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ABSTRACT 

Neurodevelopmental disorders (NDDs) are a category of pervasive disorders of the developing 

nervous system with few or no recognized biomarkers. A significant portion of the risk for NDDs, 

including attention deficit hyperactivity disorder (ADHD), is contributed by the environment, and 

exposure to pyrethroid pesticides during pregnancy has been identified as a potential risk factor for NDD 

in the unborn child. We recently showed that low-dose developmental exposure to the pyrethroid 

pesticide deltamethrin in mice causes male-biased changes to ADHD- and NDD-relevant behaviors as 

well as the striatal dopamine system. Here, we used an integrated multiomics approach to determine 

the broadest possible set of biological changes in the mouse brain caused by developmental pyrethroid 

exposure (DPE). Using a litter-based, split-sample design, we exposed mouse dams during pregnancy 

and lactation to deltamethrin (3 mg/kg or vehicle every 3 days) at a concentration well below the EPA-

determined benchmark dose used for regulatory guidance. We raised male offspring to adulthood, 

euthanized them, and pulverized and divided whole brain samples for split-sample transcriptomics, 

kinomics and multiomics integration. Transcriptome analysis revealed alterations to multiple canonical 

clock genes, and kinome analysis revealed changes in the activity of multiple kinases involved in synaptic 

plasticity, including the mitogen-activated protein (MAP) kinase ERK. Multiomics integration revealed a 

dysregulated protein-protein interaction network containing primary clusters for MAP kinase cascades, 

regulation of apoptosis, and synaptic function. These results demonstrate that DPE causes a multi-modal 

biophenotype in the brain relevant to ADHD and identifies new potential mechanisms of action. 

 

NEW & NOTEWORTHY 

Here, we provide the first evidence that low-dose developmental exposure to the pyrethroid pesticide, 

deltamethrin, results in molecular disruptions in the adult mouse brain in pathways regulating circadian 

rhythms and neuronal growth (MAP kinase). This same exposure causes a neurodevelopmental disorder 

(NDD) relevant behavioral changes in adult mice, making these findings relevant to the prevention of 

NDDs. 

Keywords: developmental disorders; circadian rhythms; MAP kinase; transcriptomics; kinomics; 

multiomics integration 
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INTRODUCTION 

Neurodevelopmental disorders (NDDs) are lifelong, incurable brain disorders with few 

biomarkers and few treatments(1). The incidence of NDDs is rapidly rising, with 17% of children in the 

US now affected, up from 12% in 1998(2). NDDs frequently co-occur as a cluster that includes attention 

deficit hyperactivity disorder (ADHD), autism, schizophrenia, intellectual disability, communication 

disorders, and motor and sensory disorders and share a set of common comorbidities, including epilepsy 

and sleep disorders(3, 4). Recently, evidence of a significant environmental component of NDD risk has 

been growing. Heritability estimates of autism have been falling in recent years, with large meta-

analyses now estimating the environmental component at 38-48%(5). While heritability for ADHD is 

high, less than 4% of the variance in ADHD diagnosis can be explained by candidate genes, suggesting 

that the genetic component is being inflated by gene-environment interactions(6-9). The exploration of 

environmental contributors to NDD risk and their molecular mechanisms has the potential not only for 

future prevention but also for the discovery of new therapeutics targeting these mechanisms in children 

and adults. 

Pyrethroid pesticides are insect-targeting neurotoxins that are the active ingredients in a wide 

range of products, including consumer and professional insect sprays and foggers, head lice shampoos, 

flea collars, and aerosol agents used for mosquito control(10). Pyrethroid pesticides as a class are 

becoming some of the most widely used in the U.S. due to their low environmental impact and relative 

safety in adults(10). Pyrethroid use is so widespread that 70-80% of the general US population have 

detectable pyrethroid metabolites in their blood, indicating an exposure within days(11, 12). 

Nonetheless, evidence is building that there is a risk for NDD from ambient residential pyrethroid 

pesticide exposure, particularly during pregnancy. Epidemiology studies have shown that women who 

lived during pregnancy in areas where pyrethroids were used were at greater risk for their unborn child 

to later be diagnosed with an NDD(13-15). The level of pyrethroid metabolites in the blood of pregnant 

women is associated with adverse neural and mental development outcomes in the child(16). Further, 

pyrethroid metabolite levels in the blood are associated with self-reported ADHD diagnosis(11, 12). 

To follow up on these correlational findings in humans, mouse models of pyrethroid exposure 

have been developed(11, 17-24). These models have established that exposure in mice to the pyrethroid 

deltamethrin during pregnancy and lactation at doses well below the EPA benchmark dose of 14.5 

mg/kg is sufficient to cause broad male-biased changes in the brain and behavior of the resulting 

offspring. Male mice with developmental pyrethroid exposure (DPE) display hyperactivity, impulsivity, 

repetitive behaviors, diminished vocalizations, and impaired learning(11, 24). These behavioral changes 

are in part caused by changes in the striatal dopamine system, including elevated dopamine transporter 

and dopamine D1 receptor expression, elevated striatal dopamine and dopamine metabolites, and 

increased peak dopamine release. Other neurological changes have also been observed from 

developmental and acute exposures, including alterations in levels of voltage-gated sodium channels 

and brain-derived neurotrophic factor (BDNF), as well as decreased neurogenesis and increased 

endoplasmic reticulum stress(17-20). These findings suggest that changes in the brain may be much 

broader than those represented by the largely hypothesis-driven studies performed to date. 

A complex biological system such as the brain functions at many biological levels 

simultaneously, including DNA, mRNA, proteins, and metabolites, each of which can be influenced by a 

disease or toxin. Any of these changes individually, or multiple multimodal changes across levels, may 

result in alterations in cellular function that produce a phenotype. RNA sequencing has been used to 

analyze the pathogenesis of many diseases and shows great potential for the identification of 

therapeutically significant pathways(25). Further, kinases play a critical role in signal transduction, 

control most cellular functions, and are abnormally phosphorylated in a wide range of diseases, making 
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kinome array profiling (i.e., functional proteomics) an intriguing avenue for the identification of kinases 

as potential druggable targets(26-31). Using a combination of high-throughput omics analyses, we can 

gain a much greater insight into disease mechanisms than with a single omics dataset, allowing for a 

more in-depth investigation of the underlying biology of the system, potential associations, and other 

observed effects.   

Here, we used split-sample transcriptomics and kinomics to explore, in a hypothesis-free way, 

the effects of developmental deltamethrin exposure as previously described(24) on the mouse brain at 

the level of gene transcription and protein activity. Because virtually all prior effects observed in mice 

were male-biased(11, 24), we chose to focus on male mice. We then combined our transcriptomics and 

kinomics datasets using multiomics integration analyses to identify multi-modal effects. We hypothesize 

that indirect developmental deltamethrin exposure via the mother leads to a multi-modal biophenotype 

in the offspring that may be related to their NDD-relevant behavioral phenotype. 

MATERIALS AND METHODS 

Animals. Experimental subjects were the adult (P56+) male offspring of female C57BL6/J mouse dams. 

Nulliparous female mice were socially housed in pairs on a 12/12-h light cycle and given water and high-

fat breeder food ad libitum. Female pairs were then housed with a male sire until three days prior to 

birth, at which time they were placed in single housing. The resulting offspring were weaned at 20-22 

days of age into same-sex cages and given water and standard mouse diet ad libitum. All procedures 

were approved by the Emory University IACUC and performed in accordance with the US Animal 

Welfare Act. 

Study design. The design consisted of two independent groups. Dams were exposed orally to either a 

low dose of the pyrethroid pesticide deltamethrin (DPE group) or vehicle only (control group) every 3 

days throughout pre-conception, pregnancy, and weaning as described below and previously(24). The 

subjects of the experiment consisted of a single behaviorally naïve adult male offspring selected from 

each litter. 

Experimental units. Because the exposure occurred in the dam, this study employed a litter-based 

design, with the dam and the litter together counting as a single experimental unit of N=1. A single 

behaviorally naïve adult male offspring from each litter was chosen at random for tissue collection. 

Therefore, the N for each analysis represents both the number of subjects and the number of 

dams/litters.  

Sample size and elimination criteria. Dams were eliminated from the study if they did not consistently 

consume the pesticide when offered (as described below) or if they did not give birth to a litter 

containing at least two male and two female pups within 28 days of the introduction of the sire. This 

litter composition was needed because at least one male and one female per litter were used separately 

for behavioral studies(24). A total of 40 dams were offered doses of the pesticide or vehicle (20 per 

group) as described below. Three dams were eliminated for incomplete consumption; two dams were 

eliminated for not producing a litter within 28 days; four dams were eliminated for insufficient litter 

size/composition; and the remaining N=31 dams produced appropriate litters for the study (control 

N=14, DPE N=17). 

Blinding. Litters were weaned into same-sex cages, which were assigned random numbers that were 

used for all subsequent purposes. Control and experimental aliquots (described below) were prepared 

and blindly labeled as A or B. Experimenters remained blind to the identity of the treatments until after 

data analysis was complete. 
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Chemicals. Aliquots of deltamethrin (Sigma, St. Louis, MO) in corn oil (Mazola, Memphis, TN) were 

prepared at a concentration of 9 mg/mL by dissolving deltamethrin powder in acetone (Sigma), mixing 

the acetone with corn oil, evaporating the acetone from the mixture overnight in a fume hood, and 

storing the resulting corn oil in glass vials at -80° C. Vehicle aliquots were prepared using the same 

volumes of acetone and corn oil. Aliquots were thawed immediately prior to use. Dams were weighed 

immediately before each feeding and the appropriate amount of corn oil (1 µL/3 g body weight) was 

mixed with ~100 mg JIF peanut butter (J.M. Smucker, Orville, OH) to achieve a dose of 3 mg/kg. 

Developmental pyrethroid exposure (DPE). Mice were developmentally exposed to the pyrethroid 

pesticide deltamethrin as previously described(24). Briefly, dams were given voluntary access to peanut 

butter containing deltamethrin (3 mg/kg) or vehicle once every 3 days during pre-conception (2 weeks), 

pregnancy, and lactation. Peanut butter was given during the light cycle, and dams were allowed up to 4 

hours for voluntary consumption. To ensure individual dosing, adult cagemates (when present) were 

separated with dividers, and the peanut butter was put in a high position out of the reach of pups. Dams 

that failed to consume 90% of the peanut butter during 90% of the feedings were eliminated from the 

study. Offspring were only exposed to deltamethrin indirectly through the dam. Offspring were weaned 

from the dam as above and received no additional treatment until adulthood. 

Tissue. Adult male offspring were sacrificed by rapid decapitation and dissected, and the brains were 

flash-frozen using liquid nitrogen and stored at -80° C until needed. Frozen sagittal half-brain tissue 

samples (randomized for side) from each of the 31 subjects were pulverized and the powder aliquoted 

for use in split-sample multiomics. 

Transcriptomics sample processing. RNA extraction was performed on N=31 homogenized half-brain 

tissue aliquots using the RNeasy Plus Micro Kit (QIAGEN, Germantown, MD). Tissue aliquots were 

homogenized in 350 µl QIAGEN Buffer RLT Plus using a Qiagen TissueLyser LT and centrifuged for 3 min 

at maximum speed. Supernatant was removed by pipetting and transferred to a QIAGEN gDNA 

Eliminator spin column placed in a 2-ml collection tube. The lysate was centrifuged for 30 s at >10,000 

rpm to remove DNA contamination from the extract. The flow-through was saved, and 350 µl 70% 

ethanol was added and mixed well by pipetting. The entire sample was transferred to a QIAGEN RNeasy 

MinElute spin column placed in a 2-ml collection tube and centrifuged for 15 s at 10,000 rpm. Next, 700 

µl Buffer RW1 was added to the MinElute spin column and centrifuged for 15 s at 10,000 rpm. Buffer 

RPE (500 µl) was added to the MinElute spin column and centrifuged for 15 s at 10,000 rpm. Finally, 500 

µl 80% ethanol was added to the MinElute spin column and centrifuged for 2 min at 10,000 rpm to wash 

the spin column membrane. The spin column was placed into a new 2-ml collection tube and 

centrifuged for 5 min at full speed to dry the membrane. The spin column was added to a new 1.5-ml 

collection tube, with 14 µl of RNase-free water added directly to the center of the spin column 

membrane. RNA was eluted with 1-min centrifugation at full speed. Two aliquots of RNA extract were 

prepared for each sample: one for RNA concentration and purity analysis and the other to be flash 

frozen in a dry ice and ethanol mixture. The frozen RNA extracts were then sent overnight on dry ice (via 

FedEx) to the University of Michigan Advanced Genomics Core (Ann Arbor, MI) to undergo quality 

control, library preparation and Next Generation Sequencing.  

The Total RNA Library was prepared using the Illumina NovaSeq (S4) 300 cycle flow cell and reagent kit 

(Illumina, San Diego, CA). The high-throughput sequencing strategy included 300 cycles and a read 

length of paired-end 150 base pairs. An aliquot of extracted RNA for each subject was assayed to 

determine sample RNA concentration and purity. All samples used in the study passed the RNA quality 

check via NanoDrop One (Thermo Scientific, Waltham, MA) with a 260/280 ratio of 2, and via Agilent 

Bioanalyzer with an RNA integrity number (RIN) > 7. 
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Transcriptomics quality control. The University of Michigan Advanced Genomics Core provided sample 

sequences in the form of paired end FASTQ files. Paired end reads were aligned to the mouse reference 

genome GRCm38 provided by Ensembl (RRID:SCR_002344) using Hisat2 (RRID:SCR_015530)(32). Count 

data were then generated for the reads aligned to exons and transcripts using the GenomicFeatures 

(RRID:SCR_016960) and GenomicAlignments (RRID:SCR_024236) packages in R and gene model (GTF 

file) provided by Ensembl. On average, 31 million unique reads per sample were obtained. 

Genes of interest. We first used the Deseq2 R package (RRID:SCR_015687)(33) to assess the differential 

expression of all genes in comparisons between the control and DPE groups. Results were reported with 

both raw and FDR-adjusted p-values. We then used the variancePartition R package 

(RRID:SCR_019204)(34) to quantify the variation in gene expression attributable to the exposure group. 

“Genes of interest” were determined by selecting genes that were both (1) differentially expressed 

between groups (p<0.05 uncorrected) and (2) had >15% variance attributable to the dimension of 

group.  

Gene set, transcription factor, and kinase enrichment analysis. We performed enrichment analyses using 

the 65 identified “genes of interest” as input. The web tool Enrichr (RRID:SCR_001575)(35, 36) was used 

to perform gene set enrichment analysis on the genes of interest using the “Wikipathways 2019 Mouse” 

pathway database. The web tools ChIP-X Enrichment Analysis 3 (CHEA3, RRID:SCR_023159)(37) and 

Kinase Enrichment Analysis 3 (KEA3, RRID:SCR_023623)(38) were used to perform transcription factor 

enrichment analysis and kinase enrichment analysis, respectively. CHEA3 and KEA3 compute enrichment 

scores for transcription factors and kinases whose protein targets are overrepresented in an input list of 

genes (or an input list of differentially phosphorylated proteins; see the kinome pipeline below). For 

both CHEA3 and KEA3, mean rank integrated across libraries was chosen as the level of inquiry. 

Kinomics sample processing. One of the five homogenized sample aliquots was used to measure kinase 

activity. Lysis buffer was prepared using a 1:100 dilution of M-PER Mammalian Extraction Buffer 

(Thermo Scientific) to EDTA-free Halt Protease Inhibitor Cocktail (Thermo Scientific) and stored on ice. 

The sample aliquot was then lysed in the appropriate amount of lysis buffer (3x sample volume) and 

incubated for 30 min on ice. The lysate was then centrifuged for 15 min at 16,000 g in a pre-cooled 

centrifuge in a 4°C refrigerator. The supernatant was then extracted and separated into 3 aliquots of 

equal volume (~15 µl), as freeze thaw cycles can result in loss of kinase activity. One aliquot was set 

aside for immediate use for protein quantification. The other two aliquots were immediately flash 

frozen in a dry ice and ethanol mixture and then stored at -80°C until use by the core.  

Protein quantification was performed on each sample via a BCA Protein Assay with appropriate 

standards and reagents. We made standards using BSA stock solution (2 mg/ml), hypertonic buffer, and 

H2O. We added 30 µl of each standard to the designated well in duplicates (n=2) and 2 µl of sample to 

designated wells with 28 µl of H2O in triplicates (n=3). The blank in our assay used BCA buffer +30 µl of 

H2O only. We made a 50:1 mixture of Reagent A to Reagent B, 250 µl which was then added to each well 

on the 96-well count plate. The plate sat and incubated at room temperature for 30 min. The plate was 

read at 562 nm with the appropriate plate measurements on SoftMax Pro software. The results were 

collected and transferred to an Excel document for analysis. Concentrations were determined utilizing 

the standard curve and level of absorption generated from each sample and used to make the 

appropriate dilutions prior to transferring samples to the Core Facility. 

On the day of processing, the University of Toledo Kinome Array Core Facility performed high-

throughput kinase activity profiling on the sample lysates, using the Pamstation12 instrument and the 

PamChip assay (PamGene, 's-Hertogenbosch, The Netherlands). The Pamstation12 can be loaded with 

either a serine/threonine or phosphotyrosine microarray chip, accommodating 3 chips per run. Each 

chip contains 4 wells, where 4 samples can be loaded. The chips function as microarrays, representing 
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144 (STK chip) or 196 (PTK chip) reporter peptides that can be phosphorylated by various kinases. Each 

of the 4 wells in the chip contain well-validated target peptides. Protein kinases is the sample may then 

phosphorylate target peptides when loaded in the presence of ATP. The Pamstation12 instrument then 

measures the phosphorylation of these reporter peptides in real time by detecting and imaging 

fluorescently labeled antibodies at different exposure times and provides the output of each sample’s 

kinase activity (39). The PamChip arrays were the optimal array for our experiments because they are 

designed to allow peptide substrates to be deposited at higher concentrations than conventional arrays, 

thus increasing sensitivity.  

The serine threonine kinase (STK) chip can be loaded with a maximum of 2.2 µg of protein per 

individual array well. The phosphotyrosine kinase (PTK) chip can be loaded with a maximum of 10 µg of 

protein per individual array well. To meet the appropriate total protein concentrations, the previously 

frozen extracts were thawed on ice and diluted using ice-cold M-PER buffer concentration (STK total 

protein = 2.2 µg in 11 µl required volume; PTK total protein = 11 µg in 11 µl required volume). The 

diluted first-thaw lysate material was then added to 10 µl of MPER buffer and an additional 1 µl of 

Inhibitor Cocktail, for a total 11 µl of lysate of extract for each sample(39). These extracts were then 

taken on ice to the University of Toledo Kinome Array Core to be run on the PamGene12 Station. All 31 

samples were run on both the STK and PTK chips. Six runs were performed in total, three for STK and the 

other three for PTK activity profiling. 

Kinomics data analysis. Kinomics data analysis was performed as previously described(29). The 

BioNavigator software tool was used to preprocess the kinome data, perform image analysis, interpret 

output measurements, and to visualize, store, and share the results for each of our six runs.  The 

processed data output of BioNavigator was a list of differentially phosphorylated peptide substrates, 

which was used as the input for subsequent analysis. To maximize our confidence in the prediction of 

which kinases were upstream of differences in substrate phosphorylation, we used four bioinformatics 

pipelines to analyze the raw data, each of which relies on its own database and its own mechanism of 

prediction to identify candidate kinases. The Kinome Random Sampling Analyzer (KRSA) (40) was used as 

the primary analysis and basis for comparison. The PamGene Upstream Kinase Analysis (UKA), Post-

Translational Modification Signature Enrichment Analysis (PTM-SEA)(41), and Kinase Enrichment 

Analysis Version 3 (KEA3)(38) were used to analyze the same processed data. The Creedenzymatic R 

package(29) was used to convert the output of each analysis into inclusive percentile rankings, to divide 

the rankings into quartiles, and to visualize the quartiles in a summary figure. Candidate kinases were 

identified as “high confidence” if they were detected and appeared in the top quartile of results from all 

four analyses. Candidate kinases were identified as “medium confidence” if they were detected and 

appeared in the top quartile of the KRSA results and at least the top two quartiles of the UKA, PTM-SEA, 

and KEA3 results. 

Kinome Random Sampling Analyzer (KRSA) analysis. KRSA is a validated R package for kinome array 

analysis and was implemented to identify differential phosphorylation and to predict upstream kinase 

activity and network modeling(42). This tool allows for a better understanding of kinase interactions and 

global changes that occur between two states. The output of KRSA is a Z-score value. This value 

represents the difference between the observed value of a kinase from what you would expect in a 

random sample. A z-score threshold of 1.5 was used to determine which kinases were considered “hits.” 

Direction of change in activity was determined for the top 10 kinases by measuring the log2 fold change 

in phosphorylation for each target substrate; assigning each substrate a value change of +1 for a log2 fold 

change (Log2FC) greater than 0.15, 0 for Log2FC between 0.15 and -0.15, and -1 for Log2FC less than -

0.15; then averaging the values for all substrates targeted by a kinase. Values above or below zero were 
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used to determine the direction of change. The Creedenzymatic inclusive percentile rankings were 

calculated based on the absolute value of the Z score. 

Upstream Kinase Analysis (UKA) pipeline. We utilized PamGene’s BioNavigator software to process our 

datasets through the Protein Tyrosine Kinase Upstream Kinase Analysis (UKA) Knowledge Integration 

PamApp. The input for the analysis was the raw images from the Pamgene chips. We applied default 

parameters (scan rank of 4 to 12, 500 permutations) and also incorporated default settings including in 

vitro/in vivo (1), in silico (PhosphoNET) (1), minimum sequence homology (0.9), minimum PhosphoNET 

prediction score (300), and a minimum peptide set (3). The calculation of inclusive percentile rankings 

was based on the absolute value of UKA’s Median Kinase Score. 

Post-Translational Modification Signature Enrichment Analysis (PTM-SEA) pipeline. We employed the 

publicly accessible repository for the Broad Institute’s Single-sample Gene Set Enrichment Analysis 

(ssGSEA) and Post-Translational Modification Signature Enrichment Analysis (PTM-SEA)(41) utilizing 

RStudio Desktop 1.2.5042 (https://rstudio.com) operating within the R 3.3.1 software environment 

(https://cran.rstudio.com). The input for the PTM-SEA pipeline was the list of differentially 

phosphorylated peptide sequences. Our data underwent processing through the PTM-SEA pipeline, 

where we tailored the peptide database to encompass only sequences present on the PamChip, along 

with peptides having a minimum sequence homology of 0.9. Inclusive percentile ranks were based on 

the PTM-SEA kinase score. 

Kinase Enrichment Analysis Version 3 (KEA3) pipeline. The KEA3 tool(38) was used as described above for 

transcriptome analysis, except that the input was a list of differentially phosphorylated substrates. 

Inclusive percentile rankings were based on the mean rank. 

Network-based multiomics integration of transcriptome and kinome. We used the Kinograte R 

package(43), which implements an optimized version of the PCSF algorithm(44), to generate an 

integrated multiomic protein-protein interaction (PPI) network consisting of transcriptomic “hits” (p < 

0.05), kinase “hits” (|Z| > 1.5), and interpolated “hidden nodes” connecting them. We assigned node 

prizes by percentile rank of respective log2 fold change (Log2FC) or Z score, and we assigned edge costs 

by inverse STRING-DB3 interaction confidence(45). Hidden nodes received a node prize of zero by 

definition. We then ranked PPI network nodes by the average of their node prize and eigencentrality as 

input for gene-set enrichment analysis using the FGSEA R package (RRID:SCR_020938)(46). We 

performed gene set over-representation analysis using the PPI network nodes as input to the Enrichr 

web application(47) with the Gene Ontology database (RRID:SCR_002811)(48). Dysregulated pathways 

(FDR < 0.05) were used to generate an informed integrated PPI network in order to visualize the 2
nd

 

degree interaction network of the top ranked “hub” nodes by eigencentrality, AKT1 and PRKCH. 

Functional interpretation of dysregulated pathways. Dysregulated pathways from FGSEA (FDR < 0.05) 

were functionally clustered and visualized using PAVER, a meta-clustering method for pathways(49). 

PAVER finds most representative terms for hierarchically clustered pathway embeddings(50) by 

selecting whichever term is most cosine similar to its respective cluster’s average embedding. We 

generated UMAP scatter plots of individual pathways colored and shaped by the cluster they belong to 

and the experimental comparison they came from, respectively. We then generated heatmaps showing 

normalized enrichment scores of individual pathways in their identified cluster, arranged by the average 

enrichment of each cluster. 

RESULTS 

Transcriptome. We performed transcriptomic analysis to compare brain-wide RNA expression in male 

DPE mice to the expression in vehicle controls. After correction for false discovery rate, differential gene 
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expression analysis identified exactly two genes that differed in their brain-wide expression levels in DPE 

mice, both of which are canonical clock genes: period circadian regulator 2 (PER2, Log2FC = -0.35, p = 

0.014) and circadian-associated repressor of transcription (CIART, Log2FC = -0.42, p = 0.042) (Figure 1A, 

Supplementary File 1A). Per2 and CIART were under-expressed by 22% and 25%, respectively.  

Gene sets. Cross-referencing the 607 genes differentially expressed between groups before correction 

with the 102 genes with >15% of the variance in gene expression explained by exposure produced a list 

of 65 genes of interest (Supplementary File 1A-C). Gene set enrichment analysis on the 65 genes of 

interest identified a significant enrichment of genes in the “exercise-induced circadian regulation” 

pathway (Figure 1B, Supplementary File 1D). Transcription factor enrichment analysis on genes of 

interest predicted a set of transcription factors upstream of changes in gene transcription, including 

immediate early genes (FOSB, JUN, NR4A1) and regulators of cell growth (MYC) and neurogenesis 

(SOX18, PRRX1, TWIST1), among others (Supplementary File 1E). Kinase enrichment analysis predicted 

kinases upstream of changes in transcription that were related to circadian rhythms (CSNK1A1, CSNK1D, 

CSNK1E, CSNK2A1), synaptic function (CSNK2A1), cell division/neurogenesis (PRKDC, ATM), and 

mitogen-activated protein (MAP) kinase/mammalian target of rapamycin (mTOR) cascades 

(MAPK1/ERK2, EGFR, SRC) (Supplementary File 1F). 

Kinome. We performed kinase activity profiling to detect brain-wide changes in kinase activity in DPE 

mice. KRSA analysis of differential phosphorylation patterns identified seven kinases with differential 

activity in DPE mice relative to controls (Z > 1.5), all of which have primary roles in synaptic plasticity 

(PKCH, PAKB, PKN, MLCK, ERK, BRSK, and PIM), and one of which is the MAP kinase ERK (Figure 2A, 

Figure S2, Supplemental File 1G). All seven of these kinases had increased activity in DPE mice (Figure 

2B, Supplemental File 1H). A summary of four different kinomics analysis algorithms determined that 

MAPK3/ERK1 and RAF1/c-RAF were high confidence hits on all analyses (Figure 2C, Figure S1). 

Multi-omics Integration. To detect multi-modal changes in molecular pathways, we performed a multi-

omics integration of the transcriptome and kinome datasets. Multimodal gene set enrichment analysis 

returned 521 significantly altered gene sets that clustered into 13 pathways, including MAP kinase 

cascades, regulation of apoptosis, and synaptic function, among others (Figure 3A-C, Supplementary File 

1I). This analysis generated a PPI network with AKT1 and MAPK3/ERK1 as the most central nodes (Figure 

3D, Figure S2, Supplementary File 1J, Supplementary File 2).  

 

DISCUSSION 

Developmental exposure to pyrethroid pesticides is a risk factor in humans for autism and ADHD. Using 

a split-sample multi-omics approach, we detected a multi-modal biophenotype in the brains of mice 

developmentally exposed to a low level of the pyrethroid pesticide deltamethrin. These multi-modal 

changes were concentrated in pathways for circadian rhythms, MAP kinase, growth/apoptosis, and 

synapse function (Figure 4). The brain-wide expression level of genes related to circadian rhythms was 

altered by developmental exposure. There were also brain-wide increases in the activity levels of a wide 

range of kinases related to synaptic plasticity, and changes in gene transcription upstream of immediate 

early genes. Statistical integration of transcriptome and kinome data revealed disruptions in multi-

modal molecular pathways clustered around MAP kinase cascades, regulation of apoptosis, and 

synapses. Overall, we have identified a range of specific targets that may be associated with the 

neurodevelopmental disorder-related behavioral phenotype observed in these developmentally 

exposed mice, which includes hyperactivity, repetitive behaviors, decreased vocalizations, and cognitive 

deficits(24). 
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Disruptions in synaptic plasticity and changes in dendritic spines have been implicated in the etiology of 

autism, ADHD, and neurodevelopmental disorders in general(51-53), and dendritic spine overgrowth is 

one of the most commonly replicated observations in mouse models of autism risk(54, 55). All seven 

kinases with increased kinase activity in DPE mice have roles in synaptic plasticity, and synapse function 

was identified as a significant cluster in the multi-omics network. This broad increase in kinase activity 

may reflect a biophenotype of dendritic spine overgrowth and/or decreased synaptic pruning, as is seen 

in autistic patients and some mouse models(3, 53, 54), which needs to be verified experimentally. 

Protein kinase C (PKC) has a long-established role in long-term potentiation and NMDA regulation(56-

58). Protein kinase N, a member of the PKC superfamily, directly interacts with AKT (the central node of 

our multi-omics network) and may have a specific role in synapse maturation(59, 60). The ERK/MAP 

kinase cascade regulates transcriptional events related to synaptic plasticity(61); and in addition to 

being a high-confidence differentially active kinase, ERK substrates were enriched among genes of 

interest, and ERK was the second most central node in our multi-omics network. PAKB is a PAK family 

kinase that plays a role in long-term potentiation and dendritic morphology and can regulate MAP 

kinase(62-64). MLCK, BRSK, and PIM also play roles in various aspects of pre- and post-synaptic signaling 

and synapse formation(65-67). Finally, transcription factors predicted to be upstream of changes in gene 

transcription in DPE mice included three immediate early genes (FOSB, JUN, NR4A1) responsive to 

synaptic transmission. Overall, this collection of observations suggests that alterations in synaptic 

function and/or dendritic spines are potential biophenotypes in DPE mice that may underlie the learning 

deficits observed in this model(24). 

The MAP kinase and mTOR signaling pathways interact to co-regulate various cellular processes related 

to cell growth, apoptosis, and adult neurogenesis(68-71) and are linked to neurodevelopmental 

disorders including autism and epilepsy(64, 72, 73). In addition to their canonical roles in cell growth and 

differentiation, MAP kinases interact with the mTOR signaling pathway to facilitate dendritic growth and 

spine formation(68, 74). Both “synapse” and “MAP kinase cascade” were among the multi-modal gene 

set clusters distinguishing DPE mouse brains from controls, the latter being the most enriched cluster 

identified. The MAP kinase ERK was identified as a high-confidence hit across four kinome analysis 

algorithms and was determined to have increased kinase activity in the KRSA analysis. ERK substrates 

were also disproportionally represented among genes of interest. Two kinases upstream of MAP kinase 

and mTOR activity, epidermal growth factor receptor (EGFR) and Src, were also predicted to be 

upstream of transcriptional changes; and ERK is upstream of the immediate early genes FOSB, JUN, and 

NR4A1. AKT1, a central component of the mTOR pathway, was the most central node of the multi-omics 

protein-protein interaction network. Overall, these results bolster the hypothesis that MAP kinase and 

mTOR pathways are disrupted in DPE mice, which may potentially alter synaptic function and/or 

dendritic spines and could affect pathways regulating apoptosis.  

Primary exposure to deltamethrin in adult mice may have a direct effect on adult hippocampal 

neurogenesis(18). Adult neurogenesis is known to contribute to hippocampal structural and functional 

plasticity, and is also related to cognition and memory, which are deficient in DPE mice(75, 76). The 

largest identified multi-modal gene cluster in our data was for the regulation of apoptotic processes, 

which directly affects adult neurogenesis, in part through the mTOR pathway described above(70, 77-

79). While it could be argued that the cluster of gene sets related to apoptosis may be present in our 

data sets due to the dual role of MAP kinase and mTOR signaling in both apoptosis/neurogenesis and in 

regulating synapses, MDS component analysis showed that the apoptosis and synapse clusters were 

quite distant in interval scale component space, suggesting little overlap among the gene sets 

represented in those clusters. In addition, several of the transcription factors upstream of transcriptional 

changes in DPE, including PRRX1(80, 81), SOX18(82), and TWIST1(83), are directly involved in regulating 

Wnt signaling, the classic pathway regulating neurogenesis(84). Therefore, we might expect to discover, 
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on further experimentation, that developmental exposure to deltamethrin in mice via the mother has a 

similar inhibitory effect on adult neurogenesis in the offspring as acute exposure does in adults. 

Disrupted sleep-wake patterns, sleep-onset difficulty, and altered diurnal melatonin patterns have been 

reported in autism and ADHD(85-90). DPE mice showed transcriptional changes in two canonical clock 

genes regulating circadian rhythms, PER2 and CIART (also known as CHRONO), which were sufficient to 

survive genome-wide correction at the whole-brain level. Of note, DBP, the third most differentially 

expressed gene which did not survive genome-wide corrections, is a transcription factor related to 

circadian regulation. Transcriptomic genes of interest also significantly clustered in a gene set of 

circadian regulation, and the circadian rhythm-related transcription factor FOSB was upstream of gene 

expression changes in DPE. Three circadian rhythm related kinases (casein kinase 1D, casein kinase 1E, 

casein kinase 1A1) were predicted to be upstream of gene expression changes in DPE, and the 

differentially active kinase PKC eta also plays a role in circadian rhythms. The suprachiasmatic nucleus 

traditionally controls the “master clock” for circadian rhythms in the brain, and yet this region is 

vanishingly small and unlikely to be represented in whole brain homogenate(91). Therefore, the 

detected changes in clock-related gene transcription and kinase activity are likely to represent pervasive 

changes in local clocks throughout the brain and may indicate either a primary effect of DPE on local 

clock function, or a downstream consequence of any number of deficiencies in the function of the 

suprachiasmatic nucleus. While circadian rhythms were not assessed behaviorally in DPE mice, these 

mice did show persistent hyperactivity(24). Assessment of circadian rhythms in this model is an 

important future direction. 

A critical strength of this study was the use of an integrative multi-omics approach. Our primary goal 

was to identify, in the broadest possible sense, the molecular pathways altered by DPE. To accomplish 

this goal, we used a split-sample approach to maximize the inter-relationship between transcriptome 

and kinome data. We then employed statistical methods to integrate across data sets in order to 

examine the emergent multimodal biophenotype across multiple levels of evidence. This holistic, 

integrative approach to combining multi-omics data highlights the interrelationships of the involved 

biomolecules and their functions and avoids bias in interpreting parallel data sets(92, 93).  

Our gene expression and kinase activity data were generated from samples of homogenized whole brain 

tissue from mice. Because DPE is a whole-body manipulation, we selected whole-brain tissue as the 

most appropriate level for initial investigation and did not focus on a specific brain region or cell type. 

This represents both a significant limitation and a critical strength: any pathways that are disrupted 

brain-wide in dominant cell types are likely to be good targets for pharmaceutical intervention, while 

pathways that are not disrupted brain-wide in dominant cell types are unlikely to be represented in our 

dataset. 

The use of a single exposure dose of deltamethrin is a key limitation for this study. Our exposure dose 

was based on prior studies using this model in which 3 mg/kg developmental exposure was sufficient to 

cause a broad behavioral and neurological phenotype relevant to neurodevelopmental disorders(11, 18, 

24). This dose is well below the lower confidence limit of the benchmark dose (LBMD, 10.1 mg/kg) used 

for regulatory guidance(10). Nonetheless, a critical next step would be to carefully study the exposure-

dependent accumulation of deltamethrin and its metabolites in a variety of tissues and to examine in 

parallel the dose-dependent effects of exposure on the brain and behavior. 

Perspectives and Significance 

Pesticides are widely used around the world, making pesticide exposures during development and 

adulthood common. Pyrethroid pesticides, while widely considered safe for adults, have been linked to 

autism and neurodevelopmental disorders in humans and cause related behavioral changes in mice. 
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Here, we show that DPE in mice causes broad changes in molecular pathways in the brain for circadian 

rhythms, MAP kinase, growth/apoptosis, and synaptic plasticity; and specifically implicate ERK as an 

important biomarker across multiple levels of analysis. Our findings are suggestive of specific 

biophenotypes that must be verified experimentally, including dendritic spine overgrowth, altered 

neurogenesis, and disrupted function of the suprachiasmatic nucleus. These findings point to potential 

future avenues for medical treatments for neurodevelopmental disorders by targeting these molecular 

pathways.   
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FIGURES AND FIGURE LEGENDS 

 

Figure 1. Analysis of transcriptomics data comparing DPE and vehicle-exposed mice. (A) Volcano plot of 

differential gene expression analysis comparing whole-brain tissue from control and DPE mice, plotted 

as a function of the log2 fold change in gene expression and the inverse log10 of the p-value. Dashed lines

demarcate raw and adjusted p-values below 0.05. (B) Gene set enrichment analysis on the 65 identified 

genes of interest. The “Exercise-induced Circadian Regulation” pathway was significantly enriched 

(adjusted p=0.014). 
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Figure 2. Identification of differentially active serine-threonine kinases identified in whole-brain tissue of

DPE mice. (A) Waterfall plot of serine-threonine kinases predicted to be differentially active as a result 

of differentially phosphorylated peptide substrates on the kinome array chips. (B) Fold-change of 

phosphorylated substrates related to the top 10 differentially active kinases, showing that most 

differentially active kinases have increased activity in DPE mice. (C) Summary diagram showing the 

medium- and high-confidence differentially active kinases as predicted by four different analyses of 

substrate phosphorylation: KRSA, KEA3, PTM-SEA, and UKA. Dark circles denote kinases whose activity 

was detected by the analyses. The size of the circles (1-4) denotes the quartile in which the result 

appears in each analysis, with the 4th quartile being the highest confidence results. Two kinases 

(MAPK3/ERK1 and RAF1/c-RAF) were high confidence results on all four analyses. Four additional 

kinases (MAPK1/ERK2, PIM1, PIM2, and PRKCE) were at least medium confidence results on all four 

analyses. 
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Figure 3. Identification of multi-modal molecular pathways altered in DPE mice using integrative multi-

omics. (A) UMAP components analysis of dysregulated molecular pathways identified 13 functionally 

distinct gene set clusters. (B) MDS components analysis shows the functional relationships between 

dysregulated gene-set clusters on an interval scale in component space. (C) Pathway cluster heatmap 

showing the normalized enrichment scores of pathways in the identified gene set clusters, arranged 

from most (top) to least (bottom) enriched. (D) The 2
nd

-degree protein-protein interaction network for 

the central network hub protein ERK1 (Mapk3).  
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Figure 4. A summary network diagram containing the major findings from multi-omics analysis. DEG: 

differentially expressed genes. GSEA: gene set enrichment analysis. CHEA: ChIP-X (transcription factor) 

enrichment analysis. KEA: kinase enrichment analysis. KRSA: kinome random sampling analyzer. CREED: 

Creedenzymatic analysis. PAVER: Pathway Analysis Visualization with Embedding Representations. 
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DATA AVAILABILITY 

All sequencing data are available on NCBI GEO (GSE241185). All raw kinome array data are available on 

Zenodo (DOI: 10.5281/zenodo.8283637). All code used to analyze the data is on GitHub repository v1.0 

(https://github.com/JamesBurkett7/DPE-disrupts-molecular-pathways-manuscript.git). All metadata, 

including comprehensive statistical results and protein-protein interaction networks, are available in the 

supplementary materials. 

SUPPLEMENTAL MATERIAL 

Supplemental Figures 1 and 2 can be found in the Supplemental Figures file. Raw data in the form of 

tables and spreadsheets can be found in Supplemental File 1. The full unedited protein-protein 

interaction network, in the form of an interactive HTML file, can be found in Supplemental File 2. 
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