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Abstract 
Our visual world consists of an immense number of unique objects and yet, we are easily 
able to identify, distinguish, interact, and reason about the things we see within a few 
hundred milliseconds. This requires that we integrate and focus on a wide array of object 
properties to support specific behavioral goals. In the current study, we examined how 
these rich object representations unfold in the human brain by modelling time-resolved 
MEG signals evoked by viewing single presentations of tens of thousands of object 
images. Based on millions of behavioral judgments, the object space can be captured in 
66 dimensions that we use to guide our understanding of the neural representation of this 
space. We find that all dimensions are reflected in the time course of response with 
distinct temporal profiles for different object dimensions. These profiles fell into two broad 
types, with either a distinct and early peak (~125 ms) or a slow rise to a late peak (~300 
ms). Further, early effects were stable across participants, in contrast to later effects 
which showed more variability, suggesting that early peaks may carry stimulus-specific 
and later peaks more participant-specific information. Dimensions with early peaks 
appeared to be primarily visual dimensions and those with later peaks more conceptual, 
suggesting that conceptual representations are more variable across people. Together, 
these data provide a comprehensive account of how behaviorally-relevant object 
properties unfold in the human brain and contribute to the rich nature of object vision.  
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Introduction 
A central aspect of vision is our ability to identify, distinguish, interact, and reason about 
a huge variety of different objects. What neural representations support such a 
challenging task in the span of just a few hundred milliseconds? While many studies have 
focused on broad distinctions between objects (i.e., categories), it is clear that our 
understanding of objects extends well beyond our ability to label or discriminate them. 
Here, we used the publicly available THINGS dataset (Hebart, Contier, Teichmann et al., 
2023) to determine the temporal dynamics of object vision in the human brain. We 
combined the large-scale THINGS-MEG dataset with a multidimensional model of object 
processing derived from millions of behavioral responses to gain a comprehensive 
understanding of the temporal unfolding of object vision. 
 
To understand the temporal dynamics of object vision, prior studies have typically 
compared responses to different types of object stimuli (e.g., faces, scenes). For 
example, EEG and MEG studies have revealed differences in responses to faces and 
other objects that peak around 170 ms (Liu et al., 2002; Rossion, 2014). More recently, 
using multivariate and machine learning analyses, studies have further shown that 
M/EEG signals evoked by broad object categories (e.g., animals, plants, body parts) can 
be distinguished within the first 200 ms, focusing on what might be driving differences in 
the neural response (Carlson et al., 2013; Cichy et al., 2014; Clarke et al., 2013; Goddard 
et al., 2016; Grootswagers et al., 2019; Hebart et al., 2018; van de Nieuwenhuijzen et al., 
2013). For example, to disentangle which object features contribute to differences in the 
neural signal, some studies have used stimulus sets with perceptually similar stimuli (e.g., 
glove and hand) or stimuli that straddle category bounds of object properties such as 
animacy (e.g., robots) (Contini et al., 2021; Kaiser et al., 2016; Proklova et al., 2019). 
Others have tried to separate the contribution of visual and semantic object properties to 
the neural signal by using cross-exemplar generalization to determine when we can 
distinguish objects across different exemplars (Bankson, Hebart et al., 2018; Carlson et 
al., 2013), across object position and size (Isik et al., 2014), or modelling the data using 
visual and semantic models (Clarke et al., 2015). Overall, the results of these studies 
suggest that early responses (<150 ms) reflect primarily visual feature information, with 
later responses reflecting more conceptual or semantic information. 
 
While these studies have revealed some general features of the object response, they 
are often based on relatively small, hand-selected sets of stimuli which do not sample the 
object space in a representative way and cannot adequately capture the richness of the 
object response (Grootswagers & Robinson, 2021). Hand-selecting sets of stimuli may 
lead to a sampling bias because some types of objects are considered to be important 
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(e.g., faces, animals) and may be overrepresented while others may be completely 
absent or underrepresented (e.g. furniture, cars, birds). To provide a more 
comprehensive understanding of object vision, we focused on addressing two key 
challenges: 1) sampling an expansive set of object stimuli across the thousands of object 
types we can identify and interact with, and 2) accounting for the rich meaning and 
behavioral relevance associated with individual objects beyond discrete labels. To do this, 
we turned to THINGS-data (Hebart, Contier, Teichmann et al., 2023), which contains 
MEG data for 1,854 objectively-sampled object concepts (Hebart et al., 2019) as well as 
rich behavioral data comprising 4.7 million similarity judgments that have been used to 
derive 66 underlying dimensions of objects in a data-driven manner (e.g., colorful, plant-
related, transportation-related) (Hebart et al., 2020, Hebart, Contier, Teichmann et al., 
2023). These dimensions reflect behavior-derived core features of the mental 
representations of these objects and incorporate both visual and semantic properties. 
Previous time-resolved analyses of response to the THINGS stimuli (THINGS-MEG: 
Hebart, Contier, Teichmann et al., 2023) and THINGS-EEG (Grootswagers et al., 2022) 
have revealed differential neural signals evident within the first 200 ms (Gifford et al., 
2022; Grootswagers et al., 2022; Hebart, Contier, Teichmann et al., 2023) that enable 
object decoding. As with previous work, however, such analyses do not reveal what object 
properties drive these effects and the degree to which the relative contribution of different 
properties varies over time. 
 
Here, we developed a novel approach to uncover the temporal dynamics of object 
processing by directly examining how behavior-derived object dimensions are reflected 
in the dynamic object representations in the human brain. These object dimensions are 
behaviorally-relevant, in that they support the key factors underlying arbitrary 
categorization behavior and as such underlie our ability to make sense of our visual world, 
to generalize, structure our environment, and to communicate our knowledge. We 
identified timecourses of neural information processing associated with each of 66 
dimensions reported for THINGS (Hebart et al, 2020). In contrast to previous work 
requiring category-based stimulus selection and labelling, we use behavioral embeddings 
that characterize each image across multiple dimensions capturing similarity relationships 
directly. In addition, the dimension values for each object are continuous (e.g., jellybeans 
are more colorful than sunflowers, but sunflowers are more colorful than sugar), allowing 
for a fine-grained way of modelling similarity in the neural data and thus capturing the 
richness of object vision. In contrast to common approaches such as representational 
similarity analysis (RSA), our method allows us to directly study evoked neural 
representations at the global level (i.e., across all dimensions) as well as at the local level 
(i.e., each dimension separately). Critically, our approach goes beyond studying object 
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identification and categorization and allows us to determine the time course of response 
specific to each of the behaviorally-relevant dimensions.  
 
Our results show distinct temporal profiles for every single dimension. These temporal 
profiles tended to group according to the relative strength of two phases of processing 
(~125 ms and ~300 ms) as well as the presence or absence of an offset related response 
(~500-600 ms). Critically, early effects were more generalizable across participants while 
later effects were more variable across people. This suggests that stimulus-specific 
information is reflected in the early parts of the signal while subject-specific information 
unfolds later in time. An exception to this were dimensions that are primarily associated 
with physical properties of the object which generalized well across participants 
throughout the timeseries. Collectively, by focusing on behavioral relevance of object 
properties, our approach provides a comprehensive characterization of the temporal 
unfolding of visual object responses in the human brain.  
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Figure 1. Summary of THINGS-MEG and THINGS-Behavior datasets and the 
methodological approach to combine them. (A) Summary of the datasets used. Evoked 
responses to images from the THINGS image-database were recorded over time using MEG. 
In total, four participants completed 12 sessions, resulting in >100,000 trials in total. During the 
MEG session, participants were asked to detect computer-generated images of non-nameable 
objects. In the behavioral task, a separate set of participants viewed three objects from the 
THINGS image-database at the time and were asked to pick the odd-one-out. A computational 
model was then trained to extract similarities along 66 dimensions for all object concepts. Using 
CLIP-VIT, we extended the embedding to capture similarities for every image. The data for 
behavioral data was crowdsourced via Amazon Mechanical Turk. In total >12,000 participants 
completed a total of 4.7 million similarity judgements. (B) Overview of the methodological 
approach of combining these two datasets with the goal of understanding how multidimensional 
object properties unfold in the human brain. To train the model, we extract the sensor activation 
pattern at each timepoint across the MEG sensors and use the behavioral embeddings to learn 
an association between the two datasets. The linear regression weights are then applied to 
sensor activation patterns of independent data to predict the behavioral embedding. To 
evaluate the model’s performance, we correlated the predicted and true embedding scores. (C) 
Hypothetical timecourses that could be observed for different dimensions.  

 
Results 
The overarching goal of the current study was to characterize how multidimensional 
representations unfold over time by combining large-scale MEG data with behaviorally-
relevant similarity embeddings. Our primary aims were to (1) extract timecourses from 
the MEG response that are associated with each behaviorally-relevant multidimensional 
profile, (2) reveal how these timecourses vary across dimensions and participants, and 
(3) identify prototypical temporal characteristics shared between response profiles of 
individual dimensions.  
 
THINGS-MEG measured evoked neural responses in four participants viewing >27,000 
unique natural images associated with 1,854 object concepts. To associate object 
dimensions with these natural images, we used behavioral embeddings derived from 
similarity judgments, based on 4.7 million judgments on 1,854 object concepts in a triplet 
odd-one out task (Hebart, Contier, Teichmann et al., 2023). Thus, the stimuli used in the 
MEG study are associated with both object concept labels (e.g., nail polish) as well as 
weights on behaviorally-relevant dimensions (e.g., colorful) (Hebart et al., 2020). The 
dimensions cover a broad range of object properties, with some being strongly linked to 
visual features (e.g., colorfulness) and others linked more to functional or contextual 
features (e.g., childhood-related). The behavioral similarity embeddings were based on 
concept-level judgments (i.e., one image per object concept), potentially missing some of 
the visual variability in the MEG stimuli. To overcome this issue, we used an artificial 
neural network (CLIP-VIT, Radford et al., 2021) to augment the behavioral dataset and 
generate image-level embeddings for later predictions (Hebart et al., 2022). Post-hoc 
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analyses showed a consistent improvement in prediction scores for all 66 dimensions 
when using image-level versus concept-level embeddings. While the results were 
consistently stronger, the overall pattern of results remained similar even without the use 
of CLIP-VIT, specifically for more semantic dimensions. 
 
We used the scores on the 66 behaviorally-relevant dimensions to model the evoked 
neural response to >26,000 images recorded with MEG. In particular, we used both 
decoding and encoding models to associate the multivariate MEG-sensor response with 
the 66-dimensional behavioral embedding. In contrast to previous work, our method 
allows us to effectively examine multidimensional object profiles that are obtained from 
behavioral data in a data-driven way. We can capture and examine the relationships 
between objects across many dimensions, as two images that are similar along one 
dimension may be very different along another dimension (e.g., beads and nail polish are 
both colorful but not necessarily childhood-related). Thus, this approach does not rely on 
selecting and contrasting object classes but instead uses the same images and 
experimental trials with a relabeling according to behaviorally-relevant dimensional 
profiles.  
 
(1) Distinct time courses can be derived for each behaviorally-relevant dimension 
 
We fitted multiple linear regression models to learn the association between the MEG 
sensor activation patterns and the behavioral embeddings at every timepoint (Figure 1). 
The linear models were fit on MEG data from 11 sessions (20,394 trials). Using the left-
out, independent session (1,854 trials) as a test set, we predicted the continuous value 
along each dimension from the MEG sensor activation patterns. Correlating these 
predicted scores with the true behavioral dimensional profiles resulted in timeseries of 
dimension information in the neural response for all four participants. The analysis 
revealed behaviorally-relevant multidimensional information from ~80 ms onwards 
(Figure 2A). The timecourse showed an early peak at ~100 ms which was maintained 
over time up to 1000 ms after stimulus onset, with an overall peak at ~ 300ms. To examine 
the relevance of individual MEG sensors to this effect, we also fitted linear models to 
predict each sensor activity pattern separately. In particular, we trained models to predict 
the univariate response in each MEG sensor at every timepoint using the 
multidimensional behavioral values associated with each stimulus. Our results showed 
that, while posterior sensors had the strongest effect across time, the relative contribution 
of frontal sensors increased later in time (>150 ms).  
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Figure 2. Modelling results for within-participant models of MEG data and 
multidimensional similarity judgments. (A) Correlation between the predicted and true 
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behavioral embeddings across all dimensions over time. The thick, black line shows the 
average across all participants, the thin grey lines individual participants. The rose plots above 
the timeseries show snapshots of the model performance for each of the 66 dimensions at 
individual time points. The order of the petals is based on maximum peak amplitude across 
time (i.e., dimension “white” has the largest peak of all 66 dimensions). Longer petals indicate 
that there is more information associated with a given dimension in the signal at this timepoint. 
Petals that are highlighted with individual colors are presented in more detail in panel B. The 
topographical maps below the timecourses show temporal snapshots of the model performance 
when it is fitted to individual sensors. Darker colors show a higher correlation between the 
predicted and true weights at each sensor location. A dynamic version of the topographical 
plots can be accessed here. (B) Example timecourses for six dimensions. Timecourses were 
first sorted by peak amplitude, and then we picked every eleventh timecourse to show a 
representative sample of timecourses with different signal-to-noise ratios. The images within 
each subplot show the top six stimuli on that dimension. All individual timecourses can be found 
in the Supplementary Materials (Figure S1). A dynamic version of the rose plots can be 
accessed here.  
 
  

Extracting the correlation timecourses for each dimension separately, our results revealed 
a different unfolding of neural responses across time for different dimensions (Figure 2A 
rose plots, Supplementary Figure S1). For example, dimensions such as “plant-related”, 
“colorful/playful”, “white” showed distinct, early peaks (~125 ms). In contrast, other 
dimensions such as “body-/people-related”, “food-related”, and “transportation-related” 
yielded a slower rise to a later peak (~300 ms). In addition, several of the dimensions 
yielding distinct early peaks exhibited a stimulus offset effect at ~500 ms. In contrast, 
several other dimensions did not show a distinct early peak or offset response but 
unfolded slowly over time and rose to a late peak (>300 ms). While signal-to-noise ratio 
differed across dimensions, all dimension timecourses exceed zero at some point over 
time (see Figure 2B for representative example timecourses selected based on peak 
amplitude and Supplementary Figure 1 for all timecourses). Strikingly, the behaviorally-
relevant dimensional profiles were evident in the neural response even though MEG 
participants completed an orthogonal detection task. This demonstrates that the 
dimensions are automatically reflected in the neural data without a task that requires 
participants to engage with the object properties directly. Overall, these results highlight 
that a wide range of behaviorally-relevant dimensions are reflected in distinct temporal 
profiles and that their information is distributed across MEG sensors.  
 
 
(2) Timecourses vary across dimensions and are consistent across participants 
 
Building on the finding that a range of behaviorally-relevant dimensions are reflected in 
distinct neural profiles measured with MEG, we next tested to what degree these 
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timecourses are consistent across participants. We used multiple linear regression 
models (see (1)), but this time with a subject-based cross-validation scheme, to examine 
whether the temporal characteristics we found for each dimension are idiosyncratic or 
consistent across participants. Specifically, we trained the model on MEG data from three 
participants and tested its performance on the data from the remaining one. This is a very 
stringent test for generalizability, as the model trains and tests on completely different 
datasets. Our results show that for most dimensions the across-participant models 
revealed similar timeseries characteristics as the within-participant model (Figure 3), 
highlighting that the temporal profiles we uncovered for each dimension were robust and 
not idiosyncratic to specific individuals of our study. As Figure 3A shows, the early peaks 
(~125 ms) in particular were consistent in amplitude and timing when comparing the 
within- and the across-participant model. In contrast, later effects (e.g., 200 ms, 400 ms, 
600 ms) did not generalize as well across participants for most dimensions. For many 
dimensions, we observed a substantial drop in performance for the across-participant 
model performance relative to the within-participant model at around 200 ms before the 
performance improved again (Figure 3B & 3C). This indicates that the differences we 
observed between the within- and across model were not solely driven by a time-
dependent decrease in signal-to-noise ratio. The magnitude of the differences between 
the within- and across-participant models were stable after the initial drop from around 
250 ms onwards (Figure 3C). In addition, the results show that strong stimulus-offset 
effect at 500-600 ms observed in some dimensions for the within-participant models (e.g., 
the color dimensions) were also present when the model was trained and tested across 
participants. Together, these findings suggest that early effects (~125 ms) may carry 
largely stimulus-specific information that generalizes well across participants, while 
slightly later effects (~200 ms) are more subject-specific. However, for dimensions that 
are visually more homogenous (e.g., white, colorful), we found that the within- and across-
models perform similarly throughout time, including the response associated with stimulus 
offset.  
 
 
  

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted June 13, 2024. ; https://doi.org/10.1101/2023.09.08.556679doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.08.556679


 
12 

 
Figure 3. Differences between within- and across-participant model. (A) Average 
performance of the model across all dimensions when fitted as a within-participant model 
(session-wise cross-validation) and an across-participant model (participant-wise cross-
validation). The black line below shows the difference between the two. Timewindows of 
interest around 125 ms, 200 ms, 400 ms, and 600 ms are highlighted which we used to examine 
the differences between the within- and across-participant model in more detail (see C). (B) 
Each subplot shows an example dimension timeseries when the model is fit within each 
participant (light color) and across different participants (dark color).  (C) Comparison of the 
differences between the within- and the across-participant model at four timewindows of 
interest. We selected the first timewindow based on the peak within-participant correlation, and 
then additional timewindows at regular intervals.  Every dot shows the difference between the 
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(3) Peak timing and relative amplitude are prototypical temporal characteristics of different 
dimension timecourses 
Comparing the dimension timecourses visually suggests some commonalities across 
dimensions. For example, some dimensions shared a strong early peak and others 
showed a slower, gradual rise. To quantify the similarity of timecourse shapes across 
dimensions, we used dynamic-time warping (DTW, Chu et al., 2002). DTW captures the 
similarity between a pair of timeseries by assessing how much one of the timeseries has 
to be warped to resemble another one (Figure 4A). The result of this analysis is a time-
time-matrix with cost values indicating the amount of warping that has to be done at every 
timepoint. To measure the similarity of a given timeseries pair, we extracted the sum of 
the Euclidean distances along the path of lowest cost. If the path falls on the diagonal of 
the time-time-matrix it means that the timeseries are identical. If it veers off the diagonal, 
the timeseries are more dissimilar (Figure 4A). 
 
Applying DTW to our data, we generated a distance matrix for dimension timeseries pairs 
and ran hierarchical clustering on that matrix to determine which dimensions evoked 
similar time courses (Figure 4B). Cluster A first separated from all other dimensions. This 
cluster contained dimensions describing colors (“red”, “white”, “green”). Next, Cluster B 
separated from Cluster C and Cluster D. Cluster C contained dimensions describing 
colors (e.g., “sand-colored”, “black”) as well as other features such as shape (e.g., 
“circular/round”, “thin/flat”). After running the clustering, we sorted and averaged the 
cluster correlations to examine prototypical timeseries characteristics. The primary 
feature that appeared to distinguish the different time series was the relative strength of 
the early (~ 125 ms) and late (> 200 ms) correlations. The presence of an early peak 
(clusters a and c) was also often accompanied by a second local peak around the time of 
stimulus offset. Dimensions within these two clusters included “red”, “green”, “thin/flat”, 
and “colorful/playful”. These were all dimensions that appear to reflect a specific visual 
feature (e.g. color, shape) contained within the images. Thus, the early peak and strong 
offset response might be driven by underlying visual consistencies in objects with high 
scores on these dimensions. 
 
In contrast, the other clusters showed the strongest correlation after 200 ms, with a slow 
rise to a late and prolonged maximum, but differing in the relative size of the early and 
late correlations. Dimensions within these clusters included “farm-related”, “flying-
related”, and “body-/people-related”. Notably, these clusters accounted for the majority of 

within and across model for each of the 66 dimensions. The example dimensions from (B) are 
highlighted in their corresponding colors.  
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the dimensions, highlighting the importance of the later response for behaviorally relevant 
features.  
Overall, the clustering suggests that there are two broad classes of temporal profiles, 
those with a distinct, early peak and a stimulus offset effect and those with a late peak, 
often without any clear early peak. The clusters with strong early effects, which showed 
better generalization across participants, tended to reflect more stimulus-specific 
information (e.g. green, colorful). In contrast, the clusters with strong late peaks, which 
showed weaker generalization, appeared to correspond to more conceptual properties, 
possibly reflecting a greater contribution of subject-specific information.  
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Figure 4. Dynamic time warping (DTW) as a method to compare timeseries similarities 
and extract prototypical timeseries characteristics. (A) shows the DTW approach for two 
pairs of timeseries. The correlations were scaled and plotted over time (left panel). DTW 
assesses how much one timeseries needs to be warped to resemble the other one (middle 
panel). This warping cost can be established by calculating the Euclidean distance between all 
timepoints (top right panel) to assess dissimilarity. The path of lowest cost describes the path 
through the matrix that minimizes the warping costs while adhering to some rules (see 
Methods). To summarize the warping cost in a single number, we summed the Euclidean 
distances along the path as a dissimilarity measure. (B) shows the dissimilarity matrix 
containing the DTW similarity measures for timeseries pairs (right panel). Timeseries with low 
signal-to-noise ratio were excluded (see methods). Hierarchical clustering on this matrix allows 
us to sort the dimension timeseries (left panel) and dimensions labels (middle panel). Averaging 
the timeseries for each cluster (bottom right panel) allows to examine prototypical timeseries 
characteristics.  

 
 
Discussion 
Resolving incoming visual information to make sense of our environment is a challenging 
task that our brain solves within just a few hundred milliseconds. Here, we used a 
similarity embedding based on millions of behavioral judgements to model temporally-
resolved neural responses in order to understand how the behaviorally-relevant features 
of objects are represented in the brain over time. Using THINGS-MEG (Hebart, Contier, 
Teichmann et al., 2023), we found that individual object dimensions were directly reflected 
in the neural response, with distinct temporal profiles for different dimensions. In 
particular, while some dimensions showed strong representation shortly after stimulus 
onset resulting in a pronounced early peak in the timeseries, other dimensions showed a 
slower rise to a later peak. For most dimensions, these early effects were highly similar 
across individuals allowing for across-participant generalization, while later effects were 
less consistent across participants. Some dimensions that are visually more homogenous 
(e.g., “red”) exhibited high across-participant generalization throughout time. Collectively, 
these results indicate that dimensions capturing physical stimulus properties evoke a 
more similar response across participants. Overall, our work highlights that behaviorally-
relevant object properties emerge and evolve at different timepoints in the neural signal 
and contribute to the rich nature of object vision. 
 
Our data-driven approach focused on behaviorally-relevant object dimensions contrasts 
with more typical category or feature-driven approaches. First, prior work has often used 
small, hand-selected stimulus sets (e.g., Bankson, Hebart et al., 2018; Carlson et al., 
2013; Cichy et al., 2014; Grootswagers et al., 2018; Kriegeskorte et al., 2008; Teichmann 
et al., 2020) with findings that may be tied closely to the specific stimuli chosen 
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(Grootswagers & Robinson, 2021). While larger stimulus sets potentially avoid this 
problem, it is often unclear how the stimuli were sampled, and biases within the stimulus 
set may still constrain the results. For example, the COCO stimuli used in the large-scale 
MRI Natural Scenes Dataset (Allen et al., 2022) heavily oversample 80 individual 
categories, leading to countless images of giraffes or surfers, which may also 
overestimate generalization performance (Shirakawa et al., 2024). Second, analyses in 
prior work often focused on category or feature labels assigned to individual stimuli, which 
ignore our broader understanding of objects and the specific properties that may be 
shared between different objects. One alternative approach used in prior work is to model 
the neural data using feature norms (e.g., McRae et al., 2005). In one particular MEG 
study (Clarke et al., 2015), this approach was used to model semantic content of stimuli 
from 11 categories which was then contrasted with output from a computational model of 
object vision. A drawback of this approach is that feature norms rely on verbally naming 
properties which means key visual or conceptual features may be missed while other 
features may be overemphasized. In contrast, our approach extracts object properties 
that are behaviorally-relevant using a visual odd-one-out task which does not require 
properties to be nameable and automatically extracts their individual relevance.  
 
Our approach used the >27,000 images of the THINGS database which come with a 
behavioral embedding derived from 4.7 million similarity judgements. Using these 
datasets means reduced bias in stimulus selection and category assignment, as the 
THINGS concepts have been selected systematically (Hebart et al., 2019), and the 
behavioral embeddings were derived in a data-driven fashion, relying on crowdsourced 
similarity judgements (Hebart et al., 2020, Hebart, Contier, Teichmann et al., 2023). 
Instead of analyzing image-specific effects that reflect one category or another, we 
modeled the neural data for all object images in terms of continuous similarity scores 
along 66 dimensions. That means the MEG data going into the analysis always remained 
the same, but the label value capturing how strongly each image is associated with the 
dimension at hand differed. This approach is powerful as it makes use of all the data while 
allowing to study many dimensions simultaneously. Furthermore, it captures the 
complexities of object vision where objects are associated with many properties. The data 
here show that information related to all 66 behaviorally-relevant dimensions can be read-
out from the MEG signal and have distinct temporal profiles. Together, our results 
highlight that modelling neural responses using continuous behaviorally-relevant 
embeddings offers a more comprehensive understanding of the visual object space than 
a focus on object category or individual, experimenter-selected dimensions.  
 
We found different temporal dynamics for different object dimensions of visual object 
processing with a data-driven approach that broadly revealed two distinct temporal 
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characteristics. We observe that some dimensions had a transient and distinct, early peak 
<150 ms and an offset response at ~100 ms after stimulus-offset. In contrast, other 
dimensions lacked the early peak completely or showed it more subtly. These dimensions 
tended to slowly rise to a later peak (~300 ms) that is more sustained over time. We found 
that early effects were more consistent across participants than later ones, suggesting 
that early peaks reflect stimulus-specific and later peaks subject-specific information. 
Indeed, when looking at which dimensions had a distinct early peak, we found that 
stimulus-specific visual properties such as color drove early distinctions. In contrast, later 
effects seemed to be more associated with concept-related properties, and critically our 
results suggest that the impact of such properties was variable across participants. It is 
important to note that the stimulus-specific effects we observed here are not tied to 
specific exemplars, as every unique image was shown only once and all analyses were 
based on cross-exemplar generalizations. Previous work has used cross-exemplar 
generalization as a method to disentangle visual and conceptual object properties (e.g., 
Bankson, Hebart et al., 2018; Carlson et al., 2013), however, this approach does not allow 
us to distinguish which object properties drive the effects at different timepoints. Our 
approach uses multidimensional behavioral embeddings and can therefore tease these 
differences apart by showing which behaviorally-relevant property contributes to the 
neural signal at a given timepoint. Overall, the results highlight that distinct temporal 
profiles are associated with different behaviorally-relevant dimensions but that some 
broad characteristics can distinguish between stimulus- and subject-specific information. 
 
One limitation of our work is that the behavioral embedding was derived from a separate 
set of participants than those from which neural responses were collected. While our data 
is consistent enough to be generalizable across participants, we find that generalization 
performance is better for earlier peaks and dimensions that capture perceptually 
homogenous features (e.g., red, green, colorful). This may partially be the case because 
our behavioral embeddings are derived from crowdsourced data and thus may prioritize 
dimensions that tend to be shared across individuals. Future work should investigate 
individual differences more closely to understand how the object space may be skewed 
given personal experience and the task at hand.  
 
In conclusion, by using behavioral judgments of similarity to guide our understanding of 
the neural representation of the object space, we find that different aspects of the object 
response emerge at different timepoints and together create the experience of meaningful 
visual object processing. 
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Methods 
 
Dataset 
We used the publicly available THINGS dataset (Hebart, Contier, Teichmann, et al., 2022) 
which contains densely sampled MEG data as well as crowdsourced behavioral data. The 
MEG portion of the data contained neural recordings from four participants who each 
viewed a total of 27,048 unique images over the course of a 12-sessions. Every image 
was shown centrally for 500 ms with an inter-stimulus interval of 800-1200 ms. 
Participants completed a target-detection task, looking for artificially generated images of 
objects that do not exist. Of the 27,048 trials, 22,248 trials were experimental trials 
showing unique images from the THINGS database (Hebart et al., 2019), which were 
used for the analysis.  
 
Each image belonged to one of 1,854 object concepts (e.g., aardvark, clock, chicken wire, 
among many others). Unique image exemplars for each of the concepts were repeated 
12 times over the course of the MEG experiment (one image per concept per session). 
In addition to the image concepts, we used a behaviorally-relevant embeddings to model 
MEG sensor responses. The embeddings contained weights on 66 dimensions which 
capture trial-by-trial responses for 4.7 million odd-one-out judgments on triplets of the 
1,854 object concepts (Hebart, Contier, Teichmann et al., 2023). Each dimension 
describes a certain object property (e.g., circular/round, colorful, food-related), however, 
these dimensions were derived in a data-driven way based on the behavioral data. The 
original embedding was trained at the concept-level (one image per concept) and hence 
could miss visual variability across exemplars. In order to obtain image-level embeddings, 
we used a neural network model (CLIP-ViT, Radford et al., 2021) that can predict image-
text pairs and has also been shown to be able to predict similarity judgments with high 
accuracy (Hebart et al., 2022; Muttenthaler et al., 2022). We started by examining the 
activity patterns in the final layer of the image encoder for each of the 1,854 objects. We 
then used ridge regression to predict dimension weights for each of the 66 dimensions 
for all images in the THINGS database. To model the evoked neural response measured 
with MEG, we then used the image-level predicted weights along the 66 dimensions. 
Please note that, while this analysis relies on features derived from a neural network 
model, the human similarity embedding showed good fits at the level of individual 
dimensions, demonstrating that these effects were not merely driven by projecting the 
CLIP image embedding to 66 arbitrary unidimensional spaces. 
 
Preprocessing 
Our preprocessing pipeline was built using mne-python (Gramfort et al., 2013) and 
described in detail in the dataset release (Hebart, Contier, Teichmann, et al., 2022). The 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted June 13, 2024. ; https://doi.org/10.1101/2023.09.08.556679doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.08.556679


 
20 

preprocessing steps included filtering (1Hz – 40Hz), baseline correction using z-scoring 
and epoching the data from -100 to 1300 ms relative to stimulus onset. Preprocessed 
data can be directly downloaded from OpenNeuro 
(https://openneuro.org/datasets/ds004212/versions/2.0.0).  
 
Analyses 
Modelling MEG data based on multidimensional similarity judgments: within-participant 
regression 
To model how the behaviorally-relevant dimensions unfold over time in the human brain, 
we fitted a multiple linear regression model at every timepoint to learn the association 
between the multivariate MEG-sensor response and the scores along each dimension. 
We trained the model on data from 11 out of the 12 sessions (20,394 trials) and tested 
on the remaining one (1,854 trials). This process was repeated so that every session was 
used as testing data once. The model was trained and tested for each participant 
separately. A separate model was trained and tested at every timepoint. Models were fit 
in Python using sci-kit learn linear regression models with default parameters (Pedregosa 
et al., 2011).  
 
We assessed the model’s performance by correlating the predicted dimension score of 
all left-out trials with behavioral embeddings for each of the images. These correlations 
were interpreted as amount of information in the neural signal associated with a given 
dimension. We ran 10,000 iterations of the model fit with permuted weights in each 
dimension, to establish a 95% confidence interval representing chance model 
performance. 
 
To gain insights into which sensors primarily drove the effects, we also trained a linear 
model to predict the activation of each sensor using the multidimensional similarity 
judgments. We used a session-wise cross-validation approach and ran this analysis for 
each participant separately. The model’s performance was assessed by correlating the 
predicted sensor activations for the test-set and the true sensor activations at every 
timepoint.  
 
(b) Examining timecourse similarities across people: Across-participant regression 
To examine whether timecourse profiles are consistent across participants, we also 
trained a model with a participant-wise cross validation scheme. We trained the model to 
learn the association between the multivariate MEG sensor activation pattern at every 
timepoint and the behavioral dimension profiles using data from three of the four 
participants. We then tested its performance using the data from the left-out participant. 
We repeated this process until every participant’s data were used as testing data once. 
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A separate model was trained and tested at every timepoint. Models were fit in Python 
using sci-kit learn linear regression models with default parameters (Pedregosa et al., 
2011). 
 
(c) Examining timecourse similarities across dimensions: Dynamic Time Warping 
The results of the regression models were timeseries of correlations for each dimension. 
To compare the shapes of these timeseries and assess overall similarities and 
differences, we used dynamic time warping implemented in the dtaisdistance toolbox 
(Meert et al., 2020). In contrast to correlation measures which are compression based, 
DTW is shape based and is well suited to investigate timeseries similarities that may have 
a temporal drift (Aghabozorgi et al., 2015). The goal of DTW is to find matches between 
patterns of two timeseries by assessing how much one timeseries has to be warped to 
look like the other one. This is achieved by generating distance matrices filled with 
pairwise Euclidean distances between timepoints and finding the shortest path through 
this matrix while adhering to several rules: The start and end of the timeseries have to 
align, the path cannot go back in time, and it has to be continuous.  
 
The DTW similarity measure represents the sum of the Euclidean distances along the 
shortest path. We extracted this measure for smoothed timecourses and generated a 
similarity matrix. Given that we were interested in the relative shape of the timeseries and 
not the differences in signal-to-noise ratio, we normalized the timeseries before running 
the dynamic time warping by calculating z-scores for each dimension timeseries and each 
participant. Then we averaged across participants and calculated the DTW similarity 
measure for all dimension comparisons. Because z-scoring can amplify the effect of noisy 
timeseries, we sorted the timecourses by peak amplitude and excluded the bottom 12 
timecourses from this analysis (see bottom two rows in Supplementary Figure S1). 
Running hierarchical clustering on the resulting DTW distance matrix allowed us to 
establish a qualitative measure of different prototypical timeseries characteristics. We set 
the threshold for the hierarchical clusters to be at 0.5 x the maximum distance observed.  
 
Open Science Practices 
All data is publicly available under a Creative Commons license and can be downloaded 
from OpenNeuro: https://openneuro.org/datasets/ds004212/versions/2.0.0 [this 
repository does not contain all aggregate behavioral data to run the analyses yet. It will 
be populated and re-uploaded as version 3.0.0 as soon as the review process is finalized]. 
The analysis code for all analyses in this paper are available on GitHub: 
https://github.com/Section-on-Learning-and-Plasticity/THINGS-MEG.   
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Supplementary Materials 
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Figure S1. Dimension timecourses for within-participant regression model. Each panel 
shows the correlation between the predicted and true weights for each dimension over time. 
The timecourses are sorted by peak amplitude. The thin lines show the correlations for each 
participant. The thick lines show the average across participants.  
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Figure S2. Dimension timecourses for across-participant regression model. Each panel 
shows the correlation between the predicted and true weights for one of the 66 dimensions 
over time. Saturated lines show the correlation timecourses for the across-participant models 
where the model is trained on data from three participants and tested on the data from a left-
out participant. The transparent lines show the average correlation timecourses for the within-
participant model as a reference. The timecourses are sorted by peak amplitude.  
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