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Abstract

Novel mosquito genetic control tools, such as CRISPR-based gene drives, hold great
promise in reducing the global burden of vector-borne diseases. As these technologies
advance through the research and development pipeline, there is a growing need for
modeling frameworks incorporating increasing levels of entomological and
epidemiological detail in order to address questions regarding logistics and biosafety.
Epidemiological predictions are becoming increasingly relevant to the development of
target product profiles and the design of field trials and interventions, while
entomological surveillance is becoming increasingly important to regulation and
biosafety. We present MGDrivE 3 (Mosquito Gene Drive Explorer 3), a new version of a
previously-developed framework, MGDrivE 2, that investigates the spatial population
dynamics of mosquito genetic control systems and their epidemiological implications.
The new framework incorporates three major developments: i) a decoupled sampling
algorithm allowing the vector portion of the MGDrivE framework to be paired with a
more detailed epidemiological framework, ii) a version of the Imperial College London
malaria transmission model, which incorporates age structure, various forms of
immunity, and human and vector interventions, and iii) a surveillance module that
tracks mosquitoes captured by traps throughout the simulation. Example MGDrivE 3
simulations are presented demonstrating the application of the framework to a
CRISPR-based homing gene drive linked to dual disease-refractory genes and their
potential to interrupt local malaria transmission. Simulations are also presented
demonstrating surveillance of such a system by a network of mosquito traps. MGDrivE
3 is freely available as an open-source R package on CRAN
(https://cran.r-project.org/package=MGDrivE2) (version 2.1.0), and extensive examples
and vignettes are provided. We intend the software to aid in understanding of human
health impacts and biosafety of mosquito genetic control tools, and continue to iterate
per feedback from the genetic control community.

Author summary

Vector-borne diseases such as malaria cause massive morbidity and mortality
throughout much of the world. Currently-available control measures, such as
insecticide-based tools and antimalarial drugs, have limited impact and are waning in
effectiveness, hence there is a need for novel tools to complement existing ones.
Mosquito genetic control tools, such as gene drive systems and genetic versions of the
sterile insect technique, offer a range of promising options, the development of which
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has greatly expanded since the advent of CRISPR-based gene-editing. Recently, we
proposed MGDrivE 2 (Mosquito Gene Drive Explorer 2), which incorporates
epidemiology into simulations of the dynamics of these systems in spatially-structured
mosquito populations; however, that framework relied on simple model representations
of vector-borne diseases. Here, we present MGDrivE 3, which decouples the vector
portion of the model from the human portion, allowing the mosquito genetic control
framework to be paired with more-detailed epidemiological frameworks. As an example,
we implement the human transmission dynamics of the Imperial College London
malaria model. We also incorporate a network of mosquito traps for surveillance. As
genetic control technology edges closer towards field implementation, more detailed
predictions of its epidemiological and biosafety implications are needed. We propose
MGDrivE 3 to fulfill this role.

Introduction 1

Since the advent of CRISPR-based gene-editing, mosquito genetic control technology 2

has been advancing at a rapid pace, with a plethora of novel genetic constructs being 3

developed in the lab and the prospect of field releases being discussed in earnest. For 4

malaria vectors, recent constructs include a suppression gene drive targeting the 5

doublesex gene in Anopheles gambiae [1], a replacement gene drive linked to dual 6

antimalarial effector genes in both An. gambiae and Anopheles coluzzii [2], and a 7

genetic version of the sterile insect technique engineered in An. gambiae [3]. As the 8

prospect of environmental releases of constructs like these nears, there is a need for 9

increasingly detailed mathematical models to predict the spread of genes through 10

populations, as well as their epidemiological and biosafety implications [4]. 11

Disease transmission is a key area requiring further development in mosquito genetic 12

control models. Models thus far have tended to emphasize entomological properties and 13

outcomes, such as changes in allele frequencies over time and geographical spread [5–8], 14

and while epidemiological dynamics have sometimes been incorporated, models have 15

tended to utilize simple representations of vector-borne disease transmission, such as the 16

Ross-Macdonald model of malaria transmission, with some exceptions [9]. Meanwhile, 17

detailed models of malaria transmission have been developed by several groups [10–12] 18

incorporating symptomatic and asymptomatic infection, variable parasite density in 19

humans, age structure, mosquito biting heterogeneity, and interventions such as vector 20

control utilizing long-lasting insecticide-treated nets (LLINs) and indoor residual 21

spraying with insecticides (IRS), and antimalarial drug therapy. Incorporating this level 22

of epidemiological detail into mosquito genetic control models would be of great utility 23

considering that genetic control tools will likely be implemented alongside other 24

interventions, expected epidemiological impacts should be a focus in developing these 25

products [4], and initial field trials are expected to have a measured entomological 26

outcome alongside a modeled epidemiological one [13]. 27

Surveillance is another key area requiring inclusion in mosquito genetic control models. 28

Models thus far have tended to record allele frequencies and population densities 29

directly from model output, while incorporating traps explicitly within models would 30

allow questions related to the optimal density and placement of traps to be explored. 31

This would be useful to assess monitoring requirements to both: i) accurately measure 32

effectiveness of genetic control (e.g., establishment and persistence of alleles at future 33

field sites), and ii) detect unintended spread of transgenes beyond the testing or trial 34

site [14]. This latter concern is of particular importance for non-localized gene drive 35

mosquito projects, which have potential to spread on a wide, potentially regional, scale. 36

Efficient, model-informed surveillance programs are therefore essential, as surveillance is 37
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expected to be a major cost driver for this technology. 38

Previously, our group developed MGDrivE (Mosquito Gene Drive Explorer) [5] to model 39

the spatial population dynamics of a variety of mosquito genetic control systems, and 40

MGDrivE 2 [15], incorporating simple models of malaria and arbovirus transmission, 41

seasonality in mosquito populations, and a novel formulation of mosquito and human 42

state space utilizing stochastic Petri nets (SPNs). Here, we present MGDrivE 3, a new 43

version of MGDrivE 2 that incorporates three major developments: i) a decoupled 44

sampling algorithm allowing the vector and human portions of the model to be readily 45

modularized, and hence for the mosquito portion of MGDrivE to be paired with a 46

more-detailed epidemiological framework, ii) a version of the Imperial College London 47

(ICL) malaria transmission model [10,11], which incorporates age structure, various 48

forms of immunity, human and vector interventions, and more meaningful disease 49

outcomes, and iii) surveillance functionality that tracks mosquitoes captured by traps 50

throughout the simulation. As such, parasite transmission can now be modeled 51

according to mosquito genotype, genetic control interventions can now be modeled 52

alongside other interventions (such as LLINs, IRS and antimalarial drugs), and the 53

dynamical and surveillance implications of mosquito traps can now be modeled. 54

In this paper, we describe the new features implemented in MGDrivE 3. Additionally, 55

we present an example applying the framework to a hypothetical release of a 56

CRISPR-based homing gene drive system linked to dual disease-refractory genes and 57

their implications for malaria transmission in a low-transmission island setting. 58

Simulations are also presented demonstrating surveillance of a similar drive system by a 59

network of mosquito traps. We conclude with a discussion of future directions and 60

applications of MGDrivE 3 to the development and application of mosquito genetic 61

control tools towards the goal of vector-borne disease control. 62

Design and implementation 63

As with the MGDrivE 2 framework [15], MGDrivE 3 incorporates modules for 64

inheritance (the distribution of offspring genotypes for given maternal and paternal 65

genotypes), mosquito life history (development from egg to larva to pupa to adult), 66

landscape (the distribution and movement of mosquitoes through a metapopulation), 67

and epidemiology (reciprocal pathogen transmission between mosquitoes and humans). 68

MGDrivE 3 offers three substantial improvements beyond the functionality included in 69

MGDrivE 2 - a sampling algorithm that allows decoupling of the mosquito and human 70

model components, incorporation of a more detailed malaria transmission model, and 71

inclusion of mosquito traps - each described in depth below. The software was 72

developed using the R programming language, and retains the SPN formulation of the 73

MGDrivE 2 package. 74

Decoupled vector-host sampling framework 75

Decoupling the vector and host portions of the modeling framework is a major 76

contribution of MGDrivE 3. Vector-borne disease models describe the reciprocal 77

transmission of pathogens between vectors and hosts. Prior models have represented the 78

vector and host state space as compartmental models represented by ordinary [16,17,44] 79

or partial differential equations (PDEs) [10], or as individual-based models [19,20]. In 80

each of these models, vectors and hosts have the same state space and mathematical 81

representation. In MGDrivE 3, the vector model is formulated as a SPN with a discrete 82

state space, so we developed a sampling framework to allow the vector and host models 83

to communicate, even if they have different representations. 84
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Decoupling of vector-borne disease models is facilitated by the fact that all the vector 85

model needs to know about the host model is the density and level of infectiousness in 86

hosts, and vice versa. Communicating between the two model portions can therefore be 87

accomplished by exchanging two composite parameters: i) the force of infection on hosts 88

(λH), i.e., the probability that a host is infected per unit time, and ii) the force of 89

infection on vectors (λV ), i.e., the probability that a vector is infected per unit time. 90

For malaria, λH is equal to the entomological inoculation rate (EIR, the number of 91

infectious mosquitoes per human multiplied by their human biting rate) multiplied by 92

the probability of the human becoming infected given an infectious bite. Similarly, λV is 93

proportional to the human biting rate multiplied by the proportion of humans that are 94

infectious multiplied by the probability of the mosquito becoming infected [21]. 95

A schematic of an inter-model sampling algorithm for malaria, which we implement in 96

this paper, is depicted in Fig 1. At each model iteration: i) the host model samples λH 97

from the vector model, ii) the host model increments its infectious states for a time 98

equal to one time step, iii) the vector model samples λV from the host model, and iv) 99

the vector model increments its infectious states for one time step. While the MGDrivE 100

3 vector model is represented as an SPN with discrete state space, it is agnostic to how 101

the host model is represented, which in this case is a system of PDEs with continuous 102

state space [10, 11]. Additional considerations in implementing this algorithm include: i) 103

choosing a time step appropriate to both models, ii) ensuring the MGDrivE 3 vector 104

model produces output consistent with the vector model within the host model that it 105

replaces, and iii) validating the EIR produced by the combined model framework. 106

While a specific use case is presented in Fig 1, this inter-model sampling framework 107

applies generally - it could equally be applied to models of arboviruses transmitted by 108

Aedes aegypti [44], or to models of citrus greening disease transmitted by Diaphorina 109

citri [22], provided the appropriate model adjustments are made. 110

Malaria transmission model 111

Given the decoupled sampling algorithm, we incorporated an adapted version of the 112

malaria model developed by the ICL malaria modeling group [10,11] into MGDrivE 3. 113

The MGDrivE 3 vector framework may be linked to several published malaria models; 114

however, the ICL model represents a suitable level of parsimony for the current stage of 115

development, as it can be described by a succinct set of PDEs while incorporating 116

several important features of malaria epidemiology, and has been fitted to extensive 117

malaria data sets throughout sub-Saharan Africa [10,11]. Important epidemiological 118

details captured in this model include symptomatic and asymptomatic infection, 119

variable parasite density and superinfection in humans, human age structure, mosquito 120

biting heterogeneity, and antimalarial drug therapy and prophylaxis. The model also 121

includes several forms of immunity: i) pre-erythrocytic immunity reduces the 122

probability of infection if bitten by an infectious mosquito; ii) acquired and maternal 123

clinical immunity represent the effects of blood stage immunity on reducing the 124

probability of developing clinical symptoms and severe illness; and iii) detection 125

immunity represents the effects of blood stage immunity on reducing the detectability of 126

an infection and onward transmission to mosquitoes. A full set of equations describing 127

the ICL malaria model is provided in the S1 Text. 128

In incorporating certain genetic vector control tools - e.g., gene drive systems intended 129

to spread disease-refractory genes into mosquito populations [2, 23] - an important 130

addition to the epidemiological framework is transmission parameters that are mosquito 131

genotype-specific. In the ICL malaria model, the force of infection on humans, λH(a, t), 132

is dependent on both age, a, and time, t, and is a product of the EIR, ε(a, t), and the 133

transmission probability, b, i.e.: 134
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Fig 1. Schematic of decoupled vector-host sampling algorithm for malaria.
MGDrivE 3 uses a stochastic Petri net framework to model progression of adult female
mosquitoes from susceptible (SV ) to exposed/latently infected (EV ) to infectious for
malaria (IV ). This framework is linked to an adapted version of the Imperial College
London (ICL) malaria model, which is represented as a set of partial differential
equations. In the ICL model, humans progress from susceptible (SH) to either
symptomatic or asymptomatic infection. Humans who develop a symptomatic infection
and are either treated (TH) or diseased and untreated (DH). Treated humans advance
to a prophylactic protection state (PH) and eventually become susceptible again.
Untreated symptomatic humans develop successively lower-density infections, from
symptomatic to asymptomatic but detectable by rapid diagnostic test (RDT) (AH) to
asymptomatic and undetectable by RDT (UH). Asymptomatic humans can also be
super-infected. To allow the two frameworks to communicate, at each time step: i) the
ICL human model samples the force of infection in humans (λH) from the MGDrivE 3
vector model, ii) the ICL human model increments its infectious states for a time equal
to one time step, iii) the MGDrivE 3 vector model samples the force of infection in
vectors (λV ) from the ICL human model, and iv) the MGDrivE 3 vector model
increments its infectious states for one time step.

λH(a, t) = ε(a, t)b

A given human could be bitten by a mosquito having any genotype, g, from the set of 135

all genotypes, G, proportional to its time-varying frequency in the population, pg(t). For 136

an effector gene that blocks mosquito-to-human transmission, the transmission 137

probability, bg, will be genotype-specific, and so the expected transmission probability is 138

equal to the time-varying weighted average: 139

b(t) =
∑
g∈G

pg(t)bg

Incorporating more epidemiological detail into the model of transmission dynamics also 140

allows more nuanced epidemiological outcomes to be calculated. As the ICL malaria 141

model is age-stratified, both malaria prevalence and incidence can be calculated 142

according to age group. Prevalence is calculated across all infectious human 143

compartments - treated and untreated symptomatic disease, asymptomatic but 144
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detectable by rapid diagnostic test (RDT), and asymptomatic but undetectable by RDT 145

- since each of these compartments contributes to onwards transmission of malaria to 146

mosquitoes. Clinical incidence refers to new clinical malaria cases within a defined time 147

interval, and is of particular relevance to the healthcare system. One commonly 148

reported metric is malaria prevalence among children aged 2-10 years [24], as pediatric 149

cases of malaria tend to be the most severe. A mathematical description of how each of 150

these outcomes is calculated within the MGDrivE 3-ICL malaria model framework is 151

provided in the S1 Text. 152

Additional interventions and seasonality 153

Additional functionality has been included in both the vector and host portions of the 154

MGDrivE 3 framework to incorporate currently-available interventions that genetic 155

control tools would likely be implemented in conjunction with. While a range of novel 156

vector control tools are currently under development [25]; the mainstay of malaria 157

interventions for the last two decades has been a combination of LLINs, IRS and 158

antimalarial drugs - largely artemisinin-combination therapy (ACT). Some combination 159

of these interventions will invariably be present when a genetic control intervention is 160

implemented, and it is important to characterize their implications for both vector 161

population dynamics and vector-borne disease transmission. We model the impact of 162

LLINs and IRS on mosquito life history parameters according to the elaborated feeding 163

cycle model developed by Le Menach et al. [26] and adapted by Griffin et al. [10]. 164

Within this framework, LLINs and IRS increase the mortality rate and decrease the 165

biting rate of adult mosquitoes, and also decrease the egg-laying rate by virtue of 166

extending the gonotrophic cycle. Equations for how each of these parameters are 167

impacted by different coverage levels of LLINs and IRS are provided in the S1 Text. 168

The proportion of symptomatic malaria cases that receive antimalarial drug therapy is 169

included within the ICL malaria model [10,11]. 170

MGDrivE 3 also includes updated functionality for incorporating seasonal weather 171

patterns. While MGDrivE 2 allows mosquito life history parameters, such as adult and 172

larval development and mortality rates, to vary with time in response to environmental 173

variables such as temperature and rainfall [15], the new framework utilizes 174

environmental data to generate seasonal profiles to modulate these parameters. Rather 175

than using raw daily rainfall data, which varies from year to year, the Umbrella R 176

package [27] is used to fit a mixture of sinusoids to the rainfall data. This provides a 177

more general characterization of the seasonal trends at a given location, and facilitates 178

comparison across other locations with similar seasonal patterns. As with MGDrivE 2, 179

development times are Erlang-distributed, and the model of White et al. [28] is used to 180

modulate larval carrying capacity and hence density-dependent mortality in response to 181

recent rainfall - a key driver for Anopheles population dynamics. 182

Traps and spatial surveillance 183

In MGDrivE 3, the landscape module of MGDrivE 2 has been extended to 184

accommodate traps as part of the mosquito metapopulation. In MGDrivE and 185

MGDrivE 2, the landscape module describes the distribution of mosquitoes across 186

discrete, randomly-mixing population nodes, with movement between them quantified 187

by a dispersal kernel [5, 15]. MGDrivE 3 additionally accommodates “trap nodes” in 188

one of two ways: i) traps are placed within a subset of population nodes, and are 189

associated with a probability of trapping for mosquitoes within the corresponding 190

population node per unit time, and ii) traps are assigned their own nodes, and are 191

associated with coordinates and an attractiveness kernel, which includes an amplitude, 192

mean distance of attractiveness, and other parameters as required by the kernel 193
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function. The former case is appropriate for applications on a larger spatial scale (e.g., 194

where population nodes represent villages that traps may be placed in), while the latter 195

is appropriate for applications on a finer spatial scale (e.g., where nodes represent blood, 196

sugar or water sources that traps are placed relative to). In both cases, the landscape 197

including traps may be generated using MGSurvE (Mosquito Gene Surveillance) [29]. 198

Here, the number and locations of traps may be user-specified, along with their 199

trapping probabilities (for the former case) or attractiveness kernel parameters (for the 200

latter case), which should be chosen according to the types of traps being modeled. 201

Data analysis functions are provided to visualize the distribution of mosquitoes having 202

certain genotypes that are captured by each trap over time. 203

Results 204

To demonstrate how MGDrivE 3 can be used to simulate releases of gene drive-modified 205

mosquitoes, including implications for epidemiological outcomes and surveillance, we 206

have provided examples and information on GitHub at 207

https://github.com/amondal2/MGDrivE3-Examples/tree/main/examples. In the first 208

example, we model the release of a full gene drive system designed to drive 209

malaria-refractory genes into an An. coluzzii mosquito population with seasonal 210

population dynamics, pre-existing interventions and transmission intensity calibrated to 211

a setting resembling the island of São Tomé, São Tomé and Pŕıncipe. The full gene 212

drive system resembles one engineered in An. coluzzii [2], which includes dual linked 213

effector genes targeting the malaria pathogen, and is one of the most promising 214

population replacement systems in a mosquito vector to date. While we model this 215

system in a setting chosen largely for its isolation [30], we note that regulatory and 216

biosafety issues must be considered seriously for self-propagating systems with the 217

potential to spread beyond their release site [31]. 218

Four alleles are considered at the gene drive locus: an intact drive allele containing 219

disease-refractory genes (denoted by “H”), a wild-type allele (denoted by “W”), a 220

functional, cost-free resistant allele (denoted by “R”), and a non-functional or otherwise 221

costly resistant allele (denoted by “B”). The inheritance dynamics of this system were 222

fitted to laboratory cage data and are provided in Carballar-Lejarazú et al. [2] with 223

model parameters summarized in Table S1. Notably, we considered a 10% fitness cost 224

associated with mosquitoes carrying either one or two copies of the intact drive allele, as 225

there were no major fitness loads inferred in the An. coluzzii cage experiments [2]; 226

however, fitness costs due to integration and expression of the gene drive system could 227

become apparent in the field. Additionally, we assume that mosquitoes carrying either 228

one or two copies of the H allele confer complete mosquito-to-human transmission 229

blocking, consistent with data from Carballar-Lejarazú et al. [2] for sporozoite 230

thresholds ≥ 7, 500. 231

The life history module is parameterized with typical bionomic parameters for An. 232

coluzzii [28, 32], with incorporation of a generalized seasonal profile that modulates 233

certain life history parameters. In MGDrivE 3, as in MGDrivE 2, the carrying capacity 234

of the environment for larvae is a function of recent rainfall, and a mathematical 235

relationship from White et al. [28] is used to translate local rainfall data to larval 236

carrying capacity; however, in this example, we capture broad variations in the rainfall 237

profile of São Tomé and Pŕıncipe using the umbrella [27] package in R, using a shapefile 238

of the national administrative boundary and a three-year timeframe for rainfall data 239

(Fig 2). Otherwise, the life history module mirrors that of MGDrivE 2, including 240

mean-variance relationships describing development times of the juvenile life stages [33]. 241

For the purpose of this demonstration, and to emphasize the novel epidemiological 242
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component of MGDrivE 3, the island of São Tomé was treated as a single randomly 243

mixing population. 244

Fig 2. Seasonal rainfall profile for São Tomé and Pŕıncipe. Points represent
mean daily rainfall measurements (in mm) for the three years between January 1st,
2017 and Dececember 31st, 2019. The solid line represents the seasonal rainfall profile,
fitted using the umbrella [27] package in R, used to calculate the time-varying
environmental carry capacity for larvae in the life history module of MGDrivE 3.

The ICL malaria model is parameterized according to published intervention coverage 245

and transmission levels for São Tomé and Pŕıncipe - an LLIN coverage of 62%, IRS 246

coverage of 66.5%, 2% of symptomatic malaria cases being treated with antimalarial 247

drugs, and an all-ages P. falciparum prevalence of 2%, according to the World Health 248

Organization Global Health Observatory (https://www.who.int/data/gho). The LLIN 249

and IRS coverage parameters modify vector parameters in the life history module, while 250

the antimalarial treatment parameter is input directly into the ICL model. Output from 251

the ICL malaria model is then calibrated to all-ages malaria prevalence in the context of 252

interventions and the seasonal rainfall profile by multiplying the carrying capacity for 253

larvae by a constant. Other parameters of the ICL malaria model describe 254

heterogeneity, human infectious periods, various types of immunity and treatment, and 255

are as described in the original model [10,11]. Finally, we note that these simulations 256

are intended to demonstrate the software’s capabilities and that, while the simulations 257

are calibrated to data from São Tomé, they are not intended to provide an accurate 258

forecast of gene drive dynamics on the island, or to imply approval of the intervention 259

by the local population and regulatory agencies. 260

Simulation workflow 261

The code for running this simulation is available at: 262

https://github.com/amondal2/MGDrivE3-Examples/blob/main/examples/stp local.R. 263

We begin by loading the MGDrivE and MGDrivE 2 packages in R to gain access to the 264

inheritance cubes, mosquito life history and malaria modeling functionality required for 265

the simulation. Next, we load the inheritance cube for the TP13 population replacement 266

gene drive system in An. coluzzii [2]. This specifies the inheritance-biasing properties of 267

the system, as well as its malaria transmission-blocking effect. Note that there are a 268

variety of other inheritance cubes available in the MGDrivE software - e.g., 269

Wolbachia [34], release of insects carrying a dominant-lethal gene (RIDL) [35], 270

precision-guided sterile insect technique (pgSIT) [3], population suppression gene 271

drive [1], and remediation systems such as ERACR (element for reversal of the 272

autocatalytic chain reaction) [36] - and users are also able to design their own 273

inheritance cubes. Next, we specify general simulation parameters, such as the 274

simulation length, the timestep of the stochastic model, and the timestep at which data 275
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is output (daily). Fitted reproductive fitness parameters for the TP13 construct in An. 276

coluzzii [2] are loaded, and a 10% fitness load on male mating competitiveness and 277

female fecundity is implemented, as described earlier. 278

Next, we specify details of the epidemiology module - baseline malaria prevalence, 279

human population size, human age stratification, and coverage levels of LLINs, IRS and 280

antimalarial drugs. Following this, as with MGDrivE 2, the “places” and “transitions” 281

of the SPN formulation are set up using the “spn P epi decoupled node()” and 282

“spn T epi decoupled node()” functions. Equilibrium values of states in the mosquito 283

and human models are calculated using the “equilibrium Imperial decoupled()” 284

function, and as the ICL malaria model requires the annual EIR to calculate the state 285

distribution at equilibrium, a function is provided to convert malaria prevalence to EIR. 286

Next, the seasonal rainfall profile used to calculate the larval carrying capacity 287

time-series (described above) is used to calculate time-varying hazard rates for 288

density-independent larval mortality. Custom time-varying hazard functions for larval 289

mortality are provided, and hazard functions are provided for the mosquito life history 290

and ICL malaria transmission models. The MGDrivE 2 vignette, “Simulation of 291

Time-inhomogeneous Stochastic Processes,” provides instructions for writing 292

user-specified time-varying hazard functions. Finally, we specify the release scheme - 293

genotypes, size and timing of releases - using an “events” dataframe. 294

With all model components specified, we call the “sim trajectory R decoupled()” 295

function to simulate model trajectories. This implements a tau-leaping algorithm to 296

sample stochastic trajectories, and records daily output to an R dataframe. For further 297

analysis external to R, we provide functionality to write simulation output to CSV 298

files. 299

Entomological dynamics 300

In Fig 3, we display a potential visualization scheme for the entomological and 301

epidemiological outcomes of the simulated gene drive mosquito release described above. 302

This figure was generated in Python and is available at 303

https://github.com/amondal2/MGDrivE3-Examples/tree/main/viz. We note that 304

MGDrivE 3 is not dependent on Python, and the MGDrivE 3 R package provides basic 305

plotting and analysis functions for model output visualization. In this case, we 306

generated data for 15 stochastic model repetitions, and the dynamics displayed in Fig 3 307

depict the mean output of these repetitions. Fig 3A depicts allele frequencies for adult 308

female mosquitoes over the simulation period. After eight consecutive releases of 20,000 309

male mosquitoes homozygous for the TP13 construct (H), the H allele rapidly spreads 310

through the population, reaching near-fixation within a few months. This is a result of 311

the high accurate homing rate, as determined by laboratory experiments [2], relatively 312

low fitness costs (estimated), and low rate of resistance allele generation. 313

Homing-susceptible wild-type alleles (W) are quickly eliminated, although a small 314

number of in-frame and out-of-frame resistance alleles (R and B, respectively) 315

accumulate since, although they are generated infrequently, they slightly outcompete 316

the H alleles in terms of fitness. Note that while these dynamics represent a potential 317

outcome of TP13 gene drive mosquito releases, the dynamics are highly dependent on 318

the relative fitness of H and R/B allele-carrying mosquitoes, while are difficult to 319

accurately quantify outside the field. 320

Epidemiological dynamics 321

Here, we demonstrate the refined epidemiological outcomes obtained by linking the 322

human portion of the ICL malaria transmission model to the vector portion of 323
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Fig 3. Example MGDrivE 3 simulations for a full gene drive system
designed to drive dual malaria-refractory genes into an An. coluzzii
mosquito population with seasonal population dynamics, transmission
intensity and interventions calibrated to a setting resembling the island of
São Tomé, São Tomé and Pŕıncipe. The gene drive system resembles one recently
engineered in An. coluzzii [2] in which all drive components - the Cas9, guide RNA and
effector genes - are all present at the same locus. Four alleles are considered: an intact
drive allele (denoted by “H”), a wild-type allele (denoted by “W”), a functional,
cost-free resistant allele (denoted by “R”), and a non-functional or otherwise costly
resistant allele (denoted by “B”). Model parameters describing the construct, mosquito
bionomics and malaria transmission are summarized in Table S1. (A) Allele frequencies
for adult female mosquitoes over the simulation period. Grey vertical bars beginning at
year two denote eight consecutive weekly releases of 20,000 male mosquitoes
homozygous for both the gene drive construct. The high efficiency of the drive system
and low rate of resistance allele generation mean that almost no disease-competent An.
coluzzii mosquitoes remain five months after the release. (B) Daily clinical malaria
incidence per 100,000 people partitioned according to age group. Reductions in human
incidence within five months of the release parallel spread of the drive construct in the
mosquito population. (C) P. falciparum malaria prevalence partitioned according to
age group. As humans recover from infection and few develop new infections, the P.
falciparum parasite rate declines until it reaches near undetectable levels by year five.

MGDrivE 3. We depict age-stratified clinical incidence in Fig 3B and age-stratified 324

prevalence in Fig 3C. The rapid spread of the gene drive allele through the An. coluzzii 325

population, and its strong modeled transmission-blocking effect, mean that humans are 326

no longer exposed to new infectious mosquito bites five months after the beginning of 327

the release schedule, and hence clinical incidence also falls to zero on this timescale. 328

Notably, clinical incidence includes symptomatic cases that are either treated or 329

untreated (i.e., the TH and DH compartments in the ICL malaria model depicted in Fig 330

1), and does not include asymptomatic cases that are either detectable or undetectable 331

by RDTs (i.e., the AH and UH compartments depicted in Fig 1). Stochastic variation in 332

clinical incidence is pronounced due to the small number of incident cases relative to the 333

total population. 334
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São Tomé is a low-transmission setting with little acquired immunity, so incidence and 335

prevalence are lower in younger age groups (0-5 and 5-17 years old) due to maternal 336

immunity and the lesser skin surface area available for mosquito bites. P. falciparum 337

prevalence includes all diseased states - i.e., symptomatic disease, whether treated or 338

untreated (TH and DH , respectively), and asymptomatic disease, whether detectable or 339

undetectable by RDTs (AH and UH , respectively). Prevalence in the human population 340

takes much longer to decline than incidence, as an individual can harbor P. falciparum 341

parasites for 1-2 years if left untreated [37], which is common for asymptomatic 342

infections. These predictions highlight the transformative promise of gene drive 343

interventions for malaria control; however, we caution that there are several limitations - 344

notably, treatment of São Tomé as a panmictic population of humans and mosquitoes, 345

calibration to malaria prevalence data that is likely underreported [38], and lack of 346

knowledge of the fitness and transmission parameters of gene drive mosquitoes in the 347

field, including their evolution over several years - which preclude the confidence with 348

which such predictions can be made. 349

Spatial surveillance 350

Finally, we demonstrate the capability of MGDrivE 3 to simulate surveillance of 351

mosquitoes via traps placed throughout a landscape. The code for this example is 352

available at 353

https://github.com/amondal2/MGDrivE3-Examples/blob/main/examples/traps.R. We 354

used the MGSurvE framework [29] to optimize the placement of five traps across a 355

spatial network resembling the southern portion of São Tomé, São Tomé and Pŕıncipe. 356

This landscape is described by Sánchez C. et al. [29] - namely, nodes were sourced from 357

the São Tomé and Pŕıncipe census 358

(https://projectsportal.afdb.org/dataportal/VProject/show/P-ST-KF0-001) and aligned 359

with coordinates from Google Maps (https://www.google.com/maps). Daily mosquito 360

movement probabilities were derived using an ecology-motivated algorithm [39], with 361

model output calibrated to mark-release-recapture experiments on An. gambiae sensu 362

lato [40,41]. Traps were placed within population nodes to represent placement within 363

selected villages, and trapping probabilities were specified, along with the rest of the 364

landscape, in MGSurvE. 365

We consider a release in the south of the island and monitor the progression of gene 366

drive phenotypes for trapped mosquitoes over time. As for the epidemiological 367

simulation, we consider eight weekly releases of male An. coluzzii homozygous for the 368

gene drive system. We consider a simplified version of the TP13 gene drive construct [2] 369

with only a single resistance (R) allele. The cutting frequency at the target site for this 370

construct is 1.0, and the rate of accurate homology-directed repair is 0.99. The 371

inheritance cube is flexible to specify genotype-specific mating fitness, multipliers on 372

adult mortality, male and female pupatory success, and reductions in fertility, but we do 373

not modify them in this example. We model mosquitoes as accumulating in traps over 374

the course of a week, after which they are counted and the traps are “reset.” We also 375

tally gene drive phenotypes when trapped mosquitoes are counted, considering a marker 376

allele associated with both the intact drive allele (H) and the wild-type target allele 377

(W) [2]. This allows us to distinguish the following genotypes: HH/HR, WW/WR, HW, 378

and RR. Fig 4 depicts the time-series of gene drive marker phenotypes in each trap by 379

week, with the time of first detection of a transgenic mosquito indicated by a vertical 380

line for each trap. Output like this will be useful to model surveillance strategies for the 381

progression of field trials and interventions, and the emergence of alternative alleles that 382

could interfere with intervention effectiveness [14]. 383
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Fig 4. Example MGDrivE 3 simulations for spatial surveillance of a full gene
drive system on the island of São Tomé, São Tomé and Pŕıncipe. Mosquito
population nodes represent villages and suburbs of comparable size with mosquito
movement probabilities between localities derived from an ecology-motivated
algorithm [39] and calibrated to mark-release-recapture data [40,41]. Simulation was
restricted to the southern portion of the island, with population nodes including traps
depicted in pink and other population nodes depicted in blue. Traps were placed using
the MGSurvE framework [29]. Eight weekly releases of a full gene drive system (cutting
rate of 1.0 and homology-directed repair rate of 0.99) were simulated in the south of the
island, and the phenotype distribution of trapped mosquitoes is depicted for the five
trap nodes in panels a-e. Vertical lines denote the time of first transgene detection for
each trap.

Availability and future directions 384

MGDrivE 3 is available at https://cran.r-project.org/package=MGDrivE2 as version 385

2.1.0 of the MGDrivE 2 package, due to naming conventions. The source code is under 386

the GPL3 License and is free for other groups to modify and extend as needed. 387

Mathematical details of the model formulation are available in the S1 Text. Examples 388

for running MGDrivE 3 simulations are available at 389

https://github.com/amondal2/MGDrivE3-Examples/tree/main/examples, and 390

documentation for MGDrivE 3 functions are available at the MGDrivE 2 project 391

website at https://marshalllab.github.io/MGDrivE/docs v2/index.html. To run the 392

software, we recommend using R version 3.1.0 or higher. 393

We are continuing development of the MGDrivE 3 software package and welcome 394

suggestions and requests from the research community regarding future directions. As 395
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gene drive mosquito projects advance from the lab to the field, we intend our software 396

to address the evolving modeling needs of the technology [42] - from contributing to 397

TPPs [4] and environmental risk assessments [43], to planning field trials, 398

interventions [6, 7] and surveillance programs [14]. The epidemiological extensions 399

offered in MGDrivE 3 will enable more accurate predictions of implications of mosquito 400

genetic control for disease transmission, which are relevant as an outcome for TPPs, and 401

field trial and intervention planning. This will also enable prediction of the impact of 402

genetic control interventions alongside other currently-implemented interventions such 403

as LLINs, IRS and ACTs. The surveillance extensions included in MGDrivE 3 will 404

enable assessment of mosquito trapping schemes to both: i) measure the effectiveness of 405

genetic control strategies in the field, and ii) detect unintended spread of gene drive 406

alleles beyond field sites, and the emergence of alternative alleles broadly [14]. 407

Logistical modeling questions are invariably associated with larger state spaces - more 408

genotypes to keep track of, more human and mosquito disease states, and larger 409

metapopulation networks - which quickly approach the computational limits of the 410

modeling framework. To address this, we are exploring numerical sampling algorithms 411

to increase computational efficiency and speed, and the use of lower-level programming 412

languages such as C++. We are also interested in linking the vector portion of 413

MGDrivE 3 to other epidemiological models that capture human transmission dynamics 414

more comprehensively - e.g., dengue models that incorporate multiple serotypes with 415

temporary cross-protective immunity and complications related to antibody-dependent 416

enhancement [44], and individual-based malaria transmission models that allow sources 417

of heterogeneity to be incorporated more comprehensively and for infection history to 418

be directly associated with immune status [45]. There are also opportunities to adapt 419

the framework to species of relevance to agriculture and conservation - e.g., enhanced 420

epidemiological capabilities could be applied to citrus greening disease transmitted by 421

D. citri [22], and surveillance functionality could be suitable for models of invasive 422

rodents on islands [46]. 423
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40. Taylor C, Touré YT, Carnahan J, Norris DE, Dolo G, Traoré SF, et al. Gene flow
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