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Abstract 68 

The lifespan growth of the functional connectome remains unknown. Here, we assemble task-69 

free functional and structural magnetic resonance imaging data from 33,250 individuals aged 32 70 

postmenstrual weeks to 80 years from 132 global sites. We report critical inflection points in the 71 

nonlinear growth curves of the global mean and variance of the connectome, peaking in the late 72 

fourth and late third decades of life, respectively. After constructing a fine-grained, lifespan-wide 73 

suite of system-level brain atlases, we show distinct maturation timelines for functional 74 

segregation within different systems. Lifespan growth of regional connectivity is organized along 75 

a primary-to-association cortical axis. These connectome-based normative models reveal 76 

substantial individual heterogeneities in functional brain networks in patients with autism 77 

spectrum disorder, major depressive disorder, and Alzheimer's disease. These findings elucidate 78 

the lifespan evolution of the functional connectome and can serve as a normative reference for 79 

quantifying individual variation in development, aging, and neuropsychiatric disorders. 80 
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Introduction 82 

The resting human brain, characterized by intrinsic or spontaneous brain activities, has been 83 

increasingly understood from a connectome perspective over the past two decades 1-5. The 84 

emergence, development, and aging of the intrinsic connectome architecture enables the dynamic 85 

reorganization of functional specialization and integration throughout the lifespan, contributing 86 

to continuous changes in human cognition and behavior 6-9. Understanding the spatiotemporal 87 

growth process of the typical functional connectome is critical for elucidating network-level 88 

developmental principles in healthy individuals and for pinpointing periods of heightened 89 

vulnerability or potential. Disruption of these normative connectome patterns, especially during 90 

specific time windows, can predispose individuals to a spectrum of neurodevelopmental 10-12, 91 

neurodegenerative 13, and psychiatric disorders 14-16. The growth chart framework provides an 92 

invaluable tool for charting normative reference curves in the human brain 17-20. Recently, 93 

Bethlehem et al. 18 delineated the life-cycle growth curves of brain morphometry by aggregating 94 

the largest multisite structural magnetic resonance imaging (MRI) dataset to date (101,457 95 

individuals between 115 days post-conception to 100 years of age), marking a significant step 96 

toward reproducible and generalizable brain charts. However, the normative growth charts of the 97 

functional brain connectome across the human lifespan remain unknown. 98 

Previous studies using task-free functional MRI (fMRI) data have reported age-related 99 

characteristics of the functional connectome 21-23. However, most of these studies were limited to 100 

specific periods of growth with narrow age intervals. For example, data from the perinatal and 101 

early postnatal period (e.g., 0-6 years) are rarely included in studies spanning childhood, 102 

adolescence, and adulthood; thus missing the opportunity to depict a continuous life-cycle 103 

dynamic evolution from gestation to old age. Although a few studies have attempted to include a 104 

broader age range from childhood to late adulthood, they have suffered from challenges in 105 

robustly estimating normative growth curves due to limited sample sizes (typically < 1,000) 24-29. 106 

More recently, Rutherford et al. 30 have made great strides in establishing a lifespan normative 107 

model of the functional connectome using a large sample dataset (~22,000 individuals aged 2-108 

100 years). However, this work primarily focused on intersystem functional connectivity using 109 

population-based system-level atlas. Furthermore, there are large inconsistencies in the literature 110 

regarding functional connectivity trajectories, with no consensus emerging on the developmental 111 

directions and growth milestones. In particular, Cao et al. 25 reported that global functional 112 

connectivity in the whole brain peaks at around 30 years of age, whereas other studies suggest 113 

earlier peaks 24 or show a continuous decline across the lifespan 31. Different trends have been 114 

observed for sensorimotor regions, with reports of ascending 32, descending 33, and stable 34 115 

developmental trajectories from childhood to adolescence. Similarly, connectivity patterns 116 

between the default and frontoparietal networks have been reported to both increase 35 and 117 

decrease 36, 37 during this period. Such discrepancies between studies are likely due to the high 118 

sensitivity of high-dimensional fMRI data to variations in scanner platforms and sequences, 119 

image quality, data processing, and statistical methods, as well as the population heterogeneity of 120 

cohorts 6. This underscores the paramount importance of large sample sizes, rigorous data quality 121 

control procedures, consistent data processing protocols, and standardized statistical modeling 122 

frameworks to accurately characterize growth curves of the functional connectome across the 123 

lifespan. 124 

To address this gap, we assembled a large multimodal neuroimaging dataset with rigorous 125 
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quality control, consisting of cross-sectional task-free fMRI and structural MRI data from 33,250 126 

individuals ranging in age from 32 postmenstrual weeks to 80 years, collected from 132 global 127 

sites (Fig. 1a). We conducted a comprehensive network modeling analysis to delineate the 128 

nonlinear growth patterns of the functional connectome across multiple scales. We began by 129 

characterizing lifespan growth in the overall patterns of the global functional connectome, 130 

revealing important life-course milestones. We then constructed continuous age-related, system-131 

level atlases across the lifespan and further provided a previously unreported portrayal of the 132 

distinct growth patterns across brain systems. Next, we sought to elucidate the spatiotemporal 133 

principles governing connectome growth at a finer regional scale. Finally, we investigated the 134 

potential clinical value of the established connectome-based normative models. We selected 135 

autism spectrum disorder (ASD, N = 414), major depressive disorder (MDD, N = 622), and 136 

Alzheimer’s disease (AD, N = 180) as representative conditions characterized by network 137 

dysfunction across different life stages. These conditions typically manifest in childhood, 138 

adolescence/adulthood, and older adulthood, respectively 16, 38-40. Using individual deviation 139 

scores relative to the 50th percentile, we presented a multiscale characterization to quantify the 140 

individual heterogeneity of patients with ASD, MDD, or AD. 141 

Results 142 

We initially aggregated 44,030 participants with multimodal structural MRI and task-free fMRI 143 

data. After a rigorous quality control process (for details, see the Methods and Supplementary 144 

Figs 1 and 2), we obtained a final sample of 34,466 participants with high-quality imaging data, 145 

including 33,250 healthy individuals (Fig. 1a) and 1,216 patients. The detailed demographics and 146 

acquisition parameters of the datasets are provided in Supplementary Tables 1 and 2, respectively. 147 

Using the standardized and highly uniform processing pipeline (Methods and Supplementary Fig. 148 

3), we obtained the surface-based preprocessed blood oxygenation level-dependent (BOLD) 149 

signals in fsaverage4 space for each participant (4,609 vertices in total). We then constructed a 150 

vertexwise 4,609×4,609 functional connectome matrix by calculating Pearson’s correlation 151 

coefficient between the time courses of each vertex. Figure 1b shows the functional connectome 152 

matrices of representative participants at different ages. Next, we examined the individual 153 

connectome at the global, system, and vertex levels. In accordance with the recommendations of 154 

the World Health Organization recommendation 41, the age-related nonlinear growth patterns 155 

were described using the generalized additive model for location, scale, and shape (GAMLSS) 41, 
156 

42, based on cross-sectional data from healthy populations (N = 33,250). Sex and in-scanner head 157 

motion (mean framewise displacement) were included as fixed effect covariates, and the scanner 158 

site was included as a random effect covariate. GAMLSS provides a robust framework for 159 

modeling nonlinear growth curves and has been widely used in neurodevelopmental studies 18, 43-
160 

45. To assess the rate of growth (velocity) and inflection points, we calculated the first derivatives 161 

of the lifespan growth curves. The GAMLSS specifications, model estimations, and model 162 

evaluations are detailed in the Methods section. 163 

Mapping the normative growth of the global functional connectome across the lifespan 164 

To provide basic developmental and aging insights into the global functional connectome, we 165 

first characterized the normative growth patterns of the global mean and variance (estimated by 166 

standard deviation) of the functional connectome. The lifespan curve of the global mean of 167 

functional connectome (Fig. 1c) exhibited a nonlinear increase from 32 postmenstrual weeks 168 
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onward, peaking in the late fourth decade of life (38.2 years, 95% bootstrap confidence interval 169 

(CI) 36.0-40.1), followed by a nonlinear decline. This growth curve is primarily driven by age-170 

related changes of middle- and long-range connections (Supplementary Fig. 4). The global 171 

variance of functional connectome (Fig. 1d) also exhibited a nonlinear growth pattern, reaching 172 

its peak in the late third decade of life (28.2 years, 95% bootstrap CI 26.4-30.1). The utilization 173 

of the GAMLSS enabled the delineation of normative growth curves for interindividual 174 

variability 18 in the two global measures (Supplementary Result 1 and Supplementary Fig. 5a). 175 

The curves demonstrated a slight decline in inter-individual variability during the initial stages of 176 

early development, a gradual increase until the late sixth decade of life (peaking at 55.2 years, 95% 177 

CI [53.9, 56.0] for the global mean; peaking at 56.8 years, 95% CI [55.1, 58.1] for the global 178 

variance), and then a rapid decline. These nonlinear growth patterns in the global connectome 179 

measures indicated a temporally coordinated manner across the lifespan.  180 

 181 

Fig. 1 | Normative growth patterns of the functional connectome at a global level over the lifespan. a, 182 

Quality-controlled MRI data from 132 scanning sites comprising 33,250 healthy participants who collectively 183 

spanned the age range from 32 postmenstrual weeks to 80 years. Box plots show the age distribution of 184 

participants at each site of data acquisition. The detailed participant demographics and acquisition parameters 185 

of each site are provided in Supplementary Tables 1 and 2, respectively. b, The functional connectome matrices 186 

of representative participants at different ages. c, Normative growth curve (left panel) and growth rate (right 187 

panel) of the global mean of the connectome as estimated by GAMLSS. The median (50th) centile is 188 

represented by a solid line, while the 5th, 25th, 75th, and 95th centiles are indicated by dotted lines. The 189 

growth rate is characterized by the first derivative of the median centile line. The gray shaded areas represent 190 

the 95% confidence interval, which was estimated by bootstrapping 1,000 times (see Methods for details). d, 191 

Normative growth curve (left panel) and growth rate (right panel) of global variance of the connectome. wk, 192 

week; yr, year.  193 
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Lifespan growth of system-specific organization in the functional connectome 194 

Functional segregation and integration are two fundamental organizational principles of the 195 

human brain connectome 1. To understand the lifespan growth patterns of functional segregation 196 

and integration, we established the normative models of the functional connectome at the 197 

systems level. The first step was to parcellate the cortex into distinct functional systems for each 198 

participant. Converging evidence has shown that relying on population-level atlases for 199 

individual analysis overlooks crucial intersubject variability in functional topography 200 

organization 46-49. This oversight leads to the misinterpretation of spatial distribution differences 201 

as system-level disparities 47, 50, thereby increasing the risk of inaccuracies in mapping both intra- 202 

and intersystem connectivity. Moreover, although previous studies of fetal and infant brains have 203 

elucidated the early emergence of basic forms of large-scale functional systems, including the 204 

visual 51-54, somatomotor 51-54, dorsal attention 55, 56, ventral attention 51, frontoparietal 52, 54, 56, 205 

and default mode networks 51-54, 56, the functional architecture of an individual’s system 206 

undergoes dramatic refinement and reorganization over the protracted life course 21, 57. To 207 

increase the precision of the construction of individual-specific functional networks, it is 208 

essential to establish a set of continuous growth atlases with accurate system correspondences 209 

across the life course.  210 

To address this issue, we proposed a Gaussian-weighted iterative age-specific group atlas 211 

(GIAGA) generation approach (see Methods and Supplementary Fig. 6a). The iterative 212 

refinement process is central to this approach. Briefly, we first divided all participants aged 32 213 

postmenstrual weeks to 80 years into 26 distinct age groups. Yeo’s adult atlas 58 was then used as 214 

a prior to generate a personalized parcellation for each participant in a given age group. These 215 

personalized parcellations were further aggregated to construct an age-specific population-level 216 

atlas, where the contribution of participants was weighted according to their age position within 217 

a Gaussian probability distribution. This process was repeated until the age-specific population-218 

level atlas converged, resulting in a set of age-specific brain atlases across the lifespan (Fig. 2a, 219 

Supplementary Figs 7 and 8). Validation analysis revealed greater global homogeneity when 220 

using these age-specific group atlases than using the adult-based group atlas across all age 221 

groups (all p < 10-9, Bonferroni-corrected, Supplementary Fig. 9), particularly evident during 222 

early development. Notably, each of the 26 brain atlases was parcellated into seven canonical 223 

functional networks. For each network, we calculated the network size ratio, measured by the 224 

proportion of vertices, and the distribution score, defined by the number of spatially 225 

discontinuous subregions (Fig. 2b). We found that the default mode (DM), frontoparietal (FP), 226 

and ventral attention (VA) networks showed a slight expansion in network size during the first 227 

month of life, while their distribution scores developed until early childhood (4-6 years). In 228 

contrast, the somatomotor (SM), visual (VIS), and dorsal attention (DA) networks showed a 229 

relatively stable pattern of network size and network discretization throughout the lifespan. A 230 

hierarchical clustering analysis of these system-level brain atlases revealed three overarching 231 

patterns. Cluster I covered atlases from 34 postmenstrual weeks to 1 month, cluster II covered 232 

atlases from 3 months to 24 months, and cluster III covered atlases from 4 years to 80 years of 233 

age (Supplementary Fig. 10). To further quantify the growth patterns of the whole-cortical atlas 234 

and the system-specific atlases, we computed their network similarity to the designated reference 235 

atlas using both the overlay index and the Dice coefficient (Methods). The reference atlas was 236 

derived from the average of eight adult-like atlases, identified as a homogeneous cluster of 18- to 237 

80-year-old atlases (Supplementary Fig. 10). We found that the overall similarity of the whole-238 
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cortical atlas exhibited a rapid increase during the first two decades of life, followed by a plateau, 239 

and a subsequent slight decrease with age (Fig. 2c). At the system level, we observed that both 240 

the VIS and SM networks exhibited adult-like patterns (80% similarity) in the perinatal period, 241 

whereas the DM, FP, DA, and VA networks developed adult-like patterns (80% similarity) at 4-6 242 

years of age (Fig. 2d and 2e).  243 

 244 
Fig. 2 | Population-level and individual-level functional atlases throughout the lifespan. a, Employing the 245 

Gaussian-weighted iterative group atlas generation approach (for details, see Methods and Supplementary Fig. 246 

6a), the lifespan set of seven-network functional atlases from 32 postmenstrual weeks to 80 years was 247 

established (26 atlases in total). Only the left hemisphere is displayed here; for the whole-cortical atlases, refer 248 

to Supplementary Figs 7 and 8. Labels of each system were mapped onto the HCP fs_LR_32k surface and 249 

visualized using BrainNet Viewer 59. b, Network size ratio and network distribution score of each system in all 250 

age-specific group atlases. The network size ratio was calculated as the vertex number of the system divided 251 

by the total cortical vertex number. The network distribution score was measured by the number of spatially 252 

discontinuous subregions (≥ 5 vertices) in the system. c, Global similarity of each age-specific group atlas with 253 

the reference atlas across the lifespan. The degree of global similarity was defined as the number of vertices 254 

with the same label in the two atlases divided by the total number of vertices in both atlases. d, System 255 

similarity of each age-specific group atlas with the corresponding system in the reference atlas across the 256 

lifespan. System similarity was quantified using the Dice coefficient. e, The ages at which the system 257 

similarity of each age-specific group atlas reached 0.8 and 0.98. f-g, Normative growth curve and growth rate 258 

of global atlas similarity with the reference atlas when using personalized functional atlas for each participant. 259 

The gray shaded areas represent the 95% confidence interval, which was estimated by bootstrapping 1,000 260 

times. VIS, visual; SM, somatomotor; DA, dorsal attention; VA, ventral attention; LIM, limbic; FP, 261 

frontoparietal; DM, default mode. wk, week; mon, month; yr, year.  262 

  263 
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Based on the age-specific group atlases established above, we proceeded to map individual-level 264 

functional systems for each participant. Specifically, we used an iterative parcellation procedure 265 

(see Methods and Supplementary Fig. 6b), as proposed by Wang et al. 60, which has been 266 

demonstrated to accurately identify personalized functional networks in both healthy 47, 60 and 267 

diseased individuals 61-63. As expected, the individual-level atlases exhibited significantly greater 268 

global homogeneity than both the age-specific group atlases (all p < 10-9, Bonferroni-corrected) 269 

and the adult-based group atlas (all p < 10-8, Bonferroni-corrected), regardless of the age groups 270 

considered (Supplementary Fig. 9). Consistent with the growth pattern observed in the age-271 

specific group atlas (Fig. 2c), the global similarity of the individualized atlas to the reference 272 

increased from 32 postmenstrual weeks and reached a peak in adulthood (31.6 years, 95% 273 

bootstrap CI 30.5-32.9) (Fig. 2f and 2g). 274 

Using the person-specific network mapping approach, which integrates individual-level iterative 275 

processes with the age-specific group atlases, we characterized the lifespan growth patterns of 276 

within-system connectivity (functional segregation) and between-system connectivity (functional 277 

integration) (Supplementary Result 2, Supplementary Figs 11 and 12). To further quantify the 278 

differences in within-system connectivity relative to between-system connectivity, we calculated 279 

the system segregation index for each brain system 64. This index measures the difference 280 

between mean within-system connectivity and mean between-system connectivity as a 281 

proportion of mean within-system connectivity 64 (Methods). Interestingly, global segregation 282 

across all systems peaked in the third decade of life (25.7 years, 95% bootstrap CI 24.8-26.8) 283 

(Fig. 3a). At the system level, different networks manifested distinct nonlinear growth patterns 284 

(Fig. 3b-3d). The primary VIS network consistently showed the greatest segregation across all 285 

ages (Fig. 3b and 3c), suggesting that the VIS network is more functionally specialized and 286 

relatively less integrated in inter-network communication compared to other systems. The DA 287 

and VIS networks exhibited similar trends in life-cycle growth patterns, peaking in early 288 

childhood and pre-adolescence, respectively (Fig. 3b and 3c). The DM and FP networks showed 289 

the lowest levels of segregation in the early stages of neurodevelopment (Fig. 3b and 3c). 290 

However, segregation increased rapidly with age peaks at the end of the third decade and 291 

decreased rapidly in the late stages of senescence (Fig. 3b-3d). Finally, the SM and VA networks 292 

showed similar growth patterns of system segregation, increasing and decreasing moderately 293 

over the lifetime (Fig. 3b-3d). 294 
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 295 

Fig. 3 | Lifespan normative growth patterns of brain system segregation. a, Normative growth curve and 296 

growth rate of global system segregation. The peak occurred in the third decade of life (25.7 years, 95% 297 

bootstrap confidence interval 24.8-26.8). The gray shaded areas represent the 95% confidence interval, which 298 

was estimated by bootstrapping 1,000 times. b-c, Normative growth curves and growth rate of system 299 

segregation for each network. The median (50th) centile is represented by a solid line, while the 5th, 25th, 75th, 300 

and 95th centiles are indicated by dotted lines. The key inflection points are marked in blue font. d, Growth 301 

rate of system-specific segregation visualized in the cortex, with black lines depicting system boundaries. The 302 

values of each system are mapped and visualized on the HCP fs_LR_32k surface. VIS, visual; SM, 303 

somatomotor; DA, dorsal attention; VA, ventral attention; LIM, limbic; FP, frontoparietal; DM, default mode. 304 

wk, week; yr, year. 305 

Lifespan growth of functional connectivity at the regional level reveals a spatial gradient 306 

pattern 307 

Having identified distinct growth patterns in different brain systems, we further explored the 308 

more nuanced spatiotemporal growth patterns of the functional connectome at the regional level. 309 

First, we plotted the normative growth curves of each vertex’s functional connectivity strength 310 

(FCS) by calculating the average connectivity with all other vertices. Figure 4a shows the curves 311 

for several vertices located in different brain regions, and Figure 4b shows the fitted FCS and its 312 

growth rate across the cortex. Notably, the most pronounced changes in functional connectivity 313 

at the regional level occurred within the first decade of life. We then sought to elucidate how the 314 

overall growth patterns varied spatially across the cortex by mapping the primary spatial axis of 315 

FCS development. To this end, we used a principal component analysis (PCA) on the zero-316 

centered 50th centiles of the growth curves. The first PC, accounting for 60.4% of the variance, 317 

was identified as the dominant axis of regional functional connectivity growth (Fig. 4c). This 318 

axis captured a hierarchical spatial transition, starting from primary sensorimotor and visual 319 
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cortices and culminating in higher-order association regions, including the angular gyrus, 320 

precuneus, temporal, and prefrontal cortices. To better illustrate the spatiotemporal pattern of 321 

growth curves throughout the cortex, we segmented the main growth axis into 20 equal bins and 322 

averaged the curves for vertices within each bin. A continuous spectrum of curves along the 323 

lifespan axis is shown in Fig. 4d.  324 

The cortical landscape of the human brain is organized by a fundamental gradient known as the 325 

sensorimotor-association (S-A) axis 65. This axis spans from primary cortices critical for sensory 326 

and motor functions to advanced transmodal regions responsible for complex cognitive and 327 

socioemotional tasks. It has been shown to play an important role in shaping neurodevelopmental 328 

processes 66-68. Here, we sought to investigate the extent to which our defined growth axis aligns 329 

with the classic S-A axis as formulated by Sydnor et al. 66. (Fig. 4e). Using a spin-based spatial 330 

permutation test 69, we found a significant association between the main growth axis and the S-A 331 

axis (r = 0.72, pspin < 0.0001) (Fig. 4f). This finding suggests that the spatiotemporal growth of 332 

the functional connectome throughout the human lifespan follows the canonical sensorimotor-333 

association organization. 334 

 335 
Fig. 4 | Lifespan normative growth patterns of regional functional connectivity strength. a, Normative 336 

growth curves of example vertices from different regions. b, The fitted 50th centiles (top panel) and their 337 

growth rates (bottom panel) for all vertices at representative ages. c, The lifespan growth axis of brain 338 

functional connectivity, represented by the first principal component from a PCA on regional level FCS curves. 339 

d, Based on the lifespan principal axis, all vertices across the brain were equally divided into 20 bins. The 340 

zero-centered curves of all vertices within each bin were averaged. The first vigintile (depicted in darkest 341 

yellow) represents one pole of the axis, while the twentieth vigintile represents the opposite pole (depicted in 342 

darkest blue). The patterns of growth curves vary continuously along the axis, with the greatest differences 343 

observed between the two poles. e, The sensorimotor-association (S-A) axis, as formulated by Sydnor et al. 66, 344 

represents a cortical continuum that transitions from primary regions to transmodal areas. f, A strong 345 

correlation was observed between the lifespan principal growth axis and the S-A axis (r = 0.72, pspin < 0.0001) 346 

(linear association shown with 95% confidence interval). All brain maps were mapped to the HCP fs_LR_32k 347 

surface for visualization. FCS, functional connectivity strength; wk, week; yr, year. 348 
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 349 

Sex differences in lifespan growth patterns 350 

It is becoming increasingly evident that sex differences exert a significant influence on brain 351 

development and aging 70, 71. In GAMLSS modeling, we included a sex effect as an additional 352 

variable to establish lifespan normative growth curves. We characterized the sex-stratified 353 

growth curves and interindividual variability curves of the functional connectome 354 

(Supplementary Result 3, Supplementary Figs 13 and 14). Specifically, we observed that the 355 

global mean of the functional connectome was significantly greater in males than in females 356 

(pFDR = 0.0002), thereby confirming and extending conclusions from previous studies 72, 73. 357 

Conversely, the global variance of the connectome was greater in females than in males (pFDR = 358 

0.0009). Furthermore, females showed greater global system segregation (pFDR = 10-24) and 359 

system-specific segregation in the VIS, VA, FP, and DM networks (all pFDR < 0.01), but lower 360 

system-specific segregation in the SM and limbic (LIM) networks (all pFDR < 10-32) than males. 361 

At the regional level, the lateral and medial parietal cortex and lateral prefrontal cortex showed 362 

greater FCS in females, whereas the sensorimotor cortex, medial prefrontal cortex, and superior 363 

temporal gyrus showed greater FCS in males (pFDR < 0.05). These results are compatible with a 364 

previous study employing seed-based and independent component analysis (ICA)-based 365 

functional connectivity analysis 23. Additionally, in a recent study, Zhang et al. 74 used a large 366 

data set (36,531 participants from the UK Biobank, mean age 69) to report that females had 367 

lower functional connectivity in somatosensory/premotor regions and greater functional 368 

connectivity in the inferior parietal and posterior cingulate cortex, which aligns with our findings. 369 

The detailed statistical values of the sex variable within each normative model are presented in 370 

Supplementary Tables 3 and 4. The sex differences in the interindividual variability curves are 371 

detailed in the Supplementary Result 3. 372 

Identifying individual heterogeneity in brain disorders using connectome-based normative 373 

models 374 

Recent studies have highlighted the potential of normative models to disentangle the inherent 375 

heterogeneity in clinical cohorts by enabling statistical inference at the individual level 18, 75-81. 376 

This approach enables the quantification of individual deviations of brain phenotypes from 377 

normative expectations, thereby providing unique insights into the typicality or atypicality of 378 

individual's brain structure or function. To validate the clinical value of our connectome-based 379 

normative models, we selected three representative brain disorders characterized by connectome 380 

dysfunction, each manifesting at distinct life stages. These were ASD, which mainly presents in 381 

early development; MDD, which mainly presents in adolescence and adulthood; and AD, which 382 

mainly presents in older adulthood. 383 

We characterized the individual deviation z-scores (age- and sex-specific) of the functional 384 

metrics at the global, system, and regional levels in patients with ASD (NASD = 414, aged 5-59 385 

years), MDD (NMDD = 622, aged 11-77 years), or AD (NAD = 180, aged 51-80 years), and their 386 

matched healthy controls (HCs). The standard protocol for normative modeling 82 emphasizes the 387 

importance of incorporating some control samples from the same imaging sites as the patients 388 

into the testing set. This approach verifies that the observed case�control differences are not due 389 

to the analysis with controls in the training set and cases in the testing set 78, 82. This approach 390 

also allows for the estimation of site effects within the case�control datasets. In the present study, 391 
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we reconstructed the connectome-based normative models for all three disorders using the same 392 

set of healthy participants. Specifically, we randomly divided the HCs of all case�control 393 

datasets (NHC = 591 in ASD datasets, NHC = 535 in MDD datasets, and NHC = 187 in AD datasets) 394 

in half, stratified by age, sex, and site. The training set (N = 32,591), which was used to construct 395 

the normative model, consisted of half of the HCs (Ntrain = 654) and all samples from other 396 

datasets (N = 31,937). The testing set, comprising remaining half of the HCs (Ntest = 659) and the 397 

patient cases, was used as a completely independent set to determine their deviation scores. This 398 

process was repeated 100 times, generating 100 new normative models and 100 sets of deviation 399 

scores. We observed a high degree of stability of both normative curves and patient’s deviation 400 

scores across the 100 repetitions (average r > 0.95 and average mean square error [MSE] < 0.2 401 

for all functional metrics, see Supplementary Fig. 15, Supplementary Tables 5 and 6). We then 402 

averaged the 100 sets of deviation scores for patients in each disease group, and then assessed 403 

the extreme deviations (z > |2.6|) for each metric. Among the ASD patients, 92% had at least one 404 

metric with an extreme negative deviation, and 32% had at least one metric with an extreme 405 

positive deviation (Supplementary Fig. 16). For MDD patients, the percentages were 89% and 406 

39%, respectively, and for the AD patients, they were 61% and 25%, respectively. Furthermore, 407 

we calculated the proportion of patients with extreme deviations in each metric and found that no 408 

more than 10% of the patients had extreme deviations in any single metric (Fig. 5a, 409 

Supplementary Fig. 16). These results highlight the considerable individual heterogeneity within 410 

each disease group. 411 

Using the k-means clustering algorithm, we identified two subtypes for ASD (NASD1 = 238 for 412 

subtype 1, NASD2 = 176 for subtype 2), two for MDD (NMDD1 = 375 for subtype 1, NMDD2 = 247 413 

for subtype 2), and two for AD (NAD1 = 67 for subtype 1, NAD1 = 113 for subtype 2) (Fig. 5b). 414 

For each disorder, different subtypes showed distinct patterns of deviation and case�control 415 

differences in the functional connectome (Fig. 5c-f, Supplementary Figs 17 and 18). Specifically, 416 

ASD subtype 1 showed greater positive deviations in the bilateral ventral prefrontal cortex and 417 

negative deviations primarily in the sensorimotor and insular cortices in comparison with HCs 418 

(pFDR < 0.05, Fig. 5c-d). In contrast, ASD subtype 2 exhibited greater positive deviations in the 419 

sensorimotor and insular cortices (pFDR < 0.05, Fig. 5e-f). For MDD, subtype 1 patients showed 420 

greater positive deviations in the lateral frontal and parietal regions, and insular cortices, and 421 

greater negative deviations in the visual and sensorimotor cortices (pFDR < 0.05, Fig. 5c-d). MDD 422 

subtype 2 patients showed greater positive deviations in the visual and sensorimotor cortices, and 423 

greater negative deviations in the lateral and medial prefrontal and parietal regions, and the 424 

insula (pFDR < 0.05, Fig. 5e-f). For AD, subtype 1 showed very few positive or negative 425 

deviations (Fig. 5c-d), but subtype 2 showed greater positive deviations in the visual and 426 

sensorimotor cortices, and negative deviations in the lateral and medial parietal regions and the 427 

insula (pFDR < 0.05, Fig. 5e-f). 428 

We further investigated the classification performance of each disorder with and without 429 

subtyping, characterized by the mean area under the curves (AUCs) (Fig. 5g, Supplementary Fig. 430 

19). Specifically, the mean AUCs for ASD subtypes 1 and 2 were 0.76 and 0.67, respectively (all 431 

pFDR < 0.001, permutation tests), but 0.55 without subtyping (pFDR < 0.05, permutation tests). 432 

The mean AUCs for MDD subtypes 1 and 2 were 0.71 and 0.73, respectively (all pFDR < 0.001, 433 

permutation tests), but 0.58 without subtyping (pFDR < 0.05, permutation tests). The mean AUCs 434 

for AD subtypes 1 and 2 were 0.71 (pFDR < 0.05, permutation tests) and 0.82 (pFDR < 0.001, 435 

permutation tests), respectively, but 0.71 without subtyping (pFDR < 0.001, permutation tests). 436 
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Furthermore, we investigated the potential of the connectome deviations to predict clinical scores 437 

(Fig. 5h, Supplementary Fig. 20). For ASD, the patterns of connectome-based deviations in  438 

 439 
Fig. 5 | Clinical relevance of connectome-based deviation patterns in three brain disorders. a, Percentage 440 

of patients with extreme deviations. Subplots from left to right display the percentage of patients with extreme 441 

positive and negative deviations in ASD, MDD, and AD. The bar plot shows the percentage in global mean of 442 

the connectome (G1), global variance of the connectome (G2), global system segregation (G3), and system-443 

specific segregation. The brain map shows the percentage of regional-level FCS. Orange�yellow represents 444 

extreme positive deviations, while blue represents extreme negative deviations. b, The optimal number of 445 

subtypes (left panel) and the similarity matrix of deviation patterns across patients (right panel) for each 446 

disorder. c, Mean deviation patterns in patients in subtype 1 of each disorder. d, Individual deviation scores of 447 

patients in subtype 1 were compared to the median of healthy controls (HCs). For each metric, the significance 448 

of the median differences between the case group and HCs was assessed using the Mann�Whitney U test. P-449 

values were adjusted for multiple comparisons using FDR correction across all possible pairwise tests (p < 450 

0.05). The color bar represents the proportion of tests that passed the significance threshold in 100 451 

comparisons. e, Mean deviations pattern in patients in subtype 2 of each disorder. f, Individual deviation scores 452 

of patients in subtype 2 were compared to the median of HCs. g, Disease classification performance based on 453 

individual deviation patterns using support vector machine analysis. h, Prediction accuracy of clinical scores 454 

based on individual deviation patterns using support vector regression analysis. All brain maps were mapped to 455 

the HCP fs_LR_32k surface and are shown in the left hemisphere. For whole-cortex visualizations, refer to 456 
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Supplementary Figs 16-18. VIS, visual; SM, somatomotor; DA, dorsal attention; VA, ventral attention; LIM, 457 

limbic; FP, frontoparietal; DM, default mode. ROC, receiver operating characteristic; AUC, area under the 458 

curve; RRB, Repetitive Restrictive Behavior; HDRS, Hamilton Depression Rating Scale; MMSE, Mini-Mental 459 

State Examination. 460 

patients predicted total Repetitive Restrictive Behavior (RRB) scores for each subtype (r = 0.22, 461 

pperm = 0.04 for subtype 1; r = 0.24, pperm = 0.03 for subtype 2). However, the prediction was not 462 

significant without ASD subtyping (r = 0.04, pperm = 0.3). For MDD, the connectome-based 463 

deviation patterns showed significant predictive accuracy for total Hamilton Depression Rating 464 

Scale (HDRS) score, both with and without subtyping (r = 0.19, pperm < 0.001 for all patients; r = 465 

0.27, pperm < 0.001 for subtype 1; r = 0.18, pperm = 0.002 for subtype 2). For AD, the prediction of 466 

the Mini-Mental State Examination (MMSE) score was significant without subtyping (r = 0.33, 467 

pperm < 0.001), but only for AD subtype 2 (r = 0.02, pperm = 0.5 for subtype 1; r = 0.34, pperm = 468 

0.002 for subtype 2). These results demonstrate the clinical relevance of connectome-based 469 

normative modeling in identifying disease subtypes, as evidenced by enhanced performance in 470 

both disease classification and prediction of symptomatic scores. 471 

Sensitivity analyses 472 

The lifespan growth patterns of functional connectomes were validated at the global, system, and 473 

regional levels using various analysis strategies (for details, see Methods). Each validation 474 

strategy yielded growth patterns that highly matched the main results (Supplementary Tables 7-475 

12 and Supplementary Fig. 21). (i) To validate the potential effects of head motion, the analyses 476 

were reperformed using data from 24,494 participants with a stricter quality control threshold for 477 

head motion (mean framewise displacement (FD) < 0.2 mm) (Supplementary Fig. 22). (ii) To 478 

mitigate the impact of uneven sample and site distributions across ages, a balanced sampling 479 

strategy was employed to ensure uniformity in participant and site numbers (N = 6,770, 480 

resampling 1,000 times) (Supplementary Fig. 23). (iii) To validate reproducibility of our results, 481 

a split half approach was adopted (Supplementary Fig. 24). (iv) To examine the potential effects 482 

of data samples, a bootstrap resampling analysis was performed (1,000 times, Supplementary Fig. 483 

25). (v) To examine the potential effects of specific sites, a leave-one-site-out (LOSO) analysis 484 

was conducted (Supplementary Fig. 26). The results of these sensitive analyses were 485 

quantitatively assessed in comparison to the main results (Supplementary Tables 7-12). 486 

Specifically, a series of 80 points at one-year intervals was sampled for each curve, and 487 

Pearson’s correlation coefficients were then calculated between the corresponding curves 488 

(Supplementary Table 7). At both global and system levels, all growth curves in the sensitivity 489 

analyses exhibited a high degree of correlations with those shown in the main results (r = 0.97-490 

1.0 for global mean of the connectome; r = 0.98-1.0 for global variance of the connectome; r = 491 

0.99-1.0 for global system segregation; r = 0.98-1.0 for system segregation of VIS, DA, VA, FP, 492 

and DM networks; r = 0.91-1.0 for system segregation of SM networks; r = 0.8-1.0 for system 493 

segregation of LIM networks, except for r = 0.51 of the balanced resampling analysis; all pFDR < 494 

10-5). At the regional level, the lifespan growth axes in the sensitivity analyses were highly 495 

spatially associated with that shown in the main results (all r = 0.94-1.0, pspin < 0.0001). The 496 

similar results of growth rate are shown in Supplementary Table 8. We observed consistent 497 

results when the sampling was obtained with six-month intervals (160 points) and monthly 498 

intervals (1,000 points) (Supplementary Tables 9-12).  499 

Discussion 500 
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Using a large multimodal structural and task-free fMRI dataset from 33,250 individuals aged 32 501 

postmenstrual weeks to 80 years, we mapped the growth patterns of the functional connectome 502 

across the human lifespan at the global, system, and regional levels. We charted the multiscale, 503 

nonlinear growth curves of the functional connectome and revealed previously unidentified key 504 

growth milestones. To provide a lifespan characterization of functional brain systems, we created 505 

age-specific atlases spanning 32 postmenstrual weeks to 80 years of age to serve as a 506 

foundational resource for future research. Using three representative disease datasets of ASD, 507 

MDD, and AD, we explored the utility of the connectome-based normative model in capturing 508 

individual heterogeneity, identifying disease biotypes, and performing classification and 509 

prediction analyses within these clinical populations, highlighting their potential to advance our 510 

understanding of neuropsychiatric disorders. 511 

At the global level, we observed continuous nonlinear changes in the global mean and variance 512 

of functional connectivity across the life cycle, peaking in the late fourth and late third decades, 513 

respectively. Similarly, the growth curve of global brain structure shows a pattern of increase 514 

followed by decline, albeit peaking earlier 18. Taken together, these functional and anatomical 515 

findings suggest that the human brain remains in a state of dynamic adaptation throughout the 516 

lifespan. At the systems level, an intriguing observation is that the DM and FP networks, relative 517 

to other networks, undergo more rapid development of system segregation during infancy, 518 

childhood, and adolescence, peak later, and decline precipitously during aging. The accelerated 519 

early development of these networks can be attributed to their initially less organized functional 520 

architecture in utero 53, 83 and the subsequent need for rapid postnatal development to support the 521 

emergence and development of advanced cognitive functions 8, 84, 85. Moreover, the increased 522 

susceptibility of these networks to accelerated decline during aging may be exacerbated by their 523 

increased sensitivity to environmental, genetic, and lifestyle factors, as well as neurodegenerative 524 

agents such as amyloid-β and tau 
86-89. At the regional level, our results validate and extend the 525 

replicable findings of Luo and colleagues 32, who, using four independent datasets, observed an 526 

increase in FCS in primary regions and a decrease in higher-order regions from childhood to 527 

adolescence. Furthermore, the life-cycle growth curves of regional FCS are constrained by their 528 

positions along the S-A axis, highlighting the role of the S-A axis as a key organizational 529 

principle that influences cortical development and aging 66. 530 

Emerging evidence increasingly implicates abnormal interregional brain communication and 531 

global network dysfunction as critical factors in the pathogenesis of various neuropsychiatric 532 

disorders 13, 15, 16. After establishing lifespan growth curves, we focused on characterizing the 533 

degree to which individual functional metrics deviated from established population norms. This 534 

analysis provided preliminary insights into the clinical utility of our connectome-based 535 

normative models. Using age- and sex-normalized metrics, we first elucidated individual 536 

heterogeneity in functional brain deviations at the global, system, and regional levels across three 537 

clinically relevant populations, namely ASD, MDD, and AD. Through subtype analysis based on 538 

individual deviation scores, we validated the potential of the connectome-based normative 539 

models to parse complex intragroup heterogeneity and enhance the prediction of disease 540 

discrimination and clinical symptoms. A biological exploration of the underlying causes of 541 

positive and negative deviations in individual functional brain connectomes would provide 542 

valuable insights into the similarities and differences between disparate clinical disorders 78. 543 

Furthermore, future studies could include more disease cohorts with large sample sizes to allow 544 

transdiagnostic comparisons between disorders. It is important to note that considerable work is 545 
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still needed to effectively translate growth charts and their derived heterogeneity metrics into 546 

clinical utility 18, 90, 91. Therapeutically, the incorporation of individual functional deviations 547 

along with finely stratified subtypes may improve the efficacy of interventions using 548 

connectome-guided transcranial magnetic stimulation 92. In summary, the integration of the 549 

connectomic framework with normative growth curves provides an unprecedented opportunity to 550 

study brain network dysfunction in clinical populations. 551 

A promising avenue to explore for future research is the interaction between lifespan growth 552 

curves of brain networks under different modalities. This interaction could be investigated by 553 

examining how different structural and functional connectivity metrics coevolve across the 554 

lifespan and whether there are similar or variable temporal key points within these curves. It 555 

would be valuable to determine whether milestones of the structural connectome precede those 556 

of the functional connectome, thereby providing an anatomical scaffold for the dynamic 557 

maturation of functional communication. Furthermore, identifying the critical physiological 558 

factors that shape growth patterns across the lifespan is a complex but essential endeavor. Recent 559 

evidence suggests that population-based life-cycle trajectories of cortical thickness align with 560 

patterns of molecular and cellular organization, with varying degrees of biological explanation at 561 

different life stages 93. A genome-wide association meta-analysis by Brouwer et al. 94 identified 562 

common genetic variants that influence the growth rates in cortical morphology development or 563 

atrophy across the lifespan. These findings underscore the necessity of a multifaceted approach 564 

encompassing anatomical, genetic, molecular, and metabolic methodologies to elucidate the 565 

complex factors that regulate typical and atypical alterations in the human brain connectome. 566 

A number of challenges warrant further consideration. First, the data used to delineate lifespan 567 

growth patterns in the current study were aggregated from existing neuroimaging datasets, which 568 

are disproportionately derived from European, North American, Asian, and Australian 569 

populations. This geographic bias has also been found in other neuroimaging normative 570 

references or big data studies, such as those involving cortical morphology growth maps 18 and 571 

genome-wide association studies of brain structure across the lifespan 94. Future research should 572 

include more neuroimaging cohort studies designed to achieve a balanced representation of 573 

diverse ethnic populations 95. In addition, it is critical to consider the diversity of environmental 574 

factors, such as socioeconomic status, education level, industrialization, and regional culture, 575 

which pose potential challenges to the application of lifespan trajectories. Second, as previously 576 

outlined by Bethlehem et al. 18, we also encountered challenges related to the uneven age 577 

distribution of the neuroimaging sample, particularly with the underrepresentation of the infant 578 

and middle-aged (30-40 years) populations. It is evident that functional changes in the uterus are 579 

dramatic, however, the paucity of available fetal fMRI data limits our understanding of this 580 

critical period. Future research should complement the current models with more neuroimaging 581 

data, especially from the fetal stages. Third, the presence of artifacts and low signal-to-noise 582 

ratios in fMRI images of the orbitofrontal cortex, partly due to head movement and magnetic 583 

field inhomogeneity, represents a significant challenge 96, 97. The development of advanced 584 

imaging techniques and algorithms will be crucial for addressing this issue. Fourth, adjusting for 585 

multisite effects in retrospective data represents another significant challenge. Studies have 586 

shown that incorporating site variables as random effects in models, rather than the use of 587 

ComBat, is a more effective approach in normative modeling 18, 98, 99. Therefore, we adopted a 588 

conservative analytical approach by modeling site effects as random effects (for a comparison of 589 

results using different methods, see Supplementary Result 4 and Supplementary Fig. 27). Future 590 
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research may benefit from integrating prospective cohort designs, phantom scans, and scans of 591 

traveling subjects. Fifth, due to the ambiguity in interpreting negative functional connectivity, we 592 

focused on positive connectivity in our main results. Nonetheless, we also analyzed the 593 

normative growth patterns of negative connectivity across the lifespan at global, system, and 594 

regional levels (Supplementary Result 5 and Supplementary Fig. 28). Sixth, considering the 595 

methodological challenges of surface-based analyses in integrating cortical and subcortical 596 

structures, we focused on cortical connectomes in our main results. In light of the significance of 597 

subcortical structures, we also presented lifespan growth curves of subcortical connectomes 598 

using volume-based analysis (Supplementary Result 6 and Supplementary Fig. 29). Seventh, the 599 

data used in this study are cross-sectional, which may result in an underestimation of age-related 600 

changes in the functional connectome 100. Therefore, integrating more densely collected 601 

longitudinal data across all ages is essential to accurately characterize lifespan trajectories. 602 

Finally, it is anticipated that the connectome-based growth charts established here will serve as a 603 

dynamic resource. As more high-quality, multimodal connectome datasets become available, the 604 

lifespan normative growth model will be updated accordingly. 605 

Methods 606 

Datasets and participants 607 

To delineate the normative growth of the functional connectome in the human brain, we 608 

aggregated the available multisite neuroimaging datasets, each containing both 3T structural and 609 

task-free fMRI data. For participants with multiple test-retest scans, only the first session was 610 

included. The total number of imaging scans collected was 46,178 with 44,030 participants 611 

ranging in age from 32 postmenstrual weeks to 80 years. These scans were obtained from 172 612 

sites in 28 datasets. Participant demographics and imaging scan parameters for each site were 613 

presented in Supplementary Table 1 and 2, respectively. Written informed consent was obtained 614 

from participants or their legal guardians, and the recruitment procedures were approved by the 615 

local ethics committees for each dataset. 616 

Image quality control process 617 

The implementation of a rigorous and standardized quality control procedure is essential to 618 

ensure the authenticity of neuroimaging data, thereby enhancing the credibility of growth curves. 619 

Previous research has shown that inadequate quality control of MRI scans can diminish the 620 

benefits of large sample sizes in detecting meaningful associations 101. In this study, we 621 

employed a comprehensive four-step data quality control framework that combined automated 622 

assessment approaches and expert manual review to assess both structural and functional images 623 

across all 46,178 imaging scans from 44,030 participants (Supplementary Figs 1 and 2). This 624 

rigorous framework effectively identified imaging artifacts or errors, thereby ensuring the 625 

accuracy and reliability of our neuroimaging data. 626 

Step 1: Quality control of the raw images. First, we performed a preliminary quality control to 627 

filter out low-quality scans with problematic acquisitions. For several publicly available datasets 628 

(dHCP, HCP-Development, HCP-Aging, HCP-Young Adult, and ABCD) that provide 629 

information on image quality, we performed initial quality control according to their 630 

recommended inclusion criteria. For the BCP dataset, each scan was visually reviewed by two 631 

neuroradiologists experienced in pediatric MRI. For the other datasets, we conducted automated 632 
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quality assessment using the MRI Quality Control (MRIQC) tool 102, which extracted non-633 

reference quality metrics for each structural (T1w and T2w) and fMRI image. In each dataset, 634 

structural images were excluded if they were marked as outliers (more than 1.5 times the 635 

interquartile range (IQR) in the adverse direction) in at least three of the following quality 636 

metrics: entropy-focus criterion (EFC), foreground-background energy ratio (FBER), coefficient 637 

of joint variation (CJV), contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and 638 

Dietrich’s SNR (SNRd). Similarly, functional images were excluded if they were marked as 639 

outliers in three or more of the following quality metrics: AFNI’s outlier ratio (AOR), AFNI’s 640 

quality index (AQI), DVARS_std, DVARS_vstd, SNR, and temporal signal-to-noise ratio (tSNR). 641 

This step resulted in the exclusion of 838 structural and 963 functional images. 642 

Step 2: Determination of whether to pass the entire processing pipeline. Following the initial 643 

quality control step, the images were submitted to the pre- and post-processing pipelines. A 644 

detailed description of the latter is provided in the “Data processing pipeline” section. Any scan 645 

that could not pass the entire data processing pipeline was excluded, resulting in the removal of 646 

2,910 structural and 2,969 functional images. 647 

Step 3: Surface quality control and head motion control. For structural images, the Euler 648 

number was employed to assess the quality of the reconstructed cortical surface. The Euler 649 

number is a mathematical concept that summarizes the topological complexity of a surface and, 650 

can be calculated as 2-2n, where n represents the number of defects such as holes or handles. A 651 

high Euler number represents a surface with fewer defects, indicating high-quality cortical 652 

surface reconstruction. The Euler number is a reliable and quantitative measure that can be used 653 

to identify images unsuitable for analysis 18, 101, 103. Similarly, the images with an Euler number 654 

magnitude less than 1.5 times the IQR in the adverse direction from the study-specific 655 

distribution (Q1–1.5*IQR) were identified as outliers and excluded. For functional images, scans 656 

with large head motion (mean FD > 0.5 mm, or frames with FD over 0.5 mm > 20%) were 657 

excluded, along with scans with fewer than 100 final time points or a ratio of final time points to 658 

original time points < 90%. In total, 2,117 structural images and 3,573 functional images were 659 

excluded. 660 

Step 4: Visual double-check. During the initial three QC steps using automated assessment 661 

approaches, 5,865 scans with structural imaging problems and 7,505 scans with functional 662 

imaging problems were excluded. To further ensure the quality of the remaining scans, we 663 

performed a detailed and comprehensive visual check QC. (1) A visual QC team was assembled, 664 

comprising of four anatomically trained experts: Q.W., Q.Y., C.P., and L.S.. For each participant 665 

who had passed the automated QC steps, three 2D pictures were generated (one for structural 666 

MRI images and two for functional MRI images). (2) Based on these images, L.S. conducted the 667 

initial round of visual QC on both structural and functional data for all participants, recording the 668 

IDs of those with quality errors. (3) The pictures were then distributed evenly among Q.W., Q.Y., 669 

and C.P. for a secondary evaluation. The IDs of the participants exhibiting quality defects were 670 

documented. The final list of participants who were excluded was determined based on the 671 

combination of these records. Throughout the process, the QC team engaged in in-depth 672 

discussions to ensure that the exclusion criteria were consistently applied across members. The 673 

exclusion criteria were as follows: The T1-weighted structural images were primarily evaluated 674 

for artifacts and quality of cortical segmentation, reconstruction, and registration. For 675 

participants with T2-weighted images, those with abnormal myelination distribution (as 676 
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measured by the T1/T2 ratio) were also excluded. Functional images were assessed for brain 677 

coverage, functional-to-structural and functional-to-standard space registration quality, and 678 

volume-to-surface mapping quality. Participants were excluded if any of these issues were 679 

present. A comprehensive tutorial on visual QC procedures is available at 680 

https://github.com/sunlianglong/BrainChart-FC-Lifespan/blob/main/QC/README.md. In this 681 

step, 651 structural images and 1,153 functional images were excluded. Finally, only scans that 682 

successfully passed QC for both functional and structural images were retained. 683 

The Application of the rigorous criteria outlined above resulted in the exclusion of 10,231 scans 684 

in 9,564 participants. The final sample included 33,250 healthy participants (33,250 cross-685 

sectional scans and 1,481 longitudinal scans) and 1,216 patients (1,216 cross-sectional scans; 686 

414 patients with ASD, 622 patients with MDD, and 180 patients with AD) with high-quality 687 

functional and structural images. 688 

Data processing pipeline 689 

(i) Structural data preprocessing. Despite our efforts to employ a unified structural 690 

preprocessing pipeline across all datasets to mitigate the impact of disparate methodologies, the 691 

substantial variations in the structure and function of the human brain across the lifespan present 692 

a significant challenge. This was particularly evident in the perinatal and infant periods, where 693 

the anatomical characteristics differ markedly from those of adults. For example, in six-month-694 

old infants, the contrast between gray and white matter is extremely subtle, and at approximately 695 

six months of age, there is a contrast inversion between gray and white matter. These factors 696 

greatly complicate the segmentation of brain tissue during this period 104, 105. In the absence of a 697 

preprocessing pipeline suitable for all stages of life, it is necessary to find appropriate methods 698 

for early developmental datasets while ensuring the uniformity of the pipelines in other datasets. 699 

For individuals aged two years and older, we utilized the publicly available, containerized HCP 700 

structural preprocessing pipelines (v4.4.0-rc-MOD-e7a6af9) 106, which have been standardized 701 

through the QuNex platform (v0.93.2) 107. Briefly, this pipeline consists of three stages: (1) The 702 

PreFreeSurfer stage focused on the normalization of anatomical MRI data and involved a 703 

sequence of preprocessing steps that included brain extraction, denoising, and bias field 704 

correction on anatomical T1 weighted (T1w) and T2 weighted (T2w) MRI data (if T2w data 705 

were available). (2) The FreeSurfer stage aimed to create cortical surfaces from the normalized 706 

anatomical data, including anatomical segmentation; the construction of pial, white, and mid-707 

thickness surfaces; and surface registration to the standard atlas. (3) The PostFreeSurfer stage 708 

converted the outputs from the previous steps into the HCP format (CIFTI). The volumes were 709 

transformed to the standard MNI space using nonlinear registration, while the surfaces were 710 

mapped to the standard fs_LR_32k space using spherical registration and surface downsampling. 711 

To mitigate the computational burden of processing the large ABCD dataset, we chose to use the 712 

community-shared, preprocessed data released through the ABCD-BIDS Community Collection 713 
108 (ABCD collection 3165; https://github.com/ABCD-STUDY/nda-abcd-collection-3165). The 714 

multimodal neuroimaging data were preprocessed using the ABCD-HCP pipeline, a variant of 715 

the HCP pipeline adapted to better suit the ABCD dataset. Modifications to the ABCD-HCP 716 

structural pipeline include volume registration algorithms and bias field correction methods. 717 

Further details of these modifications can be found in the online document 718 

(https://collection3165.readthedocs.io/en/stable/pipelines/).  719 
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For participants in the postmenstrual age range of 32 to 44 weeks from the dHCP study, we 720 

applied the officially recommended dHCP structural pipelines 109, which have been specifically 721 

designed to account for the substantial differences between neonatal and adult MRI data. This 722 

HCP-style pipeline included the following steps: (1) bias correction and brain extraction, which 723 

were performed on the motion-corrected, reconstructed T2w images; (2) tissue segmentation; (3) 724 

cortical reconstruction of the white matter surface; (4) surface topology correction; (5) 725 

generation of pial and mid-thickness surfaces; (6) generation of inflated surfaces derived from 726 

the white matter surface through an expansion-based smoothing process; and (7) projection of 727 

the inflated surface onto a sphere for surface registration. Furthermore, we used the officially 728 

recommended iBEAT V2.0 pipelines 110 for participants aged from 0-2 years (all from the BCP 729 

study). This pipeline, which is optimized for preprocessing early-age neuroimaging data based 730 

on advanced algorithms, has shown superior performance in tissue segmentation and cortical 731 

reconstruction for BCP datasets compared to alternative approaches 110. The main steps of this 732 

pipeline included (1) inhomogeneity correction of T1w/T2w images; (2) skull stripping and 733 

cerebellum removal (for participants with incomplete cerebellum removal, frame-by-frame 734 

manual corrections were performed); (3) tissue segmentation; (4) cortical surface reconstruction; 735 

(5) topological correction of the white matter surface; and (6) final reconstruction of the inner 736 

and outer cortical surfaces. To ensure consistency in data preprocessing, we employed the iBEAT 737 

pipeline for structural image preprocessing of participants aged 2-6 years (53 scans, representing 738 

13% of the total BCP cohort) from the BCP site. 739 

The individual cortical surface obtained from the dHCP and iBEAT V2.0 structural pipelines 740 

were aligned with the adult fs_LR_32k standard space using a three-step registration method 741 

(Supplementary Fig. 3). For participants aged 32 to 44 postmenstrual weeks, the following steps 742 

were implemented. (1) Individual surfaces were registered to their respective postmenstrual week 743 

templates 111. (2) Templates for 32-39 postmenstrual weeks and 41-44 postmenstrual weeks were 744 

registered to the 40-week template. (3) The 40-week template was then registered to the 745 

fs_LR_32k surface template. For participants aged 1-24 months, the following steps were 746 

undertaken. (1) Individual surfaces were registered to their corresponding monthly age templates 747 
112. (2) All monthly templates were registered to the 12-month template. (3) The 12-month 748 

template was then registered to the fs_LR_32k surface template. A supplementary analysis was 749 

conducted to validate the normative growth pattern of the global functional connectome, which 750 

involved avoiding cross-age surface registration (Supplementary Result 7 and Supplementary Fig. 751 

30). 752 

(ii) Functional data preprocessing in volumetric space. For individuals aged two years and 753 

older, the HCP functional preprocessing pipelines were employed 106. The fMRIVolume stage 754 

consisted of the following steps. (1) Slice timing correction: This step was applied to single-band 755 

acquisitions, as multi-band acquisitions did not require slice timing correction. (2) Motion 756 

correction: EPI images were aligned to the single-band reference image using 6 DOF FLIRT 757 

registration. In cases where the single-band imaging data were not available, the first frame of 758 

the fMRI data was used as the reference. The motion parameters, including translations, rotations, 759 

and their derivatives were recorded. Additionally, the demeaned and linearly detrended 760 

parameter was provided for nuisance regression analysis. (3) EPI distortion correction: 761 

Geometric distortion correction was conducted using either the opposite-phase encoded 762 

spin�echo images (when LR-RL or AP-PA encoded acquisitions were available) or the regular 763 

(gradient-echo) fieldmap images (when fieldmap acquisitions were available). If neither image 764 
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was available, this step was skipped. (4) Anatomical registration: The fMRI images were 765 

registered to the T1w image using 6 DOF FLIRT with boundary-based registration (BBR). (5) 766 

Intensity normalization: The fMRI data, masked by the final brain mask generated by the 767 

PostFreeSurfer structural pipeline, were normalized to a 4D whole-brain average of 10,000.  768 

For participants in the postmenstrual age range of 32 to 44 weeks from the dHCP study, we 769 

applied the dHCP functional pipelines 113. Building on the foundation of the HCP pipeline and 770 

the FSL FEAT pipeline, this pipeline was tailored to address the unique challenges associated 771 

with neonatal fMRI data. The key components of the pipeline included the following steps. (1) 772 

Fieldmap preprocessing, which included estimation of the susceptibility distortion field based on 773 

the opposite-phase encoded spin�echo images and subsequent alignment of this field to the 774 

functional data. (2) Registration, which included BBR of the fieldmap magnitude to the T2w 775 

image, BBR of the single-band reference image to the T2w image with incorporation of field 776 

map-based distortion correction, and 6 DOF FLIRT registration of the first volume of the 777 

functional multiband EPI to the single-band reference image. (3) Susceptibility and motion 778 

correction, which included slice-to-volume motion correction, motion-by-susceptibility 779 

distortion correction, and estimation of motion nuisance regressors. These steps resulted in 780 

distortion-corrected and motion-corrected 4D multiband EPI images in the T2w native 781 

volumetric space. For participants from the BCP cohort, we implemented several steps to obtain 782 

preprocessed volumetric fMRI data. (1) Motion correction: functional images were aligned to the 783 

single-band reference image using 6 DOF FLIRT registration. In the absence of a single-band 784 

reference, the mean functional images (with all frames aligned to the first frame) were employed 785 

as the reference. (2) Distortion correction: we performed distortion correction based on the 786 

opposite-phase encoding (AP-PA) spin�echo images. This step was only performed for 787 

participants with available images. (3) EPI to anatomical registration: the reference image was 788 

aligned to the anatomical image (T1w or T2w) using 6 DOF FLIRT registration. 789 

(iii) Functional data preprocessing in surface space. In the fMRISurface stage of the HCP 790 

functional pipeline, the goal was to project the volume time series onto the standard CIFTI 791 

grayordinates space. For the data from the dHCP and BCP cohorts, we followed the same steps 792 

of the HCP preprocessing pipeline to achieve an accurate representation of cortical BOLD 793 

signals on the surface. Specifically, the fMRI volumetric data in the cortical cortex were 794 

separated into left and right hemispheres and mapped onto each participant's mid-thickness 795 

surfaces using a partial-volume weighted, ribbon-constrained volume-to-surface mapping 796 

algorithm 106. Subsequently, the time courses were then transferred from the individual's native 797 

space to the fs_LR_32k standard space using each participant's surface registration 798 

transformations from the structural preprocessing stage. 799 

(iv) Functional data postprocessing. For the ABCD dataset, the ABCD-HCP functional pipeline 800 

used DCANBOLDProcessing software 801 

(https://collection3165.readthedocs.io/en/stable/pipelines/) to reduce spurious variance that is 802 

unlikely to reflect neural activity. For other datasets, the preprocessed fMRI data were post-803 

processed using SPM12 (v6470) and GRETNA (v2.0.0) with a uniform pipeline. Specifically, the 804 

following steps were initially conducted on the time series for each vertex in fs_LR_32k space 805 

(59,412 vertices in total): linear trend removal, regression of nuisance signals (24 head motion 806 

parameters, white matter signal, cerebrospinal fluid signal, and global signal), and temporal 807 

bandpass filtering (0.01–0.08 Hz). To mitigate the effects of head motion, the motion censoring 808 
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was further implemented. This process involved discarding volumes with an FD greater than 0.5 809 

mm and adjacent volumes (one before and two after). To maintain the temporal continuity of the 810 

fMRI time series, we subsequently filled these censored frames using a linear interpolation. 811 

Participants with more than 20% of frames exceeding the 0.5 mm FD threshold were excluded 812 

from our study. Surface-based smoothing was then applied using a 6-mm full-width at half-813 

maximum (FWHM) kernel. Finally, the data were resampled to a mesh of 2,562 vertices 814 

(corresponding to the fsaverage4 standard space) for each hemisphere using the HCP Workbench 815 

metric-resample command. The removal of the medial wall resulted in a combined total of 4,609 816 

vertices exhibiting BOLD signals on both the left and right hemisphere surfaces. 817 

Construction of the age-specific and individualized functional atlases across the lifespan 818 

(i) Construction of population-level age-specific atlases. To improve the precise mapping of 819 

individual-specific functional networks across the lifespan, we first developed a Gaussian-820 

weighted iterative age-specific group atlas (GIAGA) generation approach (Supplementary Fig. 821 

6a) to create a set of age-specific population-level functional atlases (Fig. 2a, Supplementary 822 

Figs 7 and 8). Given the dramatic functional changes that occur during early development 57, we 823 

prioritized the generation of finer age-specific atlases for these stages compared to the later life 824 

stages. To this end, we divided all individual scans into 26 different age subgroups, ranging from 825 

32 postmenstrual weeks to 80 years of age. Each age group consisted of cross-sectional data only. 826 

Then, we constructed an age-specific functional atlas for each subgroup. A total of 9 atlases were 827 

constructed for the perinatal to early infant period, including 4 for perinatal development (34-828 

week, 36-week, 38-week, and 40-week (0-year) atlases) and 5 for the first year of life (1-month, 829 

3-month, 6-month, 9-month, and 12-month atlases). 2 atlases were developed for toddlers (18-830 

month and 24-month atlases), while 9 atlases were created for childhood and adolescence (4-year, 831 

6-year, 8-year, 10-year, 12-year, 14-year, 16-year, 18-year, and 20-year atlases). Finally, 6 atlases 832 

were generated for adults and the elderly (30-year, 40-year, 50-year, 60-year, 70-year, and 80-833 

year atlases). A total of 300 participants were randomly selected for each age subgroup. In the 834 

event that the available sample size was less than 300, all participants who passed the imaging 835 

quality control were included. Further details on the age range, number of participants, and sex 836 

ratio for each atlas can be found in Supplementary Table 13. 837 

In recent studies of brain functional organization, Yeo’s 7- and 17-network atlases 58 have been 838 

widely used to map cortical functional systems 114. By including hand sensorimotor areas based 839 

on activations in a hand motor task 115, Wang and colleagues extended this classical functional 840 

parcellation, resulting in an 18-network atlas 60. In line with previous studies 47, 61, 62, we utilized 841 

this updated classic 18-network map as the initial atlas for the construction of age-specific group 842 

atlases. The detailed construction process for a given age subgroup (e.g., 17-19 years) was as 843 

follows. First, to enrich the dataset for this age subgroup, we included the latter half of the 844 

participants from the previous subgroup (15-17 years) and the earlier half of the participants 845 

from the subsequent subgroup (19-21 years). We then used the individualized parcellation 846 

iteration algorithm proposed by Wang and colleagues 60 to map the 18-network atlas to each 847 

participant, generating the initial individualized functional parcellations (step 1 in Supplementary 848 

Fig. 6a). We then proposed the GIAGA approach. Around the core age (i.e., 18 years) of this 849 

given group, we generated a Gaussian probability distribution ��µ, σ�� with mean µ � 0 and 850 

standard deviation σ � 1 and assigned weights to each participant based on their age position in 851 

this Gaussian distribution. The weight quantified the participant's contribution to the population-852 
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level atlas construction, with closer to the core age resulting in a greater contribution. For each 853 

vertex, we calculated the cross-participant cumulative probability of belonging to each network 854 

and assigned vertex labels to the network with the highest cumulative probability, resulting in an 855 

initial age-specific population-level atlas (step 2 in Supplementary Fig. 6a). Finally, steps 1 and 2 856 

were iteratively repeated until the overlap between the current and previous atlases exceeded 95% 857 

or the total number of iterations exceeded 10, indicating convergence (step 3 in Supplementary 858 

Fig. 6a). 859 

(ii) Individualized atlas construction. For a given participant, we used the same iterative 860 

parcellation method described above to generate an individualized functional parcellation based 861 

on the corresponding population-level atlas specific to the participant's subgroup (Supplementary 862 

Fig. 6b, adapted from 60). Briefly, the influence of the population-level atlas on the individual 863 

brain varied across participants and across brain regions; therefore, this method made flexible 864 

modifications during the construction of the individualized atlas based on the distribution of 865 

intersubject variability in the functional connectome and the tSNR of the functional BOLD 866 

signals 60. Over the iterations, the weight of population-based information was progressively 867 

reduced, allowing the final individualized map to be completely driven by the individual-level 868 

BOLD data. More information on this iterative functional parcellation approach can be found in 869 

the study by Wang and colleagues 60.  870 

Notably, given the potential variance of different interindividual variability patterns and tSNR 871 

distributions across different age subgroups, we generated an interindividual variability map and 872 

a tSNR map for each age subgroup. This was done to improve the accuracy of both the 873 

individual and population-level atlases. We divided the time series data of each participant 874 

within each age subgroup into two halves. For each half, we computed a vertex-by-vertex 875 

functional connectome matrix. This allowed us to obtain the intersubject variability and the 876 

intrasubject variability within the subgroup. By regressing the intrasubject variability from the 877 

intersubject variability, we obtained a "purified" measure of intersubject variability in the 878 

functional connectome 116, 117. 879 

(iii) Construction of the reference atlas used for comparison. To mitigate the potential bias 880 

introduced by specifying a reference atlas for 'mature age', we adopted a data-driven approach to 881 

construct the reference atlas. Atlas similarity was assessed using the overlap index, which 882 

quantifies the proportion of vertices with matching labels between two atlases. For instance, if 883 

two atlases have 4,000 vertices with identical labels out of a total of 4,609 vertices, the overlap 884 

index would be 4,000/4,609 = 86.8%. We computed the overlap index between each pair of the 885 

26 atlases, resulting in a 26×26 similarity matrix. Hierarchical clustering was applied to this 886 

matrix, as shown in Supplementary Fig. 10a. We selected a highly congruent cluster of atlases, 887 

including the 18-, 20-, 30-, 40-, 50-, 60-, and 70-year atlases. For each vertex, we assigned the 888 

label as the system that had the highest probability of occurrence across these selected atlases, 889 

thereby generating the final reference atlas (Supplementary Fig. 10b). 890 

(iv) Homogeneity of both the age-specific and personalized functional atlases. We evaluated 891 

the functional homogeneity of three parcellation atlases at specific age intervals: the adult-based 892 

group atlas established by Yeo et al. 58, the age-specific group atlas, and the individual-specific 893 

atlas (Supplementary Fig. 9). For each age interval, we performed one-way repeated measures 894 

analysis of variance (RANOVA) followed by post hoc multiple comparisons tests to determine 895 
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whether the homogeneity of the individualized atlas was significantly greater than that of the 896 

age-specific group atlas and whether the homogeneity of the age-specific group atlas was 897 

significantly greater than that of the adult-based group atlas. 898 

The homogeneity of a system was assessed by calculating the average similarity between every 899 

pair of vertices assigned to it. The commonly used metric is within-system homogeneity, which 900 

is calculated as the average of Pearson’s correlation coefficients between the time series of all 901 

vertex pairs within each system, serving as a measure of internal consistency 48, 49. To summarize 902 

within-system homogeneity for comparisons across atlases, we averaged the homogeneity values 903 

across systems 49. For validation, we employed another commonly used metric, the functional 904 

profile homogeneity, which defines system similarity as Pearson’s correlation coefficient 905 

between the “connectivity profiles” of vertices within a system 118, 119. The connectivity profile of 906 

a vertex is represented by the connections between this vertex with all other cortical vertices. The 907 

global average functional profile homogeneity value was derived by averaging the homogeneity 908 

values across all systems 119. The RANOVA revealed significant differences in the global average 909 

of functional homogeneity across different atlases for any given age interval (all F > 267, p < 10-
910 

25, Supplementary Fig. 9). Post hoc analysis revealed significant differences in functional 911 

homogeneity between every pair of atlases (all p < 10-8, individual-specific atlas > age-specific 912 

group atlas > adult-based group atlas, Supplementary Fig. 9), regardless of the age groups 913 

considered. 914 

Individualized metrics of the functional connectome at global, system, and regional levels 915 

For each pair of vertices among the 4,609 vertices in the fsaverage4 space, we computed the 916 

Pearson’s correlation coefficient to characterize the vertex-by-vertex functional connectivity, 917 

resulting in a 4,609×4,609 functional connectome matrix for each participant. All negative 918 

functional connectivity strengths were set to zero. For each participant, the global mean of 919 

functional connectome was defined as the mean of all 4,609×4,609 connections (edges), and the 920 

global variance of functional connectome was defined as the standard deviation of all 921 

4,609×4,609 connections. For validation, we also calculated the global mean of the functional 922 

connectome by averaging only the positive-weight edges, which yielded similar lifespan growth 923 

patterns (Supplementary Result 8 and Supplementary Fig. 31). At a regional level, the FCS of a 924 

given vertex was quantified as the average of the connections with all other vertices.  925 

For a given brain system, an individual’s within-system functional connectivity 
�� was defined 926 

as the average connection strength among all vertices within that personalized system. 927 

Conversely, the individual’s between-system connectivity 
�� was represented by the average 928 

strength of connections between this system and all other systems. System segregation 64 was 929 

determined by calculating the difference between 
�� and 
��, normalized by 
��, as 930 

described in the following formula: 931 

System segregation = 
��� � ���

���

 932 

Similarly, global system segregation was defined as the difference between global mean within-933 

system connectivity and global mean between-system connectivity, normalized by global mean 934 

within-system connectivity. 935 
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The degree of global similarity between an individualized atlas and the reference atlas was 936 

quantified by the overlap index. This was defined as the number of vertices with the same label 937 

in the two atlases divided by the total number of vertices in both atlases. If there were 4,609 938 

vertices with the same label in two atlases, the overlap index was 4,609/4,609 = 1.0. The degree 939 

of similarity between an individualized system and its corresponding system in the reference 940 

atlas was quantified using the Dice coefficient. 941 

Modeling normative growth curves across the lifespan 942 

To estimate the normative growth patterns for various metrics of the functional connectome in 943 

healthy individuals combined across cohorts, we applied the GAMLSS 41, 42 to the cross-944 

sectional data using the gamlss package (version 5.4-3) in R 4.2.0. The GAMLSS procedure 945 

were established with two steps: identification of the optimal data distribution, followed by 946 

determination of the best-fitting parameters for each functional connectome metric. Using these 947 

metric-specific GAMLSS models, we obtained nonlinear normative growth curves and their first 948 

derivatives. Furthermore, the sex-stratified growth patterns were revealed. The goodness of fit of 949 

the model was confirmed by out-of-sample metrics and visualized by traditional Q�Q 950 

(quantile�quantile) plots and detrended transformed Owen’s plots. The robustness of the 951 

lifespan growth curves was assessed through bootstrap resampling analysis, leave-one-study-out 952 

analysis, balanced resampling analysis, and split-half replication analysis.  953 

(i) Model data distributions. While the World Health Organization provides guidelines for 954 

modeling anthropometric growth charts (such as head circumference, height, and weight) using 955 

the Box�Cox t-distribution as a starting point 41, we recognized that the growth curves of brain 956 

neuroimaging metrics do not necessarily follow the same underlying distributions. For instance, 957 

Bethlehem et al. reported that the generalized gamma distribution provided the best fit for brain 958 

tissue volumes 18. Therefore, we evaluated all continuous distribution families (n=51) for model 959 

fitting. To identify the optimal distribution, we fitted GAMLSS with different distributions to 960 

four representative global functional metrics (global mean of the connectome, global variance of 961 

the connectome, global atlas similarity, and global system segregation) and assessed model 962 

convergence. The Bayesian information criterion (BIC) was used to evaluate the fits of the 963 

converged models. A lower BIC value indicates a superior fit. As shown in Supplementary Fig. 964 

32, the Johnson’s Su (JSU) distribution consistently demonstrated the optimal fit performance 965 

across all the evaluated models. 966 

(ii) GAMLSS framework. We performed the GAMLSS procedure with the functional 967 

connectome metric as the dependent variable, age as a smoothing term (using the B-spline basis 968 

function), sex and in-scanner head motion (HM) as other fixed effects, and scanner sites as 969 

random effects. The JSU distribution, which has four parameters: median (�), coefficient of 970 

variation (), skewness (�), and kurtosis (�), was chosen to fit the data distribution. Each 971 

functional connectome metric, denoted by �, was modeled as: 972 

� � �����, 	, 
, ��, 

� � ������ � ��
������ � ��

����� �  ��������, 

	 � ������ � �������,  


 � �
�

, 
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� � �
�
. 

Given the growth complexity across the lifespan, we sought to capture the underlying age-related 973 

trends by exploring a range of model specifications. We fitted three GAMLSS models with 974 

different degrees of freedom (df = 3-5) for the B-spline basis functions in the location (�) 975 

parameters, and set default degrees of freedom (df = 3) for the B-spline basis functions in the 976 

scale () parameters. Following the practice of previous studies 18, 80, only an intercept term was 977 

included for the � or � parameter. For model estimation, we used the default convergence 978 

criterion of log-likelihood = 0.001 between model iterations and set the maximum number of 979 

iteration cycles as 200. Finally, the optimal model of a given functional metric was selected 980 

based on the lowest BIC value among all converging models. In our study, we did not observe 981 

instances of nonconvergence in the GAMLSS models for any metric, including those used in 982 

sensitivity analyses. 983 

(iii) Goodness of fit of the normative model. To assess the quality of the model fits, we 984 

employed a training-test split strategy, which enabled us to recognize the importance of out-of-985 

sample metrics. The dataset was randomly divided into two halves, with one half being used for 986 

training (N = 16,663) and the other for testing (N = 16,587). The stratification by site was 987 

applied to both halves. Subsequently, the GAMLSS model was refitted using the training set and 988 

the model’s goodness of fit was evaluated using the testing set. This procedure was repeated by 989 

interchanging the roles of the training and testing sets. 990 

The model’s goodness of fit for the central tendency was assessed using R-squared (R2). The 991 

calibration of the centiles was evaluated using quantile randomized residuals (also known as 992 

randomized z-scores) 120. If the modeled distribution closely aligns with the observed distribution, 993 

the randomized z-scores should follow a normal distribution, regardless of the shape of the 994 

modeled distribution 121, 122. We used the Shapiro�Wilk test to determine the normality of the 995 

distribution of the randomized z-scores, where a W value close to 1 indicated good normality. 996 

Additionally, we examined the higher-order moments (skewness and kurtosis) of the randomized 997 

residuals to gain deeper insights into the goodness of fit of the normative model 121. Skewness 998 

values close to 0 indicate symmetrically distributed residuals, showing no left or right bias, and 999 

kurtosis values close to 0 indicate a desirable light-tailed distribution. The results demonstrated 1000 

that nearly all models had skewness and kurtosis values close to 0, with the Shapiro�Wilk W 1001 

values consistently above 0.99 (Supplementary Figs 33 and 34, Supplementary Table 14). The R2 1002 

values for the global connectome mean, global connectome variance, global atlas similarity, and 1003 

global system segregation were 0.49, 0.48, 0.56, and 0.36, respectively. The R2 values for the 1004 

system segregation of each network ranged from 0.14 to 0.32. 1005 

Furthermore, the normalized quantile residuals of the normative model were visually assessed 1006 

using two diagnostic methods. First, we inspected the plots related to the residuals. As shown in 1007 

Supplementary Fig. 35, the residuals against the fitted values of � and the index were uniformly 1008 

distributed around the horizontal line at 0. In addition, the kernel density estimation of the 1009 

residuals showed an approximately normal distribution, and the normal quantile�quantile (Q�Q) 1010 

plots showed an approximately linear trend with an intercept of 0 and a slope of 1. Second, we 1011 

used the detrended transformed Owen’s plots of the fitted normalized quantile residuals to 1012 

evaluate the performance of the models. This function uses Owen's method to construct a 1013 

nonparametric confidence interval for the true distribution. As shown in the resulting plots 1014 

(Supplementary Fig. 36), the zero horizontal line fell within the confidence interval, suggesting 1015 
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that the residuals followed a normal distribution. 1016 

(iv) Sex differences across the lifespan. In the GAMLSS model, sex was included as a fixed 1017 

effect to evaluate its impact on the lifespan curves of the functional connectome. We obtained the 1018 

µ  and σ coefficients, as well as their standard errors, T-values, and P-values, for the sex variable 1019 

using the summary function in R as detailed in Supplementary Tables 3 and 4. The estimated � 1020 

and  coefficients represent the adjusted mean and variance effect of sex on the functional 1021 

phenotype, considering control variables such as age, head motion (mean FD), and the random 1022 

effects of scanner site. The T-value, calculated as the coefficient divided by its standard error, 1023 

serves as a statistic to test the null hypothesis that the coefficient is equal to zero (no effect).  1024 

Sensitivity analysis of the connectome-based normative models 1025 

The lifespan normative growth patterns were validated at the global, system, and regional levels 1026 

using various analysis strategies. These analyses addressed key methodological concerns 1027 

including head motion, the impact of uneven sample and site distributions across ages, 1028 

replication using independent samples, model stability, and potential effects of specific site. At 1029 

the global and system level, we quantitatively assessed the similarity between these validated 1030 

growth patterns and the main results by sampling 80 points at one-year intervals for each growth 1031 

curve and growth rate and calculating Pearson’s correlation coefficient between the 1032 

corresponding curves. The sampling was also conducted at six-month intervals (160 points) and 1033 

monthly intervals (1,000 points). At the regional level, we calculated the spatial association 1034 

between the lifespan growth axis in the sensitivity analyses and that shown in the main results. 1035 

(i) Analysis with stricter head motion threshold (mean FD threshold < 0.2 mm). Previous 1036 

research has indicated that head motion can significantly impact the quality of brain imaging data 1037 
123-125. To ensure that our findings were not influenced by the potential effects of head motion, we 1038 

implemented a stricter quality control threshold, excluding participants with a mean FD 1039 

exceeding 0.2 mm, and replicated all normative model analyses. Specifically, after excluding 1040 

8,756 participants from the initial cohort of 33,250 participants with a 0.5 mm mean FD 1041 

threshold, we used data from 24,494 participants to validate the lifespan growth curves of the 1042 

functional brain connectome at the global, system, and regional levels (Supplementary Fig. 22). 1043 

(ii) Balanced resampling analysis. To address potential biases arising from uneven sample and 1044 

site distributions across age groups, a balanced sampling strategy was performed (Supplementary 1045 

Fig. 23). This approach ensured equitable participant and site counts across various age groups 1046 

through random sampling. Specifically, we divided the entire age range across the lifespan into 1047 

sixteen age groups (each spanning five years) and then calculated the number of participants and 1048 

sites for each age group. Besides the age groups under 5 years of age or over 70, the (35, 40] age 1049 

group had the fewest participants at 464 and the (40, 45] age group contained the fewest sites at 1050 

23 (Supplementary Fig. 23-Ia). Thus, we selected all participants from the 23 most populated 1051 

sites within the (35,40] age group, comprising 457 participants. For other age groups, a random 1052 

sampling strategy was implemented to include 457 participants from the 23 most populated sites. 1053 

The resulting distribution of participants and sites across age groups after resampling is shown in 1054 

Supplementary Fig. 23-Ib. 1055 

For global and system metrics, sampling was repeated 1,000 times using the above procedure on 1056 

a pool of 33,250 participants. For each sampling, we randomly selected 6,770 participants and 1057 
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re-performed the GAMLSS models, resulting in 1,000 sets of growth curves for each metric. We 1058 

then calculated the 95% CI for these curves, the 95% CI for the peak of the median (50th) centile, 1059 

and the correlations between the 1,000 median centile lines and the median centile line derived 1060 

from the original cohort of 33,250 participants. For regional metrics (i.e., FCS), we selected a 1061 

random resample and recalculated all results, including the normative growth curves and growth 1062 

rate of the regional FCS, the lifespan growth axis, and the association between the lifespan 1063 

growth axis and the S-A axis. 1064 

(iii) Split-half replication analysis. To assess model replicability in independent datasets, a split-1065 

half strategy was conducted (Supplementary Fig. 24). Participants were randomly divided into 1066 

two subgroups, each comprising 50% of the participants (NSubgroup1 = 16,663, NSubgroup2 = 16,587), 1067 

with stratification by site. The lifespan normative growth patterns were independently evaluated 1068 

using Subgroup 1 and Subgroup 2. 1069 

(iv) Bootstrap resampling analysis. To assess the robustness of the lifespan growth curves and 1070 

obtain their confidence interval, a bootstrap resampling analysis was performed (Supplementary 1071 

Fig. 25). This involved the execution of 1,000 bootstrap repetitions using replacement sampling. 1072 

To ensure that the bootstrap replicates preserved the age and sex proportionality of the original 1073 

studies, the lifespan (from 32 weeks to 80 years) was segmented into 10 equal intervals and 1074 

stratified sampling was conducted based on both age and sex. For each functional metric, 1,000 1075 

growth curves were fitted and 95% CIs were computed for both the median (50th) centile curve 1076 

and the inflection points. The 95% CI were calculated based on the mean and standard deviation 1077 

of the growth curves and growth rates across all repetitions.  1078 

(v) Leave-one-study-out (LOSO) analysis. To ascertain whether the lifespan growth curves were 1079 

influenced by specific sites, the LOSO analyses were implemented (Supplementary Fig. 26). In 1080 

each instance, the samples were removed from one site at a time, the GAMLSS models were 1081 

refitted and the parameters and growth curves were estimated. We initially compared the curves 1082 

obtained after excluding the largest site (Site 1 from the UK Biobank dataset, 12,877 participants) 1083 

with those fitted using the entire dataset (N = 33,250). This reveals that both the growth curves 1084 

and growth rates were almost identical. The mean and standard deviation across all repetitions 1085 

were used to calculate the LOSO 95% CIs for both the normative growth curves and growth rates. 1086 

The narrow CI indicated that our models were robust when data from any single site were 1087 

removed.  1088 

Clinical relevance of connectome-based normative models in brain disorders 1089 

To ascertain the clinical relevance of the established lifespan connectome models, the present 1090 

study included quality-controlled structural and functional MRI data from three brain disorders. 1091 

All procedures of quality control, image preprocessing, and network analysis were identical to 1092 

those used for connectome-based normative modeling. The final analyses comprised data from 1093 

591 HCs and 414 patients with ASD from the ABIDE dataset (13 sites), 535 HCs and 622 1094 

patients with MDD from the DIDA-MDD dataset (5 sites), and 187 HCs and 180 patients with 1095 

AD from the MCADI dataset (5 sites). 1096 

(i) Individual deviation z scores. The standard protocol for normative model 82 emphasizes the 1097 

importance of incorporating some control samples from the same imaging sites as the patients to 1098 

the testing set. This is done to verify that the observed case�control differences are not due to 1099 
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the analysis with controls in the training set and cases in the testing set 78, 82. This approach also 1100 

allows for the estimation of site effects within the case�control datasets. To establish the 1101 

normative models for all three disorders using the same set of healthy participants, all the HCs of 1102 

the three case�control datasets were randomly divided in half (Ntrain = 654; Ntest = 659). This 1103 

was done in a stratified manner by age, sex, and site. Lifespan connectome-based normative 1104 

models were reconstructed by using the training set (N = 32,591), which consisted of half of the 1105 

HCs (Ntrain = 654) and all samples of other datasets (N = 31,937). The testing set, comprising 1106 

another half of HCs (Ntest = 659) and the patient cases, was used as a completely independent set 1107 

to determine their deviation scores. Specifically, the individual quantile scores were first 1108 

estimated relative to the normative curves. Subsequently, the deviation z scores were derived 1109 

using quantile randomized residuals 120, an approach that transforms quantiles of the fitted JSU 1110 

distribution into standard Gaussian distribution z scores. This process was repeated 100 times, 1111 

generating 100 new models and 100 sets of deviation scores for both the patients and the testing 1112 

set of the healthy controls. The normality of the distribution of the deviation z scores was 1113 

assessed and confirmed using a two-tailed Kolmogorov�Smirnov test. P-values < 0.05 were 1114 

observed for all functional metrics in all repetitions. Our subsequent analysis was based on these 1115 

independently derived deviation scores in the HCs (HCtest) and disease cases. 1116 

(ii) Stability of deviation scores across 100 repetitions. To quantitatively assess the similarity 1117 

between the estimated growth curves in 100 distinct normative models and the curves in the 1118 

main results, we sampled 80 points at one-year intervals for each growth curve and calculated 1119 

Pearson’s correlation coefficients between the corresponding curves (Supplementary Fig. 15, 1120 

Supplementary Tables 5 and 6). The curves of all metrics demonstrated a high degree of 1121 

similarity to the main results (mean r > 0.95, mean MSE < 0.1). To evaluate the stability of 1122 

individual deviation, we computed the pairwise Pearson’s correlation coefficients and MSEs of 1123 

the deviation scores among 100 distinct models. The results indicated a high degree of stability 1124 

in the estimates of individual deviations for patients within specific disease cohorts (mean r > 1125 

0.95, mean MSE < 0.2 for all metrics). For case�control group comparison analysis and disease 1126 

classifications analysis, we replicated the analysis 100 times. 1127 

(iii) Individual heterogeneity of deviations. Extreme deviations were defined as z > |2.6| 1128 

(corresponding to a p < 0.005), consistent with the criteria used in previous studies 75, 76, 78. The 1129 

extreme positive and negative deviation scores of each functional metric were calculated for each 1130 

patient. The percentage map of extreme deviations indicated substantial individual heterogeneity 1131 

within each disease group (Supplementary Fig. 16). 1132 

(iv) Disease subtypes identification based on individual functional deviations. Given the 1133 

substantial individual heterogeneity, we sought to identify subtype differences within each 1134 

disease cohort (ASD, MDD, and AD) by employing the data-driven k-means clustering 1135 

algorithm. The deviation features of each patient included the global mean of the connectome, 1136 

global variance of the connectome, global system segregation, system segregation of each 1137 

network, and regional level FCS, encompassing a total of 4,619 features. Dimensionality 1138 

reduction was performed on the normalized features using principal component analysis (PCA). 1139 

We identified the number of principal components that cumulatively explained more than 95% of 1140 

the variance, and these components were then used as the features for clustering analysis. The 1141 

similarity matrix of features across patients was calculated using the Euclidean distance. The 1142 

optimal number of clusters was determined to be between 2 and 8. A total of 30 different indices 1143 
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were employed from the NbClust package 126 to determine the optimal number of clusters. The 1144 

most frequently identified optimal cluster number was selected as the final cluster count. 1145 

(v) Case�control difference between patients of each subtype and their matched HCs. The 1146 

individual deviation scores of patients in each subtype were compared to the median of their 1147 

matched HCs. For each metric, the significance of the median differences between the patients 1148 

and HCs was assessed using the Mann�Whitney U test. P-values were adjusted for multiple 1149 

comparisons using the Benjamini�Hochberg false discovery rate (FDR) correction across all 1150 

possible pairwise tests (p < 0.05). For each metric, the case�control difference analysis was 1151 

repeated 100 times. The proportion of tests that passed the significance threshold in 100 1152 

comparisons was reported. 1153 

(vi) Disease classification based on connectome-based deviations. We performed support vector 1154 

machines (SVM) analysis to evaluate the ability of connectome-based deviations in 1155 

discriminating patients from controls. For each disease group, two types of classification models 1156 

were conducted: classification between all patients and HCs and classification between each 1157 

subtype of patients and HCs. Each classification model was repeated 100 times. For each time, a 1158 

2-fold cross-validation framework was implemented, with each fold alternately serving as the 1159 

training and test sets. To mitigate the impact of features with greater numeric ranges, we 1160 

normalized each feature in the training set and applied the resulting parameters to the testing set. 1161 

We then plotted receiver operating characteristic (ROC) curves and calculated the areas under the 1162 

curve (AUC) to estimate the classification performance. The statistical significance of the AUC 1163 

was evaluated using the nonparametric permutation test (1,000 times). During each permutation, 1164 

the labels of the patients and controls were randomly shuffled before implementing SVM and 1165 

cross-validation. This process yielded a null distribution of the AUC value, and the P-value was 1166 

computed. Finally, the mean ROC curve was obtained by averaging 100 ROC curves, and the 1167 

mean AUC value was obtained by averaging 100 AUC values. The codes for the classification 1168 

analysis were modified from Cui et al. 127 (https://github.com/ZaixuCui/Pattern_Classification) 1169 

and the libsvm software (www.csie.ntu.edu.tw/~cjlin/libsvm/). 1170 

(vii) Predictions of clinical scores based on connectome-based deviations. Using support vector 1171 

regression (SVR) with a linear kernel, we sought to assess the ability of the connectome-based 1172 

functional deviations to predict the clinical scores of patients. A 2-fold cross-validation 1173 

framework was implemented to estimate the prediction accuracy. For a given disease cohort, the 1174 

patients were ordered by their target scores and subsequently distributed into alternate folds for 1175 

training and testing (e.g., 1st, 3rd, …, to the first fold; 2nd, 4th, …, to the second fold). Each fold 1176 

alternately served as the training and test sets. To mitigate the impact of features with greater 1177 

numeric ranges, we normalized each feature in the training set and applied the resulting 1178 

parameters to the testing set. The final predictive performance was quantified using Pearson’s 1179 

correlation coefficients between the predicted and observed clinical scores. The statistical 1180 

significance of the prediction accuracy was evaluated using the nonparametric permutation test 1181 

(1,000 times). During each permutation, the observed scores of the patients were randomly 1182 

shuffled before implementing SVR and cross-validation. This process yielded a null distribution 1183 

of the correlation coefficients, and the P-value was computed. The codes for the prediction 1184 

analysis were modified from Cui and Gong 128 1185 

(https://github.com/ZaixuCui/Pattern_Regression_Matlab) and the libsvm software 1186 

(www.csie.ntu.edu.tw/~cjlin/libsvm/). 1187 
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Data availability  1188 

The MRI dataset listed in Supplementary Table 1 are partly available at the 1189 

Adolescent Brain Cognitive Development Study (https://nda.nih.gov/), the Autism Brain Imaging 1190 

Data Exchange Initiative (https://fcon_1000.projects.nitrc.org/indi/abide/), the Alzheimer’s 1191 

Disease Neuroimaging Initiative (https://adni.loni.usc.edu/), the Age_ility Project 1192 

(https://www.nitrc.org/projects/age-ility), the Baby Connectome Project (https://nda.nih.gov/), 1193 

the Brain Genomics Superstruct Project (https://doi.org/10.7910/DVN/25833), the Calgary 1194 

Preschool MRI Dataset (https://osf.io/axz5r/), the Cambridge Centre for Ageing and 1195 

Neuroscience Dataset (https://www.cam-can.org/index.php?content=dataset), the Developing 1196 

Human Connectome Project (http://www.developingconnectome.org/data-release/second-data-1197 

release/), the Human Connectome Project (https://www.humanconnectome.org), the Lifespan 1198 

Human Connectome Project (https://nda.nih.gov/), the Nathan Kline Institute-Rockland Sample 1199 

Dataset (https://fcon_1000.projects.nitrc.org/indi/pro/nki.html), the Neuroscience in Psychiatry 1200 

Network Dataset (https://nspn.org.uk/), the Pediatric Imaging, Neurocognition, and Genetics 1201 

(PING) Data Repository (http://pingstudy.ucsd.edu/), the Pixar Dataset 1202 

(https://openfmri.org/dataset/ds000228/), the Strategic Research Program for Brain Sciences 1203 

(SRPBS) MRI Dataset (https://bicr-resource.atr.jp/srpbsopen/), the Southwest University Adult 1204 

Lifespan Dataset (http://fcon_1000.projects.nitrc.org/indi/retro/sald.html), the Southwest 1205 

University Longitudinal Imaging Multimodal Brain Data Repository 1206 

(http://fcon_1000.projects.nitrc.org/indi/retro/southwestuni_qiu_index.html), and the UK 1207 

Biobank Brain Imaging Dataset (https://www.ukbiobank.ac.uk/). The dhcpSym surface atlases in 1208 

aged from 32 to 44 postmenstrual weeks is available at https://brain-development.org/brain-1209 

atlases/atlases-from-the-dhcp-project/cortical-surface-template/. The UNC 4D infant cortical 1210 

surface atlases are available at https://bbm.web.unc.edu/tools/. The fs_LR_32k surface atlas is 1211 

available at https://balsa.wustl.edu/. The subcortical atlases are available at 1212 

https://github.com/yetianmed/subcortex. The brain charts and lifespan developmental atlases are 1213 

shared online via GitHub (https://github.com/sunlianglong/BrainChart-FC-Lifespan). 1214 

Code availability 1215 

The codes for this manuscript are available on GitHub 1216 

(https://github.com/sunlianglong/BrainChart-FC-Lifespan). Software packages used in this 1217 

manuscript include MRIQC v0.15.0 (https://github.com/nipreps/mriqc), QuNex v0.93.2 1218 

(https://gitlab.qunex.yale.edu/), HCP pipeline v4.4.0-rc-MOD-e7a6af9 1219 

(https://github.com/Washington-University/HCPpipelines/releases), ABCD-HCP pipeline v1 1220 

(https://github.com/DCAN-Labs/abcd-hcp-pipeline), dHCP structural pipeline v1 1221 

(https://github.com/BioMedIA/dhcp-structural-pipeline), dHCP functional pipeline v1 1222 

(https://git.fmrib.ox.ac.uk/seanf/dhcp-neonatal-fmri-pipeline), iBEAT pipeline v1.0.0 1223 

(https://github.com/iBEAT-V2/iBEAT-V2.0-Docker), MSM v3.0 1224 
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