model and leverages 

DL to learn the parameters rather than relying on hand-crafted features.

Instead of using ground truth to train the surface segmentation network of IPM (Xie et al., 

2022), we use the pseudo-labels generated by our meta-learner to optimize this network in 

the first iteration. Afterwards, the pseudo-labels are updated by IPM and used to re-train the 
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network. Such operations are repeated several times until convergence. The details of the 

above training process are shown in Fig. 7 (Xie et al., 2022).

Since the bone and cartilage surfaces are not terrain-like, we need to first unfold the knee 

joint into seven parts following the practice in Zhou et al. (2019), i.e., the front, back, top, 

center, bottom, left and right parts, respectively, as shown in Fig. 6.

Specifically, for the center part (see Fig. 6(d)), we replace U-Net used in the original 

IPM method (Xie et al., 2022) with the probability maps generated by our final fine-tuned 

ensemble model. Finally, we patch its 6 junction areas (i.e., the junction areas between 

center and front, center and back, center and top, center and bottom, center and left, and 

center and right), and average the center area and its corresponding junction areas processed 

by IPM to smooth the final results.

4. Experiments and analysis

To demonstrate the capabilities of our KCB-Net approach, its performance was compared 

with state-of-the-art knee segmentation methods using full annotations as well as compared 

with two state-of-the-art slice selection strategies: equal-interval annotation (EIA) and 

random slice selection (RSS). Furthermore, the effect of each component in our KCB-Net 

framework was assessed and the robustness of the method was quantified for different sparse 

annotation ratios.

4.1 Datasets and implementation details

Our experiments use four 3D MR knee joint datasets, the SKI10 dataset, OAI ZIB dataset, 

Iowa dataset, and iMorphics dataset, which we describe below.

The SKI10 Dataset—This dataset contains 60 3D MR images for training, 40 for 

validation, and 50 for testing, from the MICCAI SKI10 challenge. The images were from 

the surgical planning program of Biomet, Inc., and were annotated by experts. It only covers 

the time-point of baseline. Four compartments were annotated: femural bone (FB), femural 

cartilage (FC), tibia bone (TB), and tibia cartilage (TC). More details of this dataset can be 

found in Heimann et al. (2010).

The OAI dataset—Three sub-datasets, the OAI ZIB dataset, iMorphics dataset, and Iowa 

dataset, from the OAI dataset are used to evaluate the performance of our KCB-Net. 

The images of these three sub-datasets were from the Osteoarthritis Initiative database 

(OAI, http://www.oai.ucsf.edu/). (1) The OAI ZIB dataset consists of 507 3D MR images 

annotated by experts of the Zuse Institute Berlin. It only covers the time-point of baseline. 

The details of this dataset are depicted in Ambellan et al. (2019). (2) The iMorphics dataset 

(Bowes et al., 2015), available directly from the OAI database, includes 176 3D MR knee 

images acquired with 3T Siemens MAGNETOM Trio scanners and quadrature transmit–

receive knee coils (USA Instruments, Aurora, OH, USA). The annotated compartments are 

femoral cartilage (FC), tibia cartilage (TC), patellar cartilage (PC), and menisci (M). It 

covers the time-point of baseline and 12 month follow-up. (3) The Iowa dataset, a University 

of Iowa annotated portion of the OAI dataset that was first segmented by the LOGISMOS 
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method (Kashyap et al., 2017) and the automatic segmentations were then corrected by the 

just-enough-interaction (JEI) approach in 4D (3D + time) (Zhang et al., 2020). The Iowa 

dataset consists of 1462 double echo steady state (DESS) 3D MR images from 248 subjects. 

Four compartments were annotated: femur bone (FB), femoral cartilage (FC), tibia bone 

(TB), and tibial cartilage (TC). Different time-points were covered by this dataset: some 

subjects were covered with baseline and 12 month follow-up, and some were covered with 

baseline, 12, 24, 30, 36, 48, 72, and 96 month follow-ups.

We implemented all the tested networks using PyTorch (Paszke et al., 2019). For our auto-

encoder, ResNet-101 (He et al., 2016) is used as the backbone of its encoder and ResNet-50 

(He et al., 2016) as the backbone of its decoder. The encoder is initialized with a model 

pre-trained on ImageNet (Deng et al., 2009). All the other parameters are initialized as in He 

et al. (2016), and λ1 in Eq. (1) is set to 5e − 5. The network was optimized using the Adam 

optimizer (learning rate = 1e − 4, β1 = 0.9, β2 = 0.999). The 3D images were first cropped so 

as to remove the background clearly outside of the knee area. Each slice or 3D image was 

normalized to zero mean and unit standard variance. In the data augmentation for 3D model 

training, starting points are randomly selected in a 3D image, and a patch of size 80 × 192 × 

160 is cropped at each starting point, making sure that the cropped patch locates completely 

inside the 3D image. Afterwards, common spatial transforms (e.g., rotation, scaling, and 

mirroring) are applied. In 2D model training, each slice is augmented with common spatial 

transforms.

We set K = 2 for the KCBAC-Net and 3D K-AttentionUNet with edge-aware branches (for 

larger K, the model costs increase largely but the accuracy improves little Chen et al., 2016). 

We use mean square error as the auto-encoder’s loss. We set the parameter of the edge 

regularizer in the edge-aware 3D K-AttentionUNet as λ2 = 1e − 4 (see Eq. (5)).

4.2. Evaluation metrics

The following evaluation metrics are used in our experiments and comparisons.

4.2.1. Dice similarity coefficient—Dice similarity coefficient (DSC) is calculated as:

DSC = 2 × V (GT ∩ Pred)
V (GT ) + V (Pred) , (6)

where GT  is the ground truth, Pred is the prediction, and V (X) denotes the volume of a 3D 

object X.

4.2.2. Average symmetric surface distance—Average symmetric surface distance 

(ASSD) focuses on the absolute distances between surfaces of the segmented objects and 

their ground truths, calculated as:

ASSD = 1
n∂A + n∂B ( ∑

a ∈ ∂A
d(a, ∂B) + ∑

b ∈ ∂B
d(b, ∂A)), (7)
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where ∂A and ∂B denote the surfaces of objects A and B respectively, n∂A and n∂B denote 

the numbers of voxels on ∂A and ∂B respectively, and d(x, ∂S) denotes the nearest Euclidean 

distance of a point x to a surface ∂S.

4.2.3. Root Mean Square symmetric surface distance—Root Mean Square 

symmetric surface Distance (RMSD) is a variation of ASSD, except that all the distances are 

squared first and the root is conducted for the average value. RMSD is computed as:

RMSD = 1
n∂A + n∂B ( ∑

a ∈ ∂A
d(a, ∂B)2 + ∑

b ∈ ∂B
d(b, ∂A)2), (8)

in which all the terms are defined as in Eq. (7). In RMSD, a larger deviation is penalized 

stronger. This metric is used for comparison with previous methods on the SKI10 dataset.

4.2.4. Volume overlap error—The volume overlap error (VOE) between the GT and 

Pred is calculated as:

V OE = 1 − V (GT ∩ Pred)
V (GT ∪ Pred) . (9)

A smaller value of VOE means a better segmentation, with 0 for perfect segmentation and 

1 for no overlap of GT and Pred at all. This metric is used for comparison with previous 

methods on the SKI10 dataset.

4.2.5. Volume difference—The volume difference (VD) between the GT and Pred is 

calculated as:

V D = V (Pred) − V (GT )
V (GT ) . (10)

VD is used in the scoring of cartilages on the SKI10 dataset. It approximately indicates 

the deviation from the average cartilage thickness when the evaluation is limited on the 

respective ROIs.

4.3. Experimental results with full annotation

To evaluate the effectiveness of our approach, we compare the performance of KCB-Net 

with the following recent methods on the SKI10 dataset and ZIB dataset with full 

annotation. (i) CNN-SSM: integrating CNN with a statistical shape model (Ambellan et 

al., 2019). (ii) The ensemble method (Zheng et al., 2020b). (iii) UNet++ 3D (Zhou et al., 

2018). (iv) Attention UNet 3D (Oktay et al., 2018). (v) TransUNet 3D (Chen et al., 2021). 

For fair comparison, we follow the dataset split strategy in Ambellan et al. (2019) and use 

the evaluation metrics in Heimann et al. (2010).

Tables 1 and 2 present the performance comparisons of our KCB-Net with the other methods 

trained on the SKI10 dataset and OAI ZIB dataset with full annotation, respectively. From 

Table 1, one can see that our KCB-Net outperforms the best-known method, CNN-SSM, in 
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all the metrics except the ASSD on femoral bone and tibial bone. Our overall score on the 

SKI10 dataset is higher by 1.94 than that of CNN-SSM.

To further examine the robustness of our KCB-Net, five-fold cross validation is conducted 

on the four datasets. Note that for the SKI10 dataset, some of the utilized evaluation metrics 

require the ROIs of the femur and tibial areas, which are not available in some cases; 

thus, we compare KCB-Net in the commonly used DSC and ASSD metrics with the other 

methods. We split a whole dataset in the ratio of 7:1:2, corresponding to training, validation, 

and testing, for each fold on the four datasets using stratification by subject IDs. The 

final results are the averages of the five folds, which are given in Tables 3, 4, 5, and 6, 

respectively. As Tables 3 and 4 show, our approach achieves the best results on the SKI10 

and OAI ZIB datasets.

Table 5 shows the performance comparison of our KCB-Net and the other methods 

trained on the fully annotated Iowa dataset. The Iowa dataset was used for comparison 

with the following known methods. (i) 4D LOGISMOS (Kashyap et al., 2017): utilizing 

a hierarchical set of random forest classifiers to learn the cartilage appearance and 

simultaneously segment multiple interacting surfaces of objects based on an algorithmic 

incorporation of multiple spatial interrelationships in an n-dimensional graph. (ii) CML 

(Tan et al., 2019): detecting the regions of interest and fusing the cartilages by a fusion 

layer. Since we could not access the source code of the original method, we implemented 

the approach and applied it to the Iowa dataset. The hyper-parameters (e.g., the number 

of filters, down-samplings, and up-samplings) used in our implementation are the same as 

presented in the original paper. We experimented with both the 2D and 3D versions of 

CML, which showed that the 2D version yielded better results on the Iowa dataset. (iii) 

The ensemble learning method (Zheng et al., 2020b): Ensembling four 2D/3D FCNs and 

self-training with fully labeled 3D data. (iv) UNet++ 3D (Zhou et al., 2018). (v) Attention 

UNet 3D (Oktay et al., 2018). (vi) TransUNet 3D (Chen et al., 2021).

From Table 5, one can see that our KCB-Net outperforms LOGISMOS-4D on both the 

femoral and tibial cartilage segmentations. KCB-Net also outperforms the ensemble method 

(Zheng et al., 2020b), which demonstrates that the KCBAC-Net based 2D modules, K-UNet 

design, edge-aware 3D AttentionUNet, bi-HEMD method, and IPM post-processing method 

that we use in KCB-Net help improve the segmentation performance.

Table 6 presents the results achieved on the fully annotated iMorphics dataset. We compare 

with the following recent methods. (i) UDA (Panfilov et al., 2019): utilizing mixup and 

adversarial unsupervised domain adaptation to improve the robustness of DL-based knee 

cartilage segmentation in new MRI acquisition settings. (ii) CML (Tan et al., 2019). (iii) 

The ensemble method (Zheng et al., 2020b). (iv) UNet++ 3D (Zhou et al., 2018). (v) 

Attention UNet 3D (Oktay et al., 2018). (vi) TransUNet 3D (Chen et al., 2021). Our method 

attains better DSC scores on FC, TC, PC, and M compared to the UDA method. We also 

outperform the CML and ensemble methods in both DSC and surface errors of FC, TC, PC, 

and M, suggesting that our method can obtain more quantitatively accurate knee cartilage 

and bone segmentations.
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Performance improvement of our KCB-Net over the original ensemble method (Zheng et al., 

2020b) was evaluated on the four datasets, using paired t-tests. Tables 1, 2, 3, 4, 5, and 6 

show that in most of the compared cases, our new approach significantly outperforms the 

ensemble approach (Zheng et al., 2020b) (with p-values < 0.05).

4.4. Experimental results with sparse annotation

To evaluate the effectiveness of our approach on sparsely annotated data, we compare 

its performances on the four datasets with changing sparse annotation ratios vs. those 

achieved using different slice selection schemes. Specifically, we compare the representative 

annotation (RA) scheme used in our KCB-Net pipeline with two common slice selection 

schemes: equal-interval annotation (EIA) and random slice selection (RSS).

Suppose for a specified annotation ratio, Sk slices are to be selected. The EIA scheme 

selects Sk ∕ 3 slices at equal distance along each axis, and the RSS scheme randomly selects 

Sk ∕ 3 slices along each axis. We repeat the RSS process 10 times, and take the average 

of the results as the RSS-based performance. 8, Figs. 9, 10, and 11 show the performance 

comparisons with various annotation ratios on the SKI10, OAI ZIB, iMorphics, and Iowa 

datasets, respectively.

Figs. 8, 9, 10, and 11, one can see that our RA outperforms the EIA and RSS schemes 

on both the cartilage and bone segmentations in most the cases. Our method can notably 

alleviate performance degradation, especially for annotation ratios ≤30%. This is because 

EIA selects the locationally same slice indices in each 3D image, which might make the 

trained model overfit on the selected slices of the same indices and cause segmentation 

errors on the remaining slices. RSS performs better than EIA in very sparse annotation 

ratios (10%–30%) for most of the segmentation targets but sometimes performs worse than 

EIA in less sparse annotation ratios (e.g., >50%), since RSS can select different slices 

in different 3D images, likely incurring less overfitting. The performances of these three 

selection schemes are similar for annotation ratios >80% since many slices they select tend 

to be the same or similar at such dense annotation ratios.

Another observation from these four figures is that the performance drops quickly when 

the annotation ratios are <30% for most of the segmentation targets, suggesting that the 

annotation ratio of 30% might be a “lower limit” for a satisfactory performance for knee 

segmentation.

4.5. Ablation study

To examine the contribution of each key component in our KCB-Net, we conducted an 

ablation study to evaluate the performances of its components, denoted as follows. (1) SI: 

2D axial module; (2) S2: 2D coronal module; (3) S3: 2D sagittal module; (4) S4: 3D module; 

(5) S5: ensembling of the three 2D modules and the 3D module; (6) S6: bi-HEMD; (7) S7: 

self-training; (8) S8: IPM post-processing.

The performance of each individual component in S1, S2, S3, and S4 is given first, followed 

by the ensemble performance (S5) that combines all these four components. For S6–S8, 

components are sequentially added to the framework each time; the more the performance 
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increases, the more contribution the corresponding component (in S6–S8) makes. Thus, 

note that S8 actually reflects the performance of the entire framework including all its 

components.

7, 8, 9, and 10 present the ablation study results on the SKI10, OAI ZIB, iMorphics, and 

Iowa datasets, respectively. We observe that the ensemble of the 2D and 3D modules can 

substantially improve the performance over the individual modules. The 3D module often 

attains better performance than the 2D modules since it exploits the interrelations among 

consecutive slices. The ensemble strategy can benefit from both the 2D modules (with a 

large receptive field) and the 3D module (exploiting the interactions among consecutive 

slices). Since some cartilages are very thin along the sagittal plane, it is quite difficult for 

DL models to detect them along one such plane, especially with very sparse annotation. 

Utilizing other 2D modules can help address this issue. Tables 7, 8, 9, and 10 show that the 

ensemble strategy and the self-training mechanism play more important roles than the other 

components. Figs. 12 and 13 qualitatively compare results in the sagittal view on the Iowa 

and iMorphics datasets.

4.6. Discussion

From Figs. 8, 9, 10, and 11, one can see that our representative annotation (RA) scheme 

substantially reduces the performance gap between different sparse annotation ratios and 

full annotation, suggesting that our framework can achieve comparatively good results while 

using much less annotated data than required for full annotation. Our ensemble method 

and the self-training scheme using pseudo-labels improved by the bi-HEMD method largely 

improve the segmentation performance, because the training data we use contribute more 

information in an efficient way. Figs. 12 and 13 show that our ensemble and self-training 

strategies allow detection of small objects and thin boundary areas, despite the annotation 

sparsity. Our IPM post-processing helps further fine-tune the object boundary areas, making 

the overall segmentation results more accurate and reliable.

5. Conclusions

We reported a new framework, KCB-Net, for segmenting cartilages and bones in 3D knee 

joint MR images. Our method efficiently selects subsets of diverse image slices for expert 

annotations in a way that the most information-contributing slices are ranked most highly, 

allowing to train image segmentation models using high-sparsity ratio annotations. In the 

KCB-Net, three 2D segmentation modules and one 3D module integrating features across 

multiple scales with edge-aware branches are ensembled to generate pseudo-labels of the 

un-annotated slices, which are then used to re-train the 3D model. An IPM process is 

employed to post-process the probability maps generated by the 3D model. Experiments on 

four large knee datasets show that our new approach outperforms state-of-the-art methods 

on fully annotated datasets, and can notably improve segmentation performances when 

annotating only small data subsets.
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Fig. 1. 
Knee joint. (a) Anatomy of the knee joint (adopted from Paley Orthopedic & Spine Institute 

(2018)). (b)–(d) Sagittal, coronal, and transverse MR image planes, showing the femur 

bone (FB), femoral cartilage (FC), tibia bone (TB), tibial cartilage (TC), patella bone (PB), 

patellar cartilage (PC), and meniscus (M).
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Fig. 2. 
The pipeline of our proposed KCB-Net framework.
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Fig. 3. 
Illustrating the representative slice selection method. Lmse, denotes the mean square error.
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Fig. 4. 
The structure of our 3D K-AttentionUNet with edge-aware branches (K = 2). A dashed red 

box denotes a 3D AttentionUNet block.
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Fig. 5. 
The structure of our meta-learner.

Peng et al. Page 21

Med Image Anal. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Illustrating the seven unfolded parts of the knee joint. The corresponding parts in the sagittal 

view are: (a) front; (b) back; (c) top; (d) center; (e) bottom; (f) left; (g) right.
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Fig. 7. 
The process of the post-processing step (Xie et al., 2022).
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Fig. 8. 
Comparison of the three slice selection schemes (RA, EIA, and RSS) on the SKI10 dataset.
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Fig. 9. 
Comparison of the three slice selection schemes (RA, EIA, and RSS) on the OAI ZIB 

dataset.
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Fig. 10. 
Comparison of the three slice selection schemes (RA, EIA, and RSS) on the iMorphics 

dataset.
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Fig. 11. 
Comparison of the three slice selection schemes (RA, EIA, and RSS) on the Iowa dataset.
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Fig. 12. 
Visual comparison of knee bone and cartilage segmentation by our KCB-Net and Attention 

UNet 3D (a best-known 3D segmentation method) in the sagittal view on the Iowa dataset. 

(a) An input 2D slice from a 3D image; (b) segmentation ground truth; (c) segmentation by 

Attention UNet 3D; (d) segmentation by our KCB-Net. Our KCB-Net is able to correctly 

segment some thin boundary areas (e.g., see the dashed yellow boxes).
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Fig. 13. 
Visual comparison of knee bone and cartilage segmentation by our KCB-Net and Attention 

UNet 3D (a best-known 3D segmentation method) in the sagittal view on the iMorphics 

dataset. (a) An input 2D slice from a 3D image; (b) segmentation ground truth; (c) 

segmentation by Attention UNet 3D; (d) segmentation by our KCB-Net. Our KCB-Net 

is able to correctly segment some small cartilage areas (e.g., see the dashed red and blue 

boxes).

Peng et al. Page 29

Med Image Anal. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Peng et al. Page 30

Ta
b

le
 1

C
om

pa
ri

so
n 

w
ith

 s
ta

te
-o

f-
th

e-
ar

t m
et

ho
ds

 u
si

ng
 f

ul
l a

nn
ot

at
io

n 
on

 th
e 

SK
I1

0 
da

ta
se

t f
ol

lo
w

in
g 

th
e 

da
ta

 s
pl

it 
in

 A
m

be
lla

n 
et

 a
l. 

(2
01

9)
 a

nd
 e

va
lu

at
io

n 

m
et

ri
cs

 u
se

d 
in

 H
ei

m
an

n 
et

 a
l. 

(2
01

0)
. P

ai
re

d 
t-

te
st

 v
al

ue
s 

in
di

ca
te

 th
e 

si
gn

if
ic

an
ce

 s
ta

tu
s 

of
 th

e 
im

pr
ov

ed
 p

er
fo

rm
an

ce
 o

f 
ou

r 
m

et
ho

d 
vs

. t
he

 e
ns

em
bl

e 

m
et

ho
d 

(Z
he

ng
 e

t a
l.,

 2
02

0b
).

F
em

or
al

 b
on

e
F

em
or

al
 c

ar
ti

la
ge

T
ib

ia
l b

on
e

T
ib

ia
l c

ar
ti

la
ge

O
ve

ra
ll 

sc
or

e

A
SS

D
 (

m
m

)
R

SS
D

 (
m

m
)

V
O

E
 (

%
)

V
D

 (
%

)
A

SS
D

 (
m

m
)

R
SS

D
 (

m
m

)
V

O
E

 (
%

)
V

D
 (

%
)

C
N

N
-S

SM
 (

A
m

be
lla

n 
et

 a
l.,

 2
01

9)
a

0.
43

0 
± 

0.
13

0
0.

74
0 

±
 0

.2
70

20
.9

9 
±

 5
.0

8
7.

18
 ±

 1
0.

51
0.

35
0 

± 
0.

07
0

0.
59

0 
±

 0
.1

90
19

.0
6 

±
 5

.1
8

4.
29

 ±
 1

2.
34

74
.0

0 
±

 7
.7

0

U
N

et
+

+
 3

D
 (

Z
ho

u 
et

 a
l.,

 2
01

8)
0.

54
1 

±
 0

.0
96

0.
69

4 
±

 0
.2

52
20

.8
6 

±
 5

.0
1

3.
90

 ±
 1

1.
79

0.
52

1 
±

 0
.1

64
0.

67
2 

±
 0

.4
48

20
.0

7 
±

 5
.6

2
5.

35
 ±

 1
2.

35
72

.0
3 

±
 8

.2
9

T
ra

ns
U

N
et

 3
D

 (
C

he
n 

et
 a

l.,
 2

02
1)

0.
53

8 
±

 0
.0

72
0.

68
0 

±
 0

.1
96

21
.3

6 
±

 5
.0

2
5.

42
 ±

 1
0.

31
0.

51
7 

±
 0

.1
52

0.
65

4 
±

 0
.4

18
20

.0
1 

±
 5

.4
4

6.
04

 ±
 1

2.
68

72
.2

0 
±

 8
.6

0

A
tte

nt
io

n 
U

N
et

 3
D

 (
O

kt
ay

 e
t a

l.,
 2

01
8)

0.
51

9 
±

 0
.0

83
0.

69
0 

±
 0

.4
54

18
.7

7 
±

 4
.7

4
1.

36
 ±

 9
.6

9
0.

51
9 

±
 0

.2
59

0.
66

4 
±

 0
.6

48
18

.1
4 

±
 4

.8
7

6.
19

 ±
 1

1.
21

74
.5

4 
±

 6
.5

0

E
ns

em
bl

e 
m

et
ho

d 
(Z

he
ng

 e
t a

l.,
 2

02
0b

)
0.

68
9 

±
 0

.8
58

0.
73

2 
±

 0
.8

71
18

.4
7 

± 
4.

75
4.

71
 ±

 9
.7

3
0.

50
8 

±
 0

.2
00

0.
64

0 
±

 0
.5

33
18

.1
9 

±
 5

.1
1

3.
00

 ±
 1

1.
15

73
.8

2 
±

 9
.5

1

O
ur

 K
C

B
-N

et
 m

et
ho

d
0.

49
8 

±
 0

.0
53

0.
57

9 
± 

0.
10

4
18

.6
6 

±
 4

.5
4

−1
.0

6 
± 

9.
20

0.
50

4 
±

 0
.2

40
0.

51
6 

± 
0.

60
2

17
.6

0 
± 

4.
65

0.
92

 ±
 1

0.
73

75
.9

4 
± 

6.
08

p-
va

lu
e

0.
01

6
0.

01
1

0.
62

1
0.

03
3

0.
54

7
≪

0.
00

1
0.

04
1

≪
0.

00
1

0.
00

1

a M
ar

ks
 th

e 
ro

w
 in

 w
hi

ch
 th

e 
re

su
lts

 a
re

 f
ro

m
 th

e 
or

ig
in

al
 p

ap
er

.

Med Image Anal. Author manuscript; available in PMC 2023 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Peng et al. Page 31

Ta
b

le
 2

C
om

pa
ri

so
n 

w
ith

 s
ta

te
-o

f-
th

e-
ar

t m
et

ho
ds

 u
si

ng
 f

ul
l a

nn
ot

at
io

n 
on

 th
e 

O
A

I 
Z

IB
 d

at
as

et
 f

ol
lo

w
in

g 
th

e 
da

ta
 s

pl
it 

in
 A

m
be

lla
n 

et
 a

l. 
(2

01
9)

. P
ai

re
d 

t-
te

st
 

va
lu

es
 in

di
ca

te
 th

e 
si

gn
if

ic
an

ce
 s

ta
tu

s 
of

 th
e 

im
pr

ov
ed

 p
er

fo
rm

an
ce

 o
f 

ou
r 

m
et

ho
d 

vs
. t

he
 e

ns
em

bl
e 

m
et

ho
d 

(Z
he

ng
 e

t a
l.,

 2
02

0b
).

F
em

or
al

 b
on

e
F

em
or

al
 c

ar
ti

la
ge

T
ib

ia
l b

on
e

T
ib

ia
l c

ar
ti

la
ge

D
SC

 (
%

)
A

SS
D

 (
m

m
)

D
SC

 (
%

)
A

SS
D

 (
m

m
)

D
SC

 (
%

)
A

SS
D

 (
m

m
)

D
SC

 (
%

)
A

SS
D

 (
m

m
)

C
N

N
-S

SM
 (

A
m

be
lla

n 
et

 a
l.,

 2
01

9)
a

98
.6

0 
±

 0
.3

0
0.

17
0 

± 
0.

05
0

89
.9

0 
±

 3
.6

0
0.

16
0 

±
 0

.0
70

98
.5

0 
±

 0
.3

3
0.

18
0 

±
 0

.0
60

85
.6

0 
±

 4
.5

4
0.

23
0 

±
 0

.1
20

E
ns

em
bl

e 
m

et
ho

d 
(Z

he
ng

 e
t a

l.,
 2

02
0b

)
98

.4
0 

±
 0

.3
2

0.
19

7 
±

 0
.0

54
88

.1
3 

±
 2

.5
7

0.
19

3 
±

 0
.0

54
98

.5
3 

±
 0

.3
4

0.
18

3 
±

 0
.0

67
84

.6
4 

±
 4

.2
4

0.
21

5 
±

 0
.0

85

T
ra

ns
U

N
et

 3
D

 (
C

he
n 

et
 a

l.,
 2

02
1)

98
.3

3 
±

 0
.3

2
0.

21
2 

±
 0

.0
68

88
.6

6 
±

 2
.7

0
0.

18
3 

±
 0

.0
55

98
.5

3 
±

 0
.3

6
0.

20
6 

±
 0

.2
05

83
.8

6 
±

 4
.9

7
0.

23
5 

±
 0

.1
01

A
tte

nt
io

n 
U

N
et

 3
D

 (
O

kt
ay

 e
t a

l.,
 2

01
8)

98
.4

1 
±

 0
.3

4
0.

20
1 

±
 0

.0
68

88
.9

0 
±

 2
.7

5
0.

17
8 

±
 0

.0
56

98
.5

6 
±

 0
.3

6
0.

18
1 

±
 0

.0
84

84
.9

9 
±

 4
.6

7
0.

22
4 

±
 0

.0
96

U
N

et
+

+
 3

D
 (

Z
ho

u 
et

 a
l.,

 2
01

8)
98

.2
4 

±
 0

.4
2

0.
26

6 
±

 0
.1

34
88

.2
2 

±
 2

.7
7

0.
19

2 
±

 0
.0

59
98

.3
1 

±
 0

.5
3

0.
85

6 
±

 1
.2

51
84

.3
1 

±
 5

.0
4

0.
24

2 
±

 0
.1

18

O
ur

 K
C

B
-N

et
 m

et
ho

d
98

.7
9 

± 
0.

30
0.

18
1 

±
 0

.0
54

90
.3

3 
± 

2.
84

0.
15

2 
± 

0.
05

1
98

.8
4 

± 
0.

34
0.

16
4 

± 
0.

05
8

86
.1

0 
± 

4.
50

0.
21

2 
± 

0.
09

0

p-
va

lu
e

≪
0.

00
1

≪
0.

00
1

≪
0.

00
1

≪
0.

00
1

≪
0.

00
1

≪
0.

00
1

≪
0.

00
1

≪
0.

00
1

a M
ar

ks
 th

e 
ro

w
 in

 w
hi

ch
 th

e 
re

su
lts

 a
re

 f
ro

m
 th

e 
or

ig
in

al
 p

ap
er

.

Med Image Anal. Author manuscript; available in PMC 2023 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Peng et al. Page 32

Ta
b

le
 3

C
om

pa
ri

so
n 

w
ith

 s
ta

te
-o

f-
th

e-
ar

t m
et

ho
ds

 u
si

ng
 f

ul
l a

nn
ot

at
io

n 
on

 th
e 

SK
I1

0 
da

ta
se

t w
ith

 f
iv

e-
fo

ld
 c

ro
ss

 v
al

id
at

io
n.

 P
ai

re
d 

t-
te

st
 v

al
ue

s 
in

di
ca

te
 th

e 

si
gn

if
ic

an
ce

 s
ta

tu
s 

of
 th

e 
im

pr
ov

ed
 p

er
fo

rm
an

ce
 o

f 
ou

r 
m

et
ho

d 
vs

. t
he

 e
ns

em
bl

e 
m

et
ho

d 
(Z

he
ng

 e
t a

l.,
 2

02
0b

).

F
em

or
al

 b
on

e
F

em
or

al
 c

ar
ti

la
ge

T
ib

ia
l b

on
e

T
ib

ia
l c

ar
ti

la
ge

D
SC

 (
%

)
A

SS
D

 (
m

m
)

D
SC

 (
%

)
A

SS
D

 (
m

m
)

D
SC

 (
%

)
A

SS
D

 (
m

m
)

D
SC

 (
%

)
A

SS
D

 (
m

m
)

T
ra

ns
U

N
et

 3
D

 (
C

he
n 

et
 a

l.,
 2

02
1)

98
.0

6 
±

 0
.7

6
0.

23
6 

±
 0

.0
99

77
.8

9 
±

 5
.2

4
0.

34
3 

±
 0

.1
03

97
.3

1 
±

 1
.9

1
0.

32
2 

±
 0

.2
78

74
.2

9 
±

 7
.0

5
0.

34
5 

±
 0

.1
28

U
N

et
+

+
 3

D
 (

Z
ho

u 
et

 a
l.,

 2
01

8)
98

.1
0 

±
 0

.8
2

0.
22

5 
±

 0
.0

93
77

.2
0 

±
 6

.0
7

0.
39

2 
±

 0
.2

01
97

.6
4 

±
 1

.9
6

0.
33

7 
±

 0
.5

48
71

.4
0 

±
 6

.5
5

0.
40

9 
±

 0
.1

49

E
ns

em
bl

e 
m

et
ho

d 
(Z

he
ng

 e
t a

l.,
 2

02
0b

)
98

.1
5 

±
 0

.7
1

0.
22

6 
±

 0
.0

91
78

.8
9 

±
 5

.8
9

0.
33

3 
±

 0
.1

50
97

.6
8 

±
 1

.9
3

0.
28

0 
±

 0
.3

11
75

.6
7 

±
 6

.7
6

0.
31

5 
±

 0
.1

24

A
tte

nt
io

n 
U

N
et

 3
D

 (
O

kt
ay

 e
t a

l.,
 2

01
8)

98
.2

9 
±

 0
.9

0
0.

36
3 

±
 0

.7
89

79
.9

3 
±

 5
.8

7
0.

31
6 

±
 0

.1
44

97
.8

4 
±

 1
.9

0
0.

26
8 

±
 0

.2
92

76
.0

1 
±

 6
.4

8
0.

29
5 

± 
0.

10
4

O
ur

 K
C

B
-N

et
 m

et
ho

d
98

.4
1 

± 
0.

65
0.

18
4 

± 
0.

07
7

81
.6

7 
± 

5.
34

0.
30

8 
± 

0.
16

6
97

.9
7 

± 
1.

50
0.

22
6 

± 
0.

19
4

78
.1

9 
± 

6.
63

0.
29

9 
±

 0
.1

24

p-
va

lu
e

≪
0.

00
1

≪
0.

00
1

≪
0.

00
1

0.
03

0
0.

01
7

0.
03

5
≪

0.
00

1
0.

30
2

Med Image Anal. Author manuscript; available in PMC 2023 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Peng et al. Page 33

Ta
b

le
 4

C
om

pa
ri

so
n 

w
ith

 s
ta

te
-o

f-
th

e-
ar

t m
et

ho
ds

 u
si

ng
 f

ul
l a

nn
ot

at
io

n 
on

 th
e 

O
A

I 
Z

IB
 d

at
as

et
 w

ith
 f

iv
e-

fo
ld

 c
ro

ss
 v

al
id

at
io

n.
 P

ai
re

d 
t-

te
st

 v
al

ue
s 

in
di

ca
te

 th
e 

si
gn

if
ic

an
ce

 s
ta

tu
s 

of
 th

e 
im

pr
ov

ed
 p

er
fo

rm
an

ce
 o

f 
ou

r 
m

et
ho

d 
vs

. t
he

 e
ns

em
bl

e 
m

et
ho

d 
(Z

he
ng

 e
t a

l.,
 2

02
0b

).

F
em

or
al

 b
on

e
F

em
or

al
 c

ar
ti

la
ge

T
ib

ia
l b

on
e

T
ib

ia
l c

ar
ti

la
ge

D
SC

 (
%

)
A

SS
D

 (
m

m
)

D
SC

 (
%

)
A

SS
D

 (
m

m
)

D
SC

 (
%

)
A

SS
D

 (
m

m
)

D
SC

 (
%

)
A

SS
D

 (
m

m
)

E
ns

em
bl

e 
m

et
ho

d 
(Z

he
ng

 e
t a

l.,
 2

02
0b

)
98

.4
9 

±
 0

.3
0

0.
18

2 
±

 0
.0

46
89

.2
6 

±
 3

.0
8

0.
17

6 
±

 0
.0

67
98

.6
0 

±
 0

.3
0

0.
17

2 
±

 0
.0

49
86

.3
6 

±
 3

.8
8

0.
19

6 
±

 0
.0

81

U
N

et
+

+
 3

D
 (

Z
ho

u 
et

 a
l.,

 2
01

8)
98

.4
4 

±
 0

.3
1

0.
19

0 
±

 0
.0

47
89

.1
9 

±
 2

.7
4

0.
17

4 
±

 0
.0

52
98

.5
7 

±
 0

.3
1

0.
22

2 
±

 0
.3

40
84

.9
6 

±
 4

.5
5

0.
22

6 
±

 0
.1

02

T
ra

ns
U

N
et

 3
D

 (
C

he
n 

et
 a

l.,
 2

02
1)

98
.4

7 
±

 0
.2

9
0.

18
8 

±
 0

.0
48

89
.2

5 
±

 2
.9

4
0.

17
3 

±
 0

.0
60

98
.6

1 
±

 0
.3

0
0.

17
1 

±
 0

.0
50

85
.3

4 
±

 4
.2

4
0.

24
0 

±
 0

.1
14

A
tte

nt
io

n 
U

N
et

 3
D

 (
O

kt
ay

 e
t a

l.,
 2

01
8)

98
.5

5 
±

 0
.3

0
0.

17
4 

±
 0

.0
48

89
.5

6 
±

 2
.6

4
0.

16
9 

±
 0

.0
59

98
.7

0 
±

 0
.3

1
0.

16
2 

±
 0

.0
67

86
.7

4 
±

 4
.0

1
0.

19
6 

±
 0

.0
89

O
ur

 K
C

B
-N

et
 m

et
ho

d
98

.6
2 

± 
0.

26
0.

16
4 

± 
0.

03
9

90
.2

4 
± 

2.
76

0.
15

3 
± 

0.
04

9
98

.7
6 

± 
0.

30
0.

14
9 

± 
0.

04
8

87
.1

9 
± 

3.
96

0.
18

5 
± 

0.
08

5

p-
va

lu
e

≪
 0

.0
01

≪
 0

.0
01

≪
 0

.0
01

≪
 0

.0
01

≪
 0

.0
01

≪
 0

.0
01

≪
 0

.0
01

0.
00

6

Med Image Anal. Author manuscript; available in PMC 2023 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Peng et al. Page 34

Ta
b

le
 5

C
om

pa
ri

so
n 

w
ith

 s
ta

te
-o

f-
th

e-
ar

t m
et

ho
ds

 u
si

ng
 f

ul
l a

nn
ot

at
io

n 
on

 th
e 

Io
w

a 
da

ta
se

t. 
Pa

ir
ed

 t-
te

st
 v

al
ue

s 
in

di
ca

te
 th

e 
si

gn
if

ic
an

ce
 s

ta
tu

s 
of

 th
e 

im
pr

ov
ed

 

pe
rf

or
m

an
ce

 o
f 

ou
r 

m
et

ho
d 

vs
. t

he
 e

ns
em

bl
e 

m
et

ho
d 

(Z
he

ng
 e

t a
l.,

 2
02

0b
).

 “
–”

 d
en

ot
es

 th
at

 th
e 

co
rr

es
po

nd
in

g 
re

su
lts

 w
er

e 
no

t r
ep

or
te

d 
in

 th
e 

or
ig

in
al

 

pa
pe

r.

F
em

ur
al

 b
on

e
F

em
or

al
 c

ar
ti

la
ge

T
ib

ia
l b

on
e

T
ib

ia
l c

ar
ti

la
ge

D
SC

 (
%

)
A

SS
D

 (
m

m
)

D
SC

 (
%

)
A

SS
D

 (
m

m
)

D
SC

 (
%

)
A

SS
D

 (
m

m
)

D
SC

 (
%

)
A

SS
D

 (
m

m
)

L
O

G
IS

M
O

S-
4D

 (
K

as
hy

ap
 e

t a
l.,

 2
01

7)
a

–
–

−
0.

55
0 

±
 0

.1
10

–
–

–
0.

60
0 

±
 0

.1
40

E
ns

em
bl

e 
m

et
ho

d 
(Z

he
ng

 e
t a

l.,
 2

02
0b

)
94

.8
6 

±
 1

.0
2

0.
64

9 
±

 0
.2

69
84

.3
8 

±
 2

.4
0

0.
46

7 
±

 0
.1

70
94

.4
0 

±
 1

.2
3

0.
67

6 
±

 0
.2

34
81

.9
6 

±
 4

.5
9

0.
57

7 
±

 0
.1

70

C
M

L
 (

Ta
n 

et
 a

l.,
 2

01
9)

94
.9

5 
±

 1
.2

3
0.

65
1 

±
 0

.1
73

83
.6

3 
±

 2
.3

3
0.

61
1 

±
 0

.1
52

94
.4

4 
±

 1
.2

4
0.

61
2 

±
 0

.2
04

81
.5

1 
±

 4
.9

1
0.

58
3 

±
 0

.1
52

U
N

et
+

+
 3

D
 (

Z
ho

u 
et

 a
l.,

 2
01

8)
95

.6
8 

±
 0

.9
1

0.
69

1 
±

 0
.1

82
83

.2
9 

±
 2

.7
5

0.
48

7 
±

 0
.1

23
94

.9
2 

±
 1

.7
1

0.
65

8 
±

 0
.2

36
81

.3
0 

±
 4

.3
0

0.
42

1 
±

 0
.1

16

A
tte

nt
io

n 
U

N
et

 3
D

 (
O

kt
ay

 e
t a

l.,
 2

01
8)

95
.8

0 
±

 1
.1

4
0.

64
5 

±
 0

.2
44

84
.4

2 
±

 2
.7

1
0.

48
0 

±
 0

.1
24

95
.0

9 
±

 1
.6

5
0.

63
5 

±
 0

.2
21

82
.2

7 
±

 4
.3

1
0.

41
3 

± 
0.

12
0

T
ra

ns
U

N
et

 3
D

 (
C

he
n 

et
 a

l.,
 2

02
1)

95
.7

8 
±

 0
.7

9
0.

66
3 

±
 0

.1
78

83
.7

8 
±

 2
.8

5
0.

44
1 

±
 0

.1
47

95
.2

3 
±

 1
.5

1
0.

70
5 

±
 0

.2
09

80
.4

1 
±

 4
.5

1
0.

48
0 

±
 0

.1
46

O
ur

 K
C

B
-N

et
 m

et
ho

d
96

.4
7 

± 
0.

88
0.

54
2 

± 
0.

17
8

86
.7

3 
± 

2.
76

0.
34

9 
± 

0.
13

8
96

.4
9 

± 
1.

59
0.

52
4 

± 
0.

21
4

84
.3

4 
± 

4.
27

0.
41

6 
±

 0
.1

31

p-
va

lu
e

≪
0.

00
1

≪
0.

00
1

≪
0.

00
1

≪
0.

00
1

≪
0.

00
1

≪
0.

00
1

≪
0.

00
1

≪
0.

00
1

a M
ar

ks
 th

e 
ro

w
 in

 w
hi

ch
 th

e 
re

su
lts

 a
re

 f
ro

m
 th

e 
or

ig
in

al
 p

ap
er

.

Med Image Anal. Author manuscript; available in PMC 2023 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Peng et al. Page 35

Ta
b

le
 6

C
om

pa
ri

so
n 

w
ith

 s
ta

te
-o

f-
th

e-
ar

t m
et

ho
ds

 u
si

ng
 f

ul
l a

nn
ot

at
io

n 
on

 th
e 

iM
or

ph
ic

s 
da

ta
se

t. 
Pa

ir
ed

 t-
te

st
 v

al
ue

s 
in

di
ca

te
 th

e 
si

gn
if

ic
an

ce
 s

ta
tu

s 
of

 th
e 

im
pr

ov
ed

 p
er

fo
rm

an
ce

 o
f 

ou
r 

m
et

ho
d 

vs
. t

he
 e

ns
em

bl
e 

m
et

ho
d 

(Z
he

ng
 e

t a
l.,

 2
02

0b
).

 “
–”

 d
en

ot
es

 th
at

 th
e 

co
rr

es
po

nd
in

g 
re

su
lts

 w
er

e 
no

t r
ep

or
te

d 
in

 th
e 

or
ig

in
al

 p
ap

er
.

F
em

or
al

 c
ar

ti
la

ge
T

ib
ia

l c
ar

ti
la

ge
P

at
el

la
r 

ca
rt

ila
ge

M
en

is
ci

D
SC

 (
%

)
A

SS
D

 (
m

m
)

D
SC

 (
%

)
A

SS
D

 (
m

m
)

D
SC

 (
%

)
A

SS
D

 (
m

m
)

D
SC

 (
%

)
A

SS
D

 (
m

m
)

U
D

A
 (

Pa
nf

ilo
v 

et
 a

l.,
 2

01
9)

a
90

.7
0 

±
 1

.9
0

–
89

.7
0 

±
 2

.8
0

–
87

.1
0 

±
 4

.6
0

–
86

.3
0 

±
 3

.4
0

–

C
M

L
 (

Ta
n 

et
 a

l.,
 2

01
9)

a
90

.0
0 

±
 3

.7
0

–
88

.9
0 

±
 3

.8
0

–
88

.0
0 

±
 4

.3
0

–
–

–

E
ns

em
bl

e 
m

et
ho

d 
(Z

he
ng

 e
t a

l.,
 2

02
0b

)
90

.6
8 

±
 2

.0
3

0.
22

9 
±

 0
.0

75
90

.1
8 

±
 2

.5
9

0.
18

5 
±

 0
.1

17
88

.2
5 

±
 5

.7
9

0.
36

9 
±

 0
.2

04
87

.6
5 

±
 3

.2
1

0.
32

2 
±

 0
.1

92

U
N

et
+

+
 3

D
 (

Z
ho

u 
et

 a
l.,

 2
01

8)
90

.8
1 

±
 2

.0
6

0.
22

1 
±

 0
.0

65
89

.0
0 

±
 2

.5
9

0.
27

1 
±

 0
.1

21
86

.2
2 

±
 5

.9
0

0.
34

9 
±

 0
.1

73
85

.5
3 

±
 3

.2
1

0.
42

8 
±

 0
.1

96

A
tte

nt
io

n 
U

N
et

 3
D

 (
O

kt
ay

 e
t a

l.,
 2

01
8)

91
.0

3 
±

 2
.0

2
0.

21
3 

±
 0

.0
80

90
.4

8 
±

 2
.8

8
0.

19
6 

±
 0

.1
51

88
.8

9 
±

 6
.0

0
0.

30
7 

±
 0

.2
97

88
.4

5 
±

 3
.0

1
0.

31
4 

±
 0

.1
28

T
ra

ns
U

N
et

 3
D

 (
C

he
n 

et
 a

l.,
 2

02
1)

90
.9

7 
±

 1
.8

4
0.

20
5 

±
 0

.0
58

90
.1

9 
±

 2
.3

7
0.

24
7 

±
 0

.1
27

87
.4

1 
±

 4
.6

8
0.

27
3 

±
 0

.0
94

87
.6

6 
±

 3
.0

3
0.

32
2 

±
 0

.1
40

O
ur

 K
C

B
-N

et
 m

et
ho

d
92

.3
5 

± 
1.

81
0.

18
8 

± 
0.

06
1

91
.2

7 
± 

2.
40

0.
18

4 
± 

0.
12

3
90

.5
8 

± 
4.

76
0.

25
4 

± 
0.

14
3

89
.3

1 
± 

3.
11

0.
25

5 
± 

0.
13

7

p-
va

lu
e

≪
0.

00
1

≪
0.

00
1

≪
0.

00
1

≪
0.

00
1

≪
0.

00
1

≪
0.

00
1

≪
0.

00
1

≪
0.

00
1

a M
ar

ks
 th

e 
ro

w
s 

in
 w

hi
ch

 th
e 

re
su

lts
 a

re
 f

ro
m

 th
e 

or
ig

in
al

 p
ap

er
s.

Med Image Anal. Author manuscript; available in PMC 2023 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Peng et al. Page 36

Ta
b

le
 7

A
bl

at
io

n 
st

ud
y 

of
 o

ur
 m

et
ho

d 
on

 th
e 

SK
I1

0 
da

ta
se

t.

F
em

or
al

 b
on

e
F

em
or

al
 c

ar
ti

la
ge

T
ib

ia
l b

on
e

T
ib

ia
l c

ar
ti

la
ge

D
SC

 (
%

)
A

SS
D

 (
m

m
)

D
SC

 (
%

)
A

SS
D

 (
m

m
)

D
SC

 (
%

)
A

SS
D

 (
m

m
)

D
SC

 (
%

)
A

SS
D

 (
m

m
)

S1
 (

ax
ia

l)
98

.0
8 

±
 0

.7
4

0.
22

8 
±

 0
.0

95
77

.9
2 

±
 5

.4
4

0.
35

3 
±

 0
.1

31
97

.5
0 

±
 1

.9
7

0.
29

7 
±

 0
.2

83
74

.5
2 

±
 6

.5
0

0.
35

7 
±

 0
.1

33

S2
 (

co
ro

na
l)

98
.1

2 
±

 0
.7

6
0.

22
1 

±
 0

.0
88

77
.5

5 
±

 6
.2

6
0.

37
3 

±
 0

.1
89

97
.9

5 
±

 0
.7

8
0.

23
0 

±
 0

.0
94

71
.4

8 
±

 6
.8

7
0.

40
2 

±
 0

.1
38

S3
 (

sa
gi

tta
l)

98
.2

1 
±

 0
.7

8
0.

21
6 

±
 0

.0
92

80
.5

5 
±

 5
.5

0
0.

32
1 

±
 0

.1
56

97
.7

6 
±

 1
.8

0
0.

27
5 

±
 0

.3
01

76
.6

8 
±

 6
.5

9
0.

32
0 

±
 0

.1
22

S4
 (

3D
)

98
.2

4 
±

 0
.6

9
0.

21
0 

±
 0

.0
93

81
.0

6 
±

 5
.7

6
0.

32
1 

±
 0

.1
72

97
.5

9 
±

 2
.8

6
0.

28
1 

±
 0

.3
62

77
.2

9 
±

 6
.7

0
0.

32
1 

±
 0

.1
34

S5
 (

en
se

m
bl

e)
98

.3
1 

±
 0

.6
4

0.
19

9 
±

 0
.0

78
81

.1
2 

±
 5

.5
6

0.
31

6 
±

 0
.1

50
97

.6
7 

±
 2

.7
9

0.
26

3 
±

 0
.3

84
77

.6
6 

±
 6

.5
1

0.
30

5 
±

 0
.1

18

S6
 (

bi
-H

E
M

D
)

98
.2

9 
±

 0
.6

6
0.

19
5 

±
 0

.0
80

81
.2

2 
±

 5
.5

3
0.

31
4 

±
 0

.1
50

97
.5

6 
±

 2
.9

3
0.

25
2 

±
 0

.4
05

77
.8

0 
±

 6
.6

4
0.

30
3 

±
 0

.1
24

S7
 (

se
lf

-t
ra

in
in

g)
98

.3
5 

±
 0

.6
7

0.
18

9 
±

 0
.0

79
81

.2
6 

±
 5

.4
6

0.
31

0 
±

 0
.1

54
97

.6
0 

±
 2

.8
4

0.
23

6 
±

 0
.3

94
78

.0
1 

±
 6

.5
9

0.
30

5 
±

 0
.1

28

S8
 (

IP
M

)
98

.4
1 

± 
0.

65
0.

18
4 

± 
0.

07
7

81
.6

7 
± 

5.
34

0.
30

8 
± 

0.
16

6
97

.9
7 

± 
1.

50
0.

22
6 

± 
0.

19
4

78
.1

9 
± 

6.
63

0.
29

9 
± 

0.
12

4

Med Image Anal. Author manuscript; available in PMC 2023 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Peng et al. Page 37

Ta
b

le
 8

A
bl

at
io

n 
st

ud
y 

of
 o

ur
 m

et
ho

d 
on

 th
e 

O
A

I 
Z

IB
 d

at
as

et
.

F
em

or
al

 b
on

e
F

em
or

al
 c

ar
ti

la
ge

T
ib

ia
l b

on
e

T
ib

ia
l c

ar
ti

la
ge

D
SC

 (
%

)
A

SS
D

 (
m

m
)

D
SC

 (
%

)
A

SS
D

 (
m

m
)

D
SC

 (
%

)
A

SS
D

 (
m

m
)

D
SC

 (
%

)
A

SS
D

 (
m

m
)

S1
 (

ax
ia

l)
98

.5
1 

±
 0

.3
0

0.
17

8 
±

 0
.0

42
89

.4
6 

±
 2

.9
4

0.
17

1 
±

 0
.0

61
98

.6
4 

±
 0

.2
9

0.
16

5 
±

 0
.0

47
86

.4
0 

±
 4

.2
5

0.
19

8 
±

 0
.1

08

S2
 (

co
ro

na
l)

98
.4

1 
±

 0
.3

4
0.

19
6 

±
 0

.0
54

89
.0

2 
±

 2
.5

8
0.

17
6 

±
 0

.0
50

98
.5

7 
±

 0
.3

1
0.

19
0 

±
 0

.1
55

84
.8

7 
±

 4
.5

2
0.

22
5 

±
 0

.0
99

S3
 (

sa
gi

tta
l)

98
.5

0 
±

 0
.2

8
0.

18
2 

±
 0

.0
44

89
.5

3 
±

 2
.9

5
0.

16
7 

±
 0

.0
60

98
.6

3 
±

 0
.2

9
0.

16
8 

±
 0

.0
47

86
.3

1 
±

 3
.9

9
0.

20
2 

±
 0

.0
99

S4
 (

3D
)

98
.5

8 
±

 0
.2

7
0.

17
0 

±
 0

.0
40

89
.8

3 
±

 2
.7

0
0.

16
3 

±
 0

.0
54

98
.7

4 
±

 0
.3

0
0.

15
3 

±
 0

.0
48

86
.9

1 
±

 4
.0

1
0.

19
9 

±
 0

.0
90

S5
 (

en
se

m
bl

e)
98

.6
0 

±
 0

.2
7

0.
16

8 
±

 0
.0

40
89

.9
4 

±
 2

.6
6

0.
16

0 
±

 0
.0

50
98

.7
4 

±
 0

.3
0

0.
15

2 
±

 0
.0

49
87

.0
2 

±
 4

.0
4

0.
19

3 
±

 0
.0

95

S6
 (

bi
-H

E
M

D
)

98
.6

1 
±

 0
.2

7
0.

16
6 

±
 0

.0
41

90
.0

0 
±

 2
.7

4
0.

15
7 

±
 0

.0
51

98
.7

4 
±

 0
.3

0
0.

15
2 

±
 0

.0
49

87
.0

4 
±

 3
.9

9
0.

19
3 

±
 0

.0
92

S7
 (

se
lf

-t
ra

in
in

g)
98

.6
1 

±
 0

.2
6

0.
16

5 
±

 0
.0

39
90

.1
3 

±
 2

.8
0

0.
15

6 
±

 0
.0

52
98

.7
5 

±
 0

.3
0

0.
15

1 
±

 0
.0

48
87

.1
4 

±
 3

.9
4

0.
18

8 
±

 0
.0

85

S8
 (

IP
M

)
98

.6
2 

± 
0.

26
0.

16
4 

± 
0.

03
9

90
.2

4 
± 

2.
76

0.
15

3 
± 

0.
04

9
98

.7
6 

± 
0.

30
0.

14
9 

± 
0.

04
8

87
.1

9 
± 

3.
96

0.
18

5 
± 

0.
08

5

Med Image Anal. Author manuscript; available in PMC 2023 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Peng et al. Page 38

Ta
b

le
 9

A
bl

at
io

n 
st

ud
y 

of
 o

ur
 m

et
ho

d 
on

 th
e 

iM
or

ph
ic

s 
da

ta
se

t.

F
em

or
al

 c
ar

ti
la

ge
T

ib
ia

l c
ar

ti
la

ge
P

at
el

la
r 

ca
rt

ila
ge

M
en

is
ci

D
SC

 (
%

)
A

SS
D

 (
m

m
)

D
SC

 (
%

)
A

SS
D

 (
m

m
)

D
SC

 (
%

)
A

SS
D

 (
m

m
)

D
SC

 (
%

)
A

SS
D

 (
m

m
)

S1
 (

ax
ia

l)
89

.0
3 

±
 2

.2
4

0.
26

1 
±

 0
.0

61
88

.9
1 

±
 2

.0
1

0.
24

4 
±

 0
.1

50
86

.9
8 

±
 4

.6
4

0.
36

9 
±

 0
.1

42
85

.8
7 

±
 2

.9
6

0.
38

0 
±

 0
.0

96

S2
 (

co
ro

na
l)

88
.7

1 
±

 2
.2

5
0.

28
4 

±
 0

.0
74

88
.3

9 
±

 3
.0

8
0.

33
2 

±
 0

.1
39

85
.4

8 
±

 5
.0

6
0.

32
6 

±
 0

.1
37

85
.6

9 
±

 3
.3

1
0.

34
5 

±
 0

.1
21

S3
 (

sa
gi

tta
l)

90
.7

6 
±

 1
.9

7
0.

23
4 

±
 0

.0
65

90
.0

9 
±

 2
.5

5
0.

25
1 

±
 0

.1
14

87
.8

0 
±

 5
.1

5
0.

29
7 

±
 0

.1
19

86
.6

6 
±

 3
.3

5
0.

38
9 

±
 0

.1
55

S4
 (

3D
)

90
.8

1 
±

 1
.9

6
0.

23
5 

±
 0

.0
68

90
.1

7 
±

 2
.7

4
0.

22
8 

±
 0

.1
38

88
.3

1 
±

 5
.1

9
0.

28
7 

±
 0

.1
94

87
.8

4 
±

 3
.1

5
0.

35
7 

±
 0

.1
39

S5
 (

en
se

m
bl

e)
91

.2
3 

±
 1

.7
6

0.
21

0 
±

 0
.0

54
90

.4
0 

±
 2

.5
1

0.
22

3 
±

 0
.1

29
88

.8
4 

±
 5

.2
3

0.
26

4 
±

 0
.1

41
88

.1
2 

±
 3

.1
8

0.
32

3 
±

 0
.1

55

S6
 (

bi
-H

E
M

D
)

91
.8

6 
±

 1
.8

0
0.

22
4 

±
 0

.1
01

90
.5

0 
±

 2
.4

6
0.

23
7 

±
 0

.1
26

89
.4

7 
±

 5
.0

9
0.

27
0 

±
 0

.1
48

88
.6

0 
±

 3
.2

1
0.

28
4 

±
 0

.1
81

S7
 (

se
lf

-t
ra

in
in

g)
92

.0
8 

±
 1

.7
5

0.
20

6 
±

 0
.0

53
90

.8
1 

±
 2

.4
1

0.
18

5 
±

 0
.1

23
89

.6
8 

±
 5

.0
1

0.
27

3 
±

 0
.1

41
89

.0
5 

±
 3

.1
4

0.
28

0 
±

 0
.1

80

S8
 (

IP
M

)
92

.3
5 

± 
1.

81
0.

18
8 

± 
0.

06
1

91
.2

7 
± 

2.
40

0.
18

4 
± 

0.
12

3
90

.5
8 

± 
4.

76
0.

25
4 

± 
0.

14
3

89
.3

1 
± 

3.
11

0.
25

5 
± 

0.
13

7

Med Image Anal. Author manuscript; available in PMC 2023 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Peng et al. Page 39

Ta
b

le
 1

0

A
bl

at
io

n 
st

ud
y 

of
 o

ur
 m

et
ho

d 
on

 th
e 

Io
w

a 
da

ta
se

t.

F
em

ur
al

 b
on

e
F

em
or

al
 c

ar
ti

la
ge

T
ib

ia
l b

on
e

T
ib

ia
l c

ar
ti

la
ge

D
SC

 (
%

)
A

SS
D

 (
m

m
)

D
SC

 (
%

)
A

SS
D

 (
m

m
)

D
SC

 (
%

)
A

SS
D

 (
m

m
)

D
SC

 (
%

)
A

SS
D

 (
m

m
)

S1
 (

ax
ia

l)
95

.8
4 

±
 0

.9
0

0.
69

0 
±

 0
.1

81
85

.1
1 

±
 2

.8
6

0.
41

7 
±

 0
.1

48
95

.1
7 

±
 1

.4
8

0.
69

0 
±

 0
.2

19
82

.3
2 

±
 4

.4
0

0.
46

0 
±

 0
.1

50

S2
 (

co
ro

na
l)

95
.7

1 
±

 1
.0

4
0.

61
8 

±
 0

.2
38

85
.4

3 
±

 3
.2

4
0.

38
3 

±
 0

.1
23

94
.9

7 
±

 1
.7

7
0.

70
5 

±
 0

.2
43

80
.8

8 
±

 4
.5

6
0.

45
2 

±
 0

.1
14

S3
 (

sa
gi

tta
l)

95
.7

7 
±

 0
.8

4
0.

64
2 

±
 0

.1
94

85
.1

3 
±

 2
.8

0
0.

39
3 

±
 0

.1
26

95
.2

3 
±

 1
.7

0
0.

69
2 

±
 0

.2
41

80
.6

4 
±

 4
.5

9
0.

47
8 

±
 0

.1
25

S4
 (

3D
)

95
.8

7 
±

 1
.0

6
0.

61
6 

±
 0

.1
66

85
.4

5 
±

 2
.6

5
0.

40
4 

±
 0

.1
70

95
.4

1 
±

 1
.6

6
0.

63
5 

±
 0

.3
96

82
.9

3 
±

 5
.0

4
0.

44
6 

±
 0

.1
11

S5
 (

en
se

m
bl

e)
96

.0
9 

±
 0

.8
3

0.
60

2 
±

 0
.1

60
85

.7
9 

±
 2

.7
7

0.
38

4 
±

 0
.1

50
95

.7
1 

±
 1

.5
5

0.
58

7 
±

 0
.2

10
83

.1
3 

±
 4

.2
3

0.
45

1 
±

 0
.1

51

S6
 (

bi
-H

E
M

D
)

96
.1

7 
±

 0
.8

8
0.

59
0 

±
 0

.1
86

86
.0

8 
±

 2
.6

9
0.

37
1 

±
 0

.1
36

95
.6

4 
±

 1
.6

4
0.

56
1 

±
 0

.2
19

83
.5

0 
±

 4
.2

7
0.

44
2 

±
 0

.1
29

S7
 (

se
lf

-t
ra

in
in

g)
96

.3
5 

±
 0

.9
2

0.
56

1 
±

 0
.1

85
86

.4
2 

±
 2

.7
9

0.
35

5 
±

 0
.1

32
96

.0
5 

±
 1

.4
9

0.
54

8 
±

 0
.2

10
83

.9
1 

±
 4

.2
6

0.
43

6 
±

 0
.1

24

S8
 (

IP
M

)
96

.4
7 

± 
0.

88
0.

54
2 

± 
0.

17
8

86
.7

3 
± 

2.
76

0.
34

9 
± 

0.
13

8
96

.4
9 

± 
1.

59
0.

52
4 

± 
0.

21
4

84
.3

4 
± 

4.
27

0.
41

6 
± 

0.
13

1

Med Image Anal. Author manuscript; available in PMC 2023 November 01.


	Abstract
	Introduction
	Related work
	Method
	Overview
	Representative slice selection:
	Base-learner training and pseudo-label generation:
	Ensembling and self-training :
	Post-processing :

	Representative slice selection
	Slice representation
	Prioritizing the slices

	Base-learner training and pseudo-label generation
	Bi-directional hierarchical earth mover’s distance
	Tuning the final 3D model using pseudo-labels
	Post-processing using IPM

	Experiments and analysis
	Datasets and implementation details
	The SKI10 Dataset
	The OAI dataset

	Evaluation metrics
	Dice similarity coefficient
	Average symmetric surface distance
	Root Mean Square symmetric surface distance
	Volume overlap error
	Volume difference

	Experimental results with full annotation
	Experimental results with sparse annotation
	Ablation study
	Discussion

	Conclusions
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.
	Fig. 9.
	Fig. 10.
	Fig. 11.
	Fig. 12.
	Fig. 13.
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Table 8
	Table 9
	Table 10

