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Abstract 

The genetic and intratumoral heterogeneity observed in human osteosarcomas (OS) poses challenges for drug 
development and the study of cell fate, plasticity, and differentiation, processes linked to tumor grade, cell 
metastasis, and survival. To pinpoint errors in OS differentiation, we transcriptionally profiled 31,527 cells from 
a tissue-engineered model that directs MSCs toward adipogenic and osteoblastic fates. Incorporating pre-
existing chondrocyte data, we applied trajectory analysis and non-negative matrix factorization (NMF) to 
generate the first human mesenchymal differentiation atlas. This ‘roadmap’ served as a reference to delineate 
the cellular composition of morphologically complex OS tumors and quantify each cell’s lineage commitment. 
Projecting these signatures onto a bulk RNA-seq OS dataset unveiled a correlation between a stem-like 
transcriptomic phenotype and poorer survival outcomes. Our study takes the critical first step in accurately 
quantifying OS differentiation and lineage, a prerequisite to better understanding global differentiation 
bottlenecks that might someday be targeted therapeutically.  

 

Statement of Significance:  

OS treatment kills proliferating cells without addressing the root cause: dysregulated differentiation. By 
deconvolving OS tumors by cell type and differentiation archetype, we identified core gene sets linked to cell 
fate and patient survival. The ability to quantify, and eventually modulate, such archetypes facilitate a novel 
OS-specific drug-screening strategy.    

 

Introduction 

Based upon their significant genetic, phenotypic, and lineage-specific diversity, the World Health 
Organization splits sarcomas into more than fifty unique sarcoma subtypes1. Many sarcomas harbor specific 
chromosomal translocations, oncogenes, or lost tumor suppressors that are used both as diagnostic markers 
and as potential therapeutic targets2. Although genetically heterogeneous, sarcomas are often classified based 
on their apparent differentiation status and cell types within the adult mesenchymal lineage that they most 
resemble. High-grade osteosarcoma (OS), a heterogeneous class of poorly differentiated bone sarcomas, is 
further subclassified based on predominant tissue features resembling osteoblastic, chondroblastic, 
fibroblastic, and telangiectatic3,4. 
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With a few rare exceptions, such as p53-mutated tumors in people with Li Fraumeni syndrome, most OS 
have a complex karyotype that is caused by chromothripsis and lacks a recurring gene that can be targeted 5. 
Although a variety of genetic mutations and genomic structural events (translocations, copy alterations) have 
been linked to OS, these are often unique to each patient6. This presents an obvious challenge in developing 
therapeutic options broadly applicable to OS patients. Nevertheless, one commonality among high-grade OS is 
their genetic drift from normal osteoblasts and their varied degrees of dedifferentiation observed along 
mesenchymal lineages6.  

In contrast to mutation-based drivers that might be predicted to affect cell fate, differentiation, and plasticity 
more subtly, we hypothesized that accumulated DNA damage acts to collectively disrupt the gene regulatory 
networks (GRNs) and epigenetic patterns that are critically important to constrain normal osteoblasts in their 
fully differentiated phenotype7,8. The pivotal role a constant epigenetic state (or memory) plays in dictating cell 
fate, and the adverse effects noted when this goes awry, has been described as an ‘emerging cancer hallmark’ 
in Hanahan & Weinberg 20229. 

Although single-cell RNA-sequencing (scRNA-seq) has emerged as a promising approach to capture gene 
expression profiles of individual cells, identifying differentiation states and quantifying stemness still pose 
unique challenges. Recent tools such as StemID10, SCENT11, SLICE12, and CytoTRACE13 have been 
developed to quantify stemness, but they cannot identify lineage-specific differentiation states. Unlike 
hematopoiesis that begins during embryogenesis and continues throughout adulthood and is easily studied 
with routine blood draws, a similar mesenchymal ‘Waddington landscape’ doesn’t exist and can’t readily be 
studied since the majority of connective tissue development occurs during early fetal development. In rare 
scenarios (e.g., during bone fracture repair), MSCs transform into chondro/osteogenic precursors that form a 
callus and subsequent bone, but this hasn’t yet been studied using single-cell technologies in vivo. One 
method to enrich for cells in transit from one lineage to another, and the approach taken herein, relies upon an 
ex vivo tissue engineered model adapted from established methods developed by the regenerative medicine 
field in their attempt to create functional connective tissues14. In addition to the engineering challenges that we 
address here, projecting cancer onto a normal differentiation landscape is fundamentally challenging because 
tumor expression profiles only partially overlap with normal tissue expression profiles. 

The present work demonstrates a joint experimental and computational strategy for mapping osteosarcoma 
onto its underlying mesenchymal differentiation landscape. We developed a high-resolution scRNA-seq 
reference map composed of osteogenic, adipogenic, and chondrogenic lineages from human primary 
mesenchymal stem cells, described herein as the Mesenchymal Tissue Landscape (MTL). We hypothesized 
that the MTL would catalog the various differentiation states possible in OS. To quantify differentiation states in 
the MTL, we applied a Normalized Nonnegative Matrix Factorization (N-NMF) based archetype analysis to 
identify recurring gene expression profiles that accurately captured lineage-specific temporal dynamics15. 
These profiles were then used to estimate the relative compositions of each cell lineage and differentiation 
status within OS tumor data, including patient-derived xenograft (PDX) and tumor biopsy samples16,17. We 
show that the estimated predominant cell types of each tumor broadly agreed with pathologist labels of 
predominant tissue features (osteogenic, chondrogenic) and present a more intricate analysis that allows one 
to quantify features of multiple cell lineages within each tumor. That data allowed us to examine the gene 
expression patterns with respect to patient outcomes and other clinical features, finding that a signature of 
advanced differentiation was associated with improved survival outcomes and, conversely, that a stem-like 
signature bodes a poor prognosis.  

The capacity of our approach to determine lineage and differentiation states in distinct datasets suggests 
that it can be more generally applied to different cancers along the mesenchymal differentiation landscape or 
possibly even carcinomas where differentiation landscapes remain in their infancy. 

Results 

Intratumoral Heterogeneity in Osteosarcoma PDXs 

As proof of concept before using human tissues, we sequenced three OS PDXs to explore the 
heterogeneity of cell types and differentiation states using single-cell transcriptomics. The OS PDXs were 
isolated upon reaching 150mm3 and underwent rapid dissociation. After filtering for high-quality cells by 
scRNA-seq metrics, we obtained 19,538 cells for analysis. Initial visualization of the uniform manifold 
approximation and projection (UMAP) showed that cells clustered mainly by PDX sample (Fig. 1A). Since OSs 
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exhibit marked intratumoral heterogeneity6, we selected classical markers of osteoblasts, chondroblasts, and 
fibroblasts that describe the predominant cell states possible within each PDX (Fig. 1C). Significant 
heterogeneity in osteoblastic markers among the three PDXs was observed. The OS1 PDX displayed the 
strongest expression of the osteoblastic markers RUNX2, CDH11, and SPP1 but also contained a 
subpopulation of fibroblastic cells and another that lacked strong osteoblastic or fibroblastic markers. 
Conversely, the OS31 PDX was predominantly chondroblastic and had the strongest expression of the 
chondroblastic markers COL2A1, SOX9, and ACAN. SA98 was not predominantly any one differentiation state 
but had expression of osteoblastic, chondroblastic, and fibroblastic markers. All PDXs also had a 
subpopulation of cycling cells, as demonstrated by the expression of MKI67 and TOP2A. We also explored 
markers of EMT and stemness but did not detect a significant trend in the PDXs, which might explain the 
expected rarity of cancer stem cells.  

Given the striking degree of intratumoral heterogeneity, we used a graph-based clustering method to 
identify 15 distinct clusters (Fig. 1B). While many clusters are composed of one PDX, some comprise more 
than one, suggesting the presence of conserved states between different OS PDXs. Using the clusters, we 
performed differentially expressed gene (DEG) analysis and ranked the top-expressed markers for each 
cluster (Fig. 1D). Clusters 4 and 13 are comprised of mostly SA98 and OS1 PDXs with fibroblastic genes 
(COL3A1, FBN1, ACTA2). In addition, we also observed evidence of fibroblastic expression for SA98 in 
Clusters 3 and 7 (POSTN, FGFR1, FGFBP2), some evidence of a chondroblastic phenotype (COL11A1), and 
a lack of osteoblastic expression. This suggests that SA98 may be a chondroblastic-fibroblastic hybrid. Clearly, 
clusters 8, 10, and 12 were indicative of cells undergoing cycling. Enrichment analysis showed four possible 
major gene expression programs that are active in these three PDXs. Many clusters (0, 2, 3, 4, 10, 14), which 
were predominantly composed of OS31 and SA98, were associated with ECM-related gene sets (Fig. 1E). 
Interestingly, the predominantly osteoblastic OS1 lacked many of the ECM gene sets. Conversely, Cluster 1 
from OS1 had heightened activity of osteoblast differentiation and bone development genes. Interestingly, 
cluster 13 was enriched with contractile-related processes, including genes such as TPM2 and ACTA2.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 14, 2023. ; https://doi.org/10.1101/2023.09.13.555156doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.13.555156
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 14, 2023. ; https://doi.org/10.1101/2023.09.13.555156doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.13.555156
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1: Single-Cell Sequencing Reveals Intratumor Heterogeneity in Patient-Derived Xenograft 
Models of Osteosarcoma. A: Single-cell gene expression UMAP of three OS PDX samples. B: Louvain 
clustering identified 15 clusters of cells in the three PDXs. C: Heatmap of gene expression markers 
(normalized by maximum across all cells) of all individual cells. Genes were grouped according to specific 
lineage markers or biological processes. D: Average cluster gene expression (normalized by maximum across 
all clusters) of the set of top 5 differentially expressed genes in each cluster. E: Dot plot of pathway analysis 
scores for each cluster. 

Constructing a Map of the Mesenchymal Transition Landscape 

Since such few cells transit mesenchymal linages postnatally, it isn’t yet possible to detect and profile these 
rare cell types in sufficient numbers using existing technologies in children or adults. Instead, we utilized an in 
vitro model of human mesenchymal differentiation14(Fig. 2A). Initially, scRNA-seq was used to profile the 
mesenchymal differentiation landscape of MSCs under adipogenic or osteogenic conditions to map the 
changing transcriptome as cells reached their intended terminal fate. We applied a differentiation model 
involving biochemical and biophysical signals to direct osteogenic and adipogenic tissue differentiation14. We 
then collected cells at defined time points to generate a single-cell time-course profile of each lineage. 

Because our differentiation strategy only modeled osteogenic and adipogenic differentiation, we could not 
directly estimate the chondrogenic lineage. Chondrogenesis is an important mesenchymal-origin cell lineage 
and constitutes a major component of some chondroblastic OS tumors6,18. For completeness, we bolstered our 
experimentally generated osteogenic and adipogenic MTL with a publicly available chondrogenic lineage 
single-cell dataset19. In brief, the study generated human iPSC-derived chondroblast precursor cells that were 
chemically stimulated to undergo chondrogenic differentiation. Throughout their MSC-to-chondrocyte lineage 
transition, gene expression was assessed by scRNA-seq. With similar time-course data, a batch correction 
procedure was performed to integrate the chondrogenic lineage with the experimentally generated osteogenic 
and adipogenic lineages. Subsequently, these data were examined to investigate lineage-specific and 
temporal gene expression dynamics on the mesenchymal tissue landscape (MTL; Fig. 2B-E). 
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Figure 2: Mesenchymal Differentiation Landscape. A: Schematic of datasets utilized to construct the 
Mesenchymal Differentiation Landscape. Osteogenic and adipogenic lineages were experimentally generated 
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over a time course culturing on hydrogels of varying stiffness to influence differentiation trajectory. The 
chondrogenic lineage was sourced from a publicly available dataset (GSE160625) which measured a time 
course of chondrogenesis in cultured chondroprogenitor cells treated with a combination of TGF-β3 and C59. 
These two datasets were integrated to construct a mesenchymal differentiation map containing three lineages. 
B: UMAP of integrated differentiation landscape with designated clusters along three distinct lineages. Clusters 
were manually annotated as undifferentiated/dividing (UD), chondroprogenitor (CP), mesenchymal stem cell 
(MSC), osteogenic (O1-O2), adipogenic (A1-A4), chondrogenic (C1-C3). C: UMAP colored by lineage. D: 
UMAP colored by experimental time, scaled to the endpoint of each experiment (d21 for osteo, d14 for adipo, 
d42 for chondro). E: Violin plots of marker genes for early and late stages of each lineage showing distinct 
temporal patterns. 

Using the integrated cell embedding produced by Harmony, we generated a Uniform Manifold 
Approximation and Projection (UMAP) to visualize the topological structure of our single-cell data20. Using 
Louvain graph-based clustering of the Harmony embedding20, we generated 13 distinct clusters representative 
of MSCs, osteoblasts, adipocytes, chondrocytes, and transitional states. We utilized the known condition and 
time-point data to manually annotate the clusters (Fig. 2B-E)14. We generated a correlation matrix between 
average expressions within each identified cluster and condition. Our analysis identified three osteo-lineage 
clusters (O1-O3), four adipo-lineage clusters (A1-A4), three chondro-lineage clusters (C1-C3), in addition to 
undifferentiated/dividing cells (UD), a distinct chondroprogenitor cluster (CP), and two populations of MSCs 
(MSC-H and MSC-L). 

 

Gene Markers Validate the MTL Map and Quantify Differentiation along Multiple Mesenchymal Lineages 

To determine cluster-specific markers and differentially expressed genes (DEGs), we performed pairwise 
differential expression analysis in Seurat for each cluster against the rest of the clusters (Supplementary Table 
1). We observed high expression of cell-cycle genes (CENPF, MKI67, TOP2A) in UD and CP clusters and to 
some degree in cluster C1. This was further illustrated by scoring a cell-cycle gene set and identifying the 
G2M, S, and G1 cell-cycle phases. We observed clear localization of cycling cells in G2 and S phases in the 
UD and CP clusters. Clusters MSC-H and MSC-L, which consisted mostly of MSCs prior to induction, were 
enriched for MSC-specific markers (ENG, NT5E, PRRX1, THY1). Since MSCs were cultured on gels of 
different stiffnesses, we were able to identify YAP/TAZ-regulated genes (ANKRD1, CTGF, CYR61, IGFBP5, 
TEAD1) enriched in cluster MSC-H versus cluster MSC-L (Supplemental Fig. S1). 

Adipogenic Lineage 

 Cluster A1, containing early time-points within the adipo-lineage trajectory21, was enriched with 
metallothioneins (MTs). MTs are expressed in adipose tissue and have been shown to regulate adipogenic 
differentiation22. Consequentially, clusters A1, A2, and A3 were highly enriched with MTs (MT1X, MT1E, 
MT1M, MT2A), echoing similar literature results within 24h of adipogenic induction23. Clusters A1 and A2 were 
enriched with WNT5A, PAPPA, and FTH1. WNT5A is a part of the non‐canonical Wnt pathway activated 
during adipogenesis24. Both PAPPA and FTH1 are up-regulated during activation of peroxisome proliferator-
activated receptors (PPARs)25. Cluster A3 appeared to be heavily enriched with extracellular matrix (ECM) 
genes (COL3A1, COL6A1, COMP, DCN, LUM). Though not initially enriched during the early phase of 
adipogenesis, these genes appear to peak within cluster A3. Likewise, various groups have observed that 
adipogenesis follows a biphasic pattern concerning ECM proteins, where collagens, laminins, biglycan, and 
lumican, demonstrated a decrease upon adipogenic induction but return to basal levels after a certain time26. 
This was followed by a phase of cell growth and fat storage. As such, cluster A4 is highly enriched for 
adipocyte gene signatures (ACACB, ADIPOQ, APOE, FABP4, G0S2, FABP5, LPL, PLIN4, PLIN1). Though the 
adipogenic lineage served as a negative control for our OS-focused study, it might prove useful in future 
studies aimed at unraveling the epigenetic drivers of well-differentiated and dedifferentiated liposarcoma, 
common sarcoma subtypes that lack effective biologically targeted therapies.  

Osteogenic Lineage 

Our analysis showed that cluster O1 up-regulated genes related to both YAP/TAZ signaling and early 
osteogenesis, such as ANKRD1, AXL, CTGF, DKK1, and HHIP. Activation of YAP/TAZ signaling has been 
shown to directly target ANKRD1, AXL, CTGF, and DKK1 when cells are grown at high stiffness prior to 
osteogenesis27-29. In addition, the expression of HHIP suggests regulation of Hedgehog signaling. Previous 
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reports stated that YAP activation drove GLI2 nuclear accumulation, which directly activated GLI targets30,31. 
GLI target up-regulation (CCND1, FOXC2, GLIPR1, and IGFBP6) within cluster O1 of our model acts to 
validate this finding experimentally. Within clusters O1 and O2, we observed increased expression of ECM 
genes (ACAN, COL1A1, COL1A2, COL8A1, and ELN). Furthermore, expressions of CRYAB, LEPR, and 
TAGLN indicate positive regulation of osteogenesis21,32,33. COL1A1 and COL1A2 are characteristic of 
osteoprogenitor cells, while ACAN was expressed in osteochondroprogenitor cells. Additionally, many genes 
(DCN, FN1, GSN, IGFBP2, IGFBP6, and SERPINE2) of the osteoblast secretome were detected within cluster 
O234. Cluster O2 was also highly enriched with additional osteoblast secretome-related genes (CHI3L1, 
FBLN1, SAA1, THBS2). SAA1 expression has been shown to be induced by osteogenic conditions while also 
promoting osteogenesis and bone mineralization35. In addition, IGFPs, including IGFBP2, IGFBP4, and 
IGFBP7, and IGF2 are some of the osteogenic growth factors up-regulated in cluster O236. Expression of 
transcription factors FOS and CTNNB1 (β-catenin) indicates activation of mechanosensing pathways in 
osteoblasts36. Osteoblast-specific glycoproteins and ECM proteins (ECM2, GPNMB) were highly expressed in 
cluster O237-40. Likewise, WNT1-Inducible-Signaling Pathway Protein 2 (WISP2) was highly expressed in 
cluster O2 and has been shown to both promote osteogenesis and repress adipogenesis41,42. 

Chondrogenic Lineage 

Within the chondrogenic differentiation experimental time course, cluster C1 consisted of primarily day 7, 
cluster C2 consisted mostly of day 14, and cluster C3 consisted of days 28 and 42. In the chondrogenic 
lineage, clusters C1, C2, and C3 showed increased expression of chondrogenic markers (COL9A1, MATN4, 
SOX9)19,43. All three chondrogenic clusters also expressed frizzled-related proteins (EPYC, FRZB, LECT1)44. 
Clusters C1 and C2, containing earlier time points, exhibited a few early markers of chondrogenic 
differentiation (SOX2, SOX6), while clusters C2 and C3, containing later time points, exhibited increased 
expression of additional chondrogenic markers (ACAN, COL2A1, COL3A1)45. The CP cluster was observed to 
show distinct transcriptional signatures compared to the rest of the mesenchymal landscape, with expression 
of genes indicating chondrogenic potential (SOX2, SOX4) and some neural crest markers (FOXD3, PAX3, 
PAX6, OTX2) and WNT signaling genes (MAPK10, WNT4) reflecting the derived progenitor status of this 
cluster46,47. 

 

Archetype Analysis Defines Lineage-Specific and Time-Dependent Expression Profiles within the MTL 

Next, we sought to quantitate time-dependent signatures of mesenchymal stem cell differentiation along 
the MTL-derived lineages. We applied archetype analysis in order to identify temporal and lineage-specific 
gene expression signatures and subsequently estimate the relative contribution of each archetype in individual 
cells48. Twelve distinct differentiation signatures (Supplemental Fig. S2) captured the MTL’s gene expression 
variability (Fig. 3A). The estimated abundance of each archetype varied with time and with experimental 
manipulation corresponding to specific differentiation lineages. Archetypes 1-4, for example, each peaked at a 
different experimental time (measured in days) and thus encode differentially expressed genes common to 
both adipocytes (red) and osteoblasts (blue) as they differentiate. By contrast, Archetypes 5-7 were specific to 
early adipocytes, late adipocytes, and osteoblasts respectively. Chondrocytes (green), by contrast and perhaps 
explained by the distinct experimental design involved in their profiling, were associated with archetypes 8-12, 
each peaking at a distinct experimental time.  
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Figure 3: MTL archetypes. A: Average archetype time courses stratified by cell lineage. Archetypes scores 
for each cell were computed using normalized nonnegative matrix factorization. B: Table summarizing the 
dominant lineage and peak time represented by each archetype. C: Heatmap of representative gene-
archetype correlations. Four representative genes were selected among the top Pearson correlates of each 
archetype based on their known biological relevance. The full list of correlates is provided in SI Table 1.  

To confirm that these archetypes capture established lineage-specific and stemness-associated features of 
gene expression, we conducted a genome-wide Pearson correlational analysis between the expression levels 
of each gene in our dataset and the single-cell scores assigned to each archetype (Fig. 3B). Consistent with 
the time-course averages, we observed that Archetype 1 exhibited a strong association with well-known 
stemness genes such as FGF2 and THY1, confirming that this archetype represented an early, 
undifferentiated stem signature. Furthermore, Archetypes 6, 7, and 12 were associated lineage-specific 
adipogenic (FABP4), osteogenic (COL1A1), and chondrogenic (ACAN) marker genes, respectively (see Fig. 
1C). 

 

An Early Differentiation Stem-like State Predominates in Human Osteosarcoma   

To understand osteosarcoma heterogeneity in the context of mesenchymal stem cell differentiation, we 
projected single-cell expression data from human osteosarcoma samples onto the 12 archetypes defined by 
the MTL. With the signatures trained on the MTL, we estimated the distribution of differentiation states across 
the OS PDX and OS tumor cohorts (Fig. 4A, B). Unlike mature cell lineages of the MTL derived from normal 
cells, individual OS cells exhibited greater phenotypic diversity and a mixture of archetypes from different 
lineages. Some cells in SA98, for example, scored highly for both archetypes 3 and 9, while some in OS31 
scored highly for archetypes 2, 6, and 10. The extent of archetype promiscuity within the same tumors raised 
the possibility that OS has sufficient epigenetic plasticity to enable the multi-phenotypic morphology observed 
in most high-grade OS tumors.  
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To further assess the composition of differentiation states within each OS tumor, we further classified cells 
by their most prevalent archetype and found that each tumor had a widely variable fraction of cells in different 
states (Fig. 4C, D). Both OS datasets revealed populations of cells primarily composed of archetypes 2 (Day 
0.5 MTL), 3 (Day 7 MTL), 6 (late adipocytes), and 10 (Day 14-28 chondrocytes), with smaller populations 
containing the other archetypes.  

Importantly, the estimated fraction of chondrogenic lineage closely matched the histological classification of 
chondroblastic origin in PDX OS31 and OS tumors BC20 and BC22. In addition, individual tumors (such as 
SA98 and BC21) contained multiple populations of cells with multiple lineages and marked variability in their 
differentiation states, while other tumors (BC5, BC6, and BC17) were composed of mostly early differentiation 
states without lineage commitment.  

An unexpected finding was that the PDX samples were more phenotypically diverse than the human 
tumors and potentially more differentiated along the osteochondroblastic lineage. If validated prospectively 
using a larger sample size, this might have implications for preclinical drug testing programs. As expected for 
high-grade OS clinical samples, our computational approach correctly identified tumor cells in an early 
progenitor state that exists prior to late-stage osteochondrogenic differentiation. The ability to quantify cellular 
constituents along this continuous stemness/differentiation spectrum provides a new dimension to characterize 
OS that might prove more useful than subjective cell type (e.g., chondrocytes or osteoblasts)-based 
approaches used by pathologists today. Since a minority of tumor cells appear to have undergone 
differentiation into distinct cell fates, this might explain why pathology-assigned subclassifications of OS into 
fibroblastic, osteoblastic, or chondroblastic subtypes has little prognostic value and no bearing on a clinician’s 
treatment choice.  

 

Figure 4: Archetype composition of osteosarcoma tumor samples and PDX models. A: Single-cell 
archetype score heatmap of 3 PDX models of osteosarcoma, with hierarchical clustering to accentuate cell 
groups (dendrogram not shown). Row annotation on left indicates lineage of each archetype (same as Fig. 
3B). Column annotation indicates pathologist label based on predominant cell type. B: Single-cell archetype 
score heatmap of 11 human osteosarcoma tumor samples. Similar annotation as panel A. C: Compositions of 
each PDX based on the maximum archetype score of each cell. D: Compositions of each OS tumor. 
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A Differentiation Archetype is Associated with Improved Survival in Pediatric Osteosarcoma 

We next explored how OS tumor heterogeneity affects clinical outcomes using the NCI’s Therapeutically 
Applicable Research to Generate Effective Treatments (TARGET) OS data subset, made publicly available to 
accelerate cancer research. Specifically, we projected the N=85 bulk RNA-seq samples from TARGET-OS 
onto the MTL to identify archetypes associated with differential survival outcomes (Fig. 5A). Despite lacking the 
intratumoral resolution of single-cell analysis, we found substantial variation in archetype compositions across 
the cohort. Survival analysis in the cohort revealed that gene expression archetype heterogeneity could explain 
differential osteosarcoma survival (log-rank test: p=0.033; Fig. 5B). A multivariate analysis determined that 
archetype 3 (differentiated) was most significantly associated with improved survival (Cox PH: p=0.041; Fig. 
5C). In other words, a differentiation signature was associated with improved prognosis, and conversely, tumor 
stemness, which is frequently associated with progression and osteosarcoma transdifferentiation, was linked to 
a worse prognosis.  

A particularly important finding was that the normal gene expression signatures resolved by the MTL are 
useful for understanding both intratumoral and intertumoral variability by estimating the composition of OS 
tumors from bulk gene expression data. A similar approach might be taken to investigate liposarcoma, 
chondrosarcoma, and – with additional refinements of the MTL to include a myogenic lineage – 
rhabdomyosarcoma, a highly aggressive sarcoma subtype that occurs predominantly in adolescents and 
young adults.  
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Figure 5: Stemness is associated with poor survival in osteosarcoma. A: Bulk archetype heatmap of 
TARGET-OS. B: Forest plot of the associated Cox regression model with reported hazard ratio (HR) and 
confidence interval (CI) using the expressed MTL archetypes as regressors. Significance was determined by a 
multivariable Cox PH test. C: Kaplan-Meier plot stratified by the sample-specific Archetype 3 (differentiation) 
scores grouped as higher or lower than the median. Significance was determined by a univariable Cox PH test. 

 

Discussion 

Osteosarcomas are generally classified based on predominant histological features, even though most 
tumors are comprised of multiple lineages (e.g., osteoblastic, chondroblastic, and fibroblastic). Without the 
tools to quantify the OS tumor cell composition with a high degree of precision using traditional IHC-based 
morphometric methods, most high-grade OSs are treated identically using the same cytotoxic chemotherapy 
regimens developed more than five decades ago. As more powerful proteogenomic methods are applied to 
tumor samples, one expects to identify prognostic therapeutic biomarkers that ultimately help enable precision-
guided medicine that accounts for each patient’s unique tumor characteristics. Here, we take an initial step 
toward that long-term goal by attempting to understand sarcomas in terms of differentiation states from their 
predicted cell or tissue type of origin. Although OS is thought to derive from an osteogenic cell lineage or 
mesenchymal progenitor that exists somewhere along the MSC-to-osteochondroblastic continuum, the cancer 
often presents with osteoblastic, chondroblastic, telangiectatic, and fibroblastic phenotypes. Low-grade OS 
variants exist that better resemble their mature connective tissue counterparts but are exceedingly rare and 
were not available, which was a limitation of our analysis.  

Given the heterogeneity of cancer cell differentiation, we developed a Mesenchymal Tissue Landscape 
(MTL) as a high-resolution tissue-engineered reference map that allows for an unparalleled opportunity to 
profile MSCs by scRNA-seq on their physiological journey toward an osteogenic, adipogenic, and 
chondrogenic cell fate. Insights generated from the MTL proved valuable in describing mesenchymal 
differentiation states within OS, revealing distinct lineage-specific gene markers with temporal ordering. 
Crucially, this MTL provided a framework to understand OS gene expression patterns in terms of the various 
mesenchymal lineages. Using a similar approach as the one taken here, the adipogenic component of the MTL 
is under study as a tool to better understand liposarcoma biology and will be reported elsewhere. Further, 
though the tissue engineering field has demonstrated the ability to push MSCs toward a myoblast phenotype 
ex vivo by regulating mechanotransduction optimally at 10-12 kPa, this lineage was not included in our initial 
version of the scRNA-seq MTL, another recognized limitation. As liposarcoma and rhabdomyosarcoma differ 
significantly from OS in their etiology, genetics, behavior, and treatment, a sarcoma subtype-specific analysis 
seemed warranted. 

The present study interrogated three OS PDX models and the publicly available single-cell gene 
expression of 11 human OS tumors16. In addition to augmenting our cohort, human tumor data ensured that 
our PDX observations were applicable to clinical tumor samples49. To relate mesenchymal differentiation states 
and tumor heterogeneity in OS, we employed archetype analysis, which represented low-dimensional gene 
expression patterns in OS relative to the MTL. The archetypes accurately quantified the presence of various 
differentiation states and lineages in human OS samples. They also showed the potential to quantify the 
impact of suspected driver alterations and transcription factors on tumor phenotype15. Given the link between 
these archetypes and patient survival, this approach could aid in the development of patient-specific 
therapeutic strategies for OS. Significantly more OS samples will be required to validate our preliminary 
findings, potentially enabled through collaboration across the sarcoma research community. Rapid 
technological changes in the ability to study archival frozen and formalin-fixed paraffin-embedded (FFPE) 
tissues at the single-cell level, paired with the ability to economically perform sample multiplexing, are on the 
cusp of enabling these kinds of future large-scale studies.  

Notably, though our analysis captured temporal differentiation signatures that may prove useful for lineage 
tracing during individual tumor evolution, future studies will be required to better understand how tumors 
dynamically change their fate, plasticity, and lineage in response to biologically targeted therapy as a potential 
mechanism of resistance. Methods used to infer cell lineage trajectory or plasticity, such as Waddington-OMT 
and CytoTrace, have shown tremendous promise in understanding temporal gene expression dynamics13. As 
with any nonlinear method, such results may be challenging to interpret and calibrate. However, such methods 
might be constrained and more easily understood by utilizing archetypes as low-dimensional representations of 
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lineage-specific gene expression programs. Since the archetypes are trained based on normal mesenchymal 
differentiation, temporal information derived from archetype analysis can approximate the current differentiation 
state of sarcoma cells with respect to normal differentiation. Given that many sarcomas may undergo 
incomplete differentiation or dedifferentiation, this analysis approach allows a way to quantify tumor 
subpopulations not only of different mesenchymal lineages but also of different temporal stages. 

In conclusion, our study has generated a unified and detailed map of the cellular differentiation landscape 
of three human connective tissue types and demonstrated its potential for characterizing intra- and inter-
tumoral OS heterogeneity. The ability to project gene expression data onto this established landscape could 
facilitate the development of more personalized therapies for OS. Our first-generation MTL lays the 
groundwork for creating a comprehensive atlas of normal and cancer cell differentiation, which could have far-
reaching implications for both basic biology and cancer treatment. The use of archetypes overcomes key 
technical barriers associated with integrating multiple datasets, enabling the map to naturally evolve as new 
data is collected. Our study provides a valuable resource for future research into the molecular mechanisms 
underlying cellular differentiation and disease progression. 

 

 

Methods 

Osteosarcoma Patient-Derived Xenografts 

Single-cell RNA-seq data from PDX lines were obtained from a previous study GSE20052917. For this study, 
we selected only “warm” dissociated single-cell RNA-seq data. SA98 (full ID: MDA-SA98-TIS02), OS1, and 
OS31 are PDX lines maintained by the Pediatric Solid Tumors Comprehensive Data Resource Core13. 

Mesenchymal stem cell culture and differentiation 

As in vitro differentiation can be inefficient, our differentiation model incorporates biochemical and biophysical 
cues to better regulate MSC differentiation as described in other works14,50. 

MSC culture and differentiation 

Human primary bone marrow-derived MSCs were taken from healthy donors through an IRB-approved 
partnership with Texas A&M. Cells were differentiated on polyacrylamide-based hydrogels as previously 
described14,51. Briefly, MSCs were plated polyacrylamide gels coated with collagen according to established 
protocols.  

Polyacrylamide-based hydrogel preparation 

As previously described14, we prepare polyacrylamide gels adhered to treated glass slides by 
glutaraldehyde. The ratio of acrylamide/bis was adjusted for the required stiffnesses. Collagen (10µg/mL) was 
functionalized to the gels using Sulfo-SANPAH for cell attachment. MSCs were cultured on polyacrylamide-
based hydrogels of different stiffnesses (low = 1.5 kPa, high = 25-40 kPa) corresponding to the stiffnesses of 
the related mesenchymal tissues (adipose ~ 1-2 kPa50,52,53, osteoid ~ 25-40 kPa14,54). Upon adding 
differentiation induction medium, cells were collected at specified time points until terminal differentiation. 

Single-cell suspension, library preparation, and sequencing 

Cells undergoing differentiation were collected at specified time-points for sequencing (time points 
including days 0, 0.5, 1, 2, 3, 5, 7, 10, 14, 21). The cells were washed in PBS before adding trypsin/EDTA 
(0.25%/380.0 mg/L) followed by 30 min incubation at 37 °C. Afterwards, cells were agitated through pipetting 
and trypsin activity was briefly terminated by addition of culture media containing serum. Cells were centrifuged 
and washed with PBS + 0.4% BSA to remove debris and dead cells. Prior to submission for sequencing, cells 
were re-suspended at 1000 cells/µl.  

Single-cell capture, lysis, and library preparation were performed using the Chromium Controller system 
and established protocols (10x Genomics). Libraries were prepared using Single Cell 3' v3 with a capture of 
1700 cells as input for an estimated target cell capture of 1000 cells due to cell capture efficiency of 65%. 
Libraries were sequenced using the Illumina NextSeq 500 to sequence each cell at an estimated 50,000 reads 
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per cell. The total number of cells captured was approximately 31,527 cells across all time points with a 
median unique molecular count of 3.6E4 ± 2.2E4 (SD) per cell and median unique feature of 5.3E3 ± 1.4E3 per 
cell. 

Public datasets: 

Chondrogenic Differentiation: Data was accessed at NCBI GEO accession code GSE16062519. Raw read 
counts from each condition were loaded using Seurat R package Read10X command and subsequently 
merged into a single Seurat data file with added metadata columns specifying the experimental condition and 
time of each cell. To utilize the authors-reported higher efficiency chondrogenic differentiation with C59 
treatment, the chondroprogenitor (Cp) and C59-treated conditions (C59_D7, C59_D12, C59_D28, C59_D42) 
were selected for analysis19. 

Osteosarcoma Tumors (OS11): Data was accessed at NCBI GEO accession code GSE15204816. Raw 
read counts from each condition were loaded using Seurat R package Read10X command and subsequently 
merged into a single Seurat data file with added metadata column specifying the tumor identity. 

Pediatric Osteosarcoma (TARGET-OS): The results published here are in part based upon data generated 
by the Therapeutically Applicable Research to Generate Effective Treatments 
(https://www.cancer.gov/ccg/research/genome-sequencing/target) initiative, phs000218. See section “Pediatric 
Sarcoma Survival Analysis” below for additional details. 

Preprocessing of 10x scRNA-seq data 

Cell Ranger (10x Genomics) was used to perform demultiplexing, alignment, filtering, barcode counting, 
UMI counting, and aggregate the outputs from multiple libraries. Following the standard Cell Ranger pipeline, 
the filtered gene barcoded matrices were read by Seurat v3 for data preprocessing and initial analysis55,56.  

As quality control for all datasets, cells with fewer than 500 detected genes were removed, along with 
genes detected in fewer than 3 cells. Additional outliers of mapped mitochondrial reads and expressed genes 
per cells were adaptively filtered using the scuttle R package isOutlier command with default threshold of 3 
mean absolute deviations. Finally, an absolute threshold of cells with low unique counts (n<1000) and high 
mitochondrial genes (n>25%) was applied as a filter.  

After the removal of low-quality cells, we normalized the data using Seurat R package SCTransform 
normalization57. In brief, SCTransform performs normalization and variance stabilization using regularized 
negative binomial regression to remove technical variation, returning corrected read counts. Normalization was 
performed in a batch-specific manner, where the Seurat object of a given dataset was first split by batch or 
tumor ID, using SplitObject to create a list of separate Seurat objects. SCTransform command with parameters 
return.only.var.genes=F, vst.flavor=”v2” was applied to each list object. The resulting normalized data were 
merged, including the union of genes reported by SCTransform for each batch. 

Harmony Batch Correction 

To generate a comprehensive visualization of the MTL, we applied Harmony integration to correct for 
batch-specific variation among the differentiation data58. In brief, Harmony utilizes an iterative correction of the 
principal components (PCs) to remove batch-specific effects and maximize cell clustering. The data was first 
normalized using sctransform and a principal-component analysis (PCA) was computed using the top variable 
genes. The PCA embedding was then batch-corrected by the Harmony algorithm to produce an integrated 
dimensional reduction with batch correction across tumor_id20. Harmony integration was implemented using 
harmony R package RunHarmony command with parameters: group.by.vars = 'Batch.ID', theta = 3, lambda = 
0.5, tau = 300. 

Visualization and clustering 

To visualize the mesenchymal landscape, we produced a 2D map by Uniform Manifold Approximation 
and Projection (UMAP) on the Harmony reduction, stored as umap_harmony59. Then, using the Harmony 
reduction, we generated a shared nearest neighbor graph and identified clusters of cells using Louvain 
algorithm60. Resulting clusters were manually labeled based on the predominant experimental condition and 
time points within each cluster, which largely aligned with three mesenchymal differentiation lineages 
(osteogenic, adipogenic, chondrogenic) and time-course progression. Heatmaps were produced using the R 
packages ComplexHeatmap and ggplot2. 
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Marker Gene Analysis 

Differentially expressed marker genes among cell clusters were identified using Seurat’s FindAllMarkers 
command with parameters: only.pos=T, logfc.threshold=0.1. This method applied the default Wilcoxon 
statistical test to perform comparison of all genes in each cluster compared to all other clusters, only 
considering genes with positive expression and log fold-change (logfc) above the specified threshold and 
returning a multiple-comparison corrected FDR value. Significant marker genes were subsequently assessed 
to determine cluster- and lineage-specific markers and confirm the expected biological identify of the cluster 
cell populations. 

Gene Expression Archetype Analysis 

We applied a Normalized Non-negative Matrix Factorization (N-NMF) algorithm to define transcriptional 
programs or “archetypes” which capture the variability of gene expression patterns across the dataset in a low-
dimensional subspace15. This approach is a semi-supervised machine learning approach, where we first 
trained N-NMF archetype coefficients on the mesenchymal differentiation dataset and later used these trained 
archetypes to score the osteosarcoma PDX and tumor datasets. Prior to NMF, we applied quantile 
normalization to ensure gene expression matched the same distribution across all cells. To minimize the 
impact of sequencing noise present in lowly expressed genes, we isolated differentially expressed genes 
across the data by removing genes with variance less than 0.70 (corresponding to the bulk of the genes), 
selecting a total of 454 highly expressed and variable genes across the data. Then, the optimal NMF rank was 
determined heuristically by examining the eigenvalue spectrum elbow plot (Supplemental Fig. S1). NMF 
archetype coefficients were computed using an iterative algorithm to compute a gene-archetype coefficient 
matrix and cell-archetype score matrix (normalized to sum to 1 for each cell)61. Scoring of osteosarcoma cells 
with trained archetypes was then computed using a similar iterative algorithm but with the gene-archetype 
coefficient matrix held fixed. 

Pediatric Sarcoma Survival Analysis 

Pediatric sarcoma gene expression profiles were obtained from the Therapeutically Applicable 
Research to Generate Effective Treatments (TARGET) study OS dataset (TARGET-OS)62. Gene expression 
data along with clinical phenotype and survival data were accessed from UCSC Xena browser, URL: 
https://xenabrowser.net/datapages/?cohort=GDC%20TARGET-OS63. RNA-seq STAR counts were provided as 
log2(CPM+1). For archetype analysis, after mapping gene ensembl_ids to HGNC gene symbol, expression 
data was quantile normalized with respect to the MTL as the target distribution. Archetype analysis was then 
used to estimate the composition of archetype gene signatures (trained on the MTL as described above) in 
each OS. With the resulting archetype scores, survival analysis was performed. First, low-expressed 
archetypes which had means across all samples less than 0.05 were filtered out (4 of 12 archetypes were 
removed). Finally, Cox multiple regression was used to determine the overall hazard ratio and statistical 
significance of each archetype, as well as the global log-rank statistic. 

Code and Data Availability 

All relevant code used for data processing and analysis are available in a public GitHub repository at 
the following link: https://github.com/Ludwig-Laboratory/sarcoma_differentiation_landscape. The datasets 
generated analyzed in this study will be available at the Gene Expression Omnibus (GEO, 
https://www.ncbi.nlm.nih.gov/geo/) upon publication. 
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