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This paper addresses two topics in systems biology, the hypothesis that biolog-

ical systems are modular and the problem of relating structure and function of

biological systems. The focus here is on gene regulatory networks, represented

by Boolean network models, a commonly used tool. Most of the research on

gene regulatory network modularity has focused on network structure, typ-

ically represented through either directed or undirected graphs. But since

gene regulation is a highly dynamic process as it determines the function of

cells over time, it is natural to consider functional modularity as well. One of

the main results is that the structural decomposition of a network into mod-

ules induces an analogous decomposition of the dynamic structure, exhibiting

a strong relationship between network structure and function. An extensive

simulation study provides evidence for the hypothesis that modularity might
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have evolved to increase phenotypic complexity while maintaining maximal

dynamic robustness to external perturbations.

Introduction

Building complicated structures from simpler building blocks is a widely observed principle in

both natural and engineered systems. In molecular systems biology, it is also widely accepted,

even though there has not emerged a clear definition of what constitutes a simple building

block, or module. Consequently, it is not clear how the modular structure of a system can be

identified, why it is advantageous to an organism to be composed of modular components, and

how we could take advantage of modularity to advance our understanding of molecular sys-

tems (1–3). In the (graph-theoretic) network representation of molecular systems, such as gene

regulatory networks or protein-protein interaction networks, a module is typically considered to

be a “highly” connected region of the graph that is “sparsely” connected to the rest of the graph,

otherwise known as a community in the graph. Graph theoretic algorithms that depend on the

choice of parameters and the specific definition of “highly” and “sparsely” are typically used

to define modules (4, 5). Similar approaches are used for identifying modules in co-expression

networks based on clustering of transcriptomics data (6).

A major limitation of this approach to modularity is that it focuses entirely on a static rep-

resentation of gene regulatory networks and other systems. However, living organisms are

dynamic, and need to be modeled and understood as dynamical systems. Thus, modularity

should have an instantiation as a dynamic feature, as advocated in (7). The most common types

of models employed for this purpose are systems of ordinary differential equations and discrete

models such as Boolean networks and their generalizations, providing the basis for a study of

dynamic modularity. In recent years, there have been an increasing number of papers that take

this point of view. The authors of (8) argue that dynamic modularity may be independent of
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structural modularity, and they identify examples of multifunctional circuits in gene regulatory

networks that they consider dynamically modular but without any underlying structural modu-

larity. A similar argument is made in (9) by analyzing a small gene regulatory network example.

For another example of a similar approach see (10).

The literature on how modularity might have evolved and why it might be useful as an orga-

nizational principle cites as the most common reasons robustness, the ability to rapidly respond

to changing environmental conditions, and efficiency in the control of response to perturba-

tions (2, 11, 12). An interesting hypothesis has been put forward in (3), namely that a modular

organization of biological structure can be viewed as a symmetry-breaking phase transition,

with modularity as the order parameter.

This literature makes clear that research on the topic of modularity in molecular systems,

both structural and dynamic, would be greatly advanced by clear definitions of the concept

of module, both structural and dynamic. This would in particular help to decide whether and

how structural and dynamic modularity are related, and it would provide a basis on which to

distinguish between modularity and multistationarity of a dynamic regulatory network. To be

of practical use, such a theory should include algorithms to decompose a dynamic network into

structural and/or dynamic modules. At the same time, it would be of great practical value, for

instance for synthetic biology, to understand how systems can be composed from modules that

have specific dynamic properties.

The search for such algorithms has led us to look for guidance to mathematics, as a comple-

ment to biology. After all, if the dynamic mathematical models that are widely used to encode

gene regulatory networks are appropriate representations, and if modularity is indeed an impor-

tant feature of such networks, then it should be reflected in the model structure and dynamics.

Choosing the widely-used modeling framework of Boolean networks, we asked whether it is

possible to identify meaningful concepts of modularity that, ideally, link both the structural and
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dynamic aspects. Modularity is fundamentally about connectivity. The central dynamic instan-

tiation of connectivity is the feedback loop, which we therefore choose as the defining feature.

The concept of module we propose is structural, in terms of special subgraphs of the (directed)

graph of dependencies of network nodes. These subgraphs, called strongly connected compo-

ments (SCC), are maximal with respect to the property that every node is connected to every

other node in the subgraph through a directed path. In other words, none of the nodes in the

SCC are involved in feedback loops that are not entirely within the SCC.

The main result of this paper is that this structural decomposition of the model into modules

induces a similar decomposition of model dynamics, explicitly linking the dynamics of the

structural modules in a mathematically clearly specified way. This theorem links structural and

dynamic modularity, and provides an example of how network structure influences network

function. We provide an important application of this theorem to network control by showing

that in order to control a network, it is sufficient to control its modules, and we provide an

application of this result to a published cancer signaling network. This result is important both

for applications to, e.g., medicine, and might provide a candidate for a mechanisms that allows

organisms to quickly respond to changes in their external environment. We also discuss our

results in the context of published Boolean network models of regulatory networks and provide

specific instantiations of our decomposition theorem. Finally, we address the question as to

why evolution should favor modularity as a structural and dynamic feature. We carry out an

extensive simulation study that provides evidence for the hypothesis that modularity enables

phenotypic complexity while maintaining maximal robustness to external perturbations.

Boolean networks

For the purpose of this article, we will focus on the class of Boolean networks as a modeling

paradigm. Recall that a Boolean network F on variables x1, . . . , xn can be viewed as a function
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on binary strings of length n, which is described coordinate-wise by n Boolean update functions

fi. Each function fi uniquely determines a map

Fi : {0, 1}n → {0, 1}n, Fi(x1, . . . , xn) = (x1, . . . , fi(x), . . . , xn),

where x = (x1, . . . , xn). Every Boolean network defines a canonical map, where the functions

are synchronously updated:

F : {0, 1}n → {0, 1}n, F (x1, . . . , xn) = (f1(x), . . . , fn(x)).

In this paper, we only consider this canonical map, i.e., we only consider synchronously updated

Boolean network models. Two directed graphs can be associated to F (see Fig. 1 for an exam-

ple). The wiring diagram (also known as dependency graph) contains n nodes corresponding to

the xi, and has a directed edge from xi to xj if fj depends on xi. The state space of F contains

as nodes the 2n binary strings, and has a directed edge from u to v if F (u) = v. Each connected

component of the state space gives an attractor basin of F , which consists of a directed loop, the

attractor, as well as trees feeding into the attractor. Attractors can be steady states (also known

as fixed points) or limit cycles. Each attractor in a biological Boolean network model typically

corresponds to a distinct phenotype (13). The set of attractors of F , denoted A(F ), contains

all attractors, i.e., all minimal subsets C ⊆ {0, 1}n satisfying F (C) = C. Note that a limit

cycle of length k represents k trajectories. For example, the 2-cycle (010, 101) in Fig. 1 rep-

resents (010, 101, 010, . . .) and (101, 010, 101, . . .). This distinction becomes important later,

when decomposing the dynamics of Boolean networks.

A structural definition of modularity for Boolean networks

Given a Boolean network F and a subset S of its variables, we can define a subnetwork of F ,

denoted F |S , as the restriction of F to S. If some variables in S are regulated by variables not

in S, then we require these regulations to be included in F |S . In this case, the subnetwork is a
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Figure 1: Wiring diagram and state space of the Boolean network F = (f1, f2, f3) =
(x2 ∧ ¬x3, x3,¬x1 ∧ x2). (a) The wiring diagram encodes the dependency between variables.
Subnetworks are defined on the basis of the wiring diagram. For example, the subnetwork
F |{x2,x3}(x1, x2, x3) = (x3,¬x1 ∧ x2) is the restriction of F to {x2, x3} and contains external
parameter x1. (b) The state space is a directed graph with edges between all states and their
images. This graph therefore encodes all possible trajectories and attractors. Here, F has two
steady states, 000 and 011, and one limit cycle, (010, 101), so A(F ) = {000, 011, (010, 101)}.

Boolean network with external parameters. For the example in Fig. 1, the subnetwork F |{x2,x3}

contains x1 as external parameter because x1 regulates x3. If the variables in S form a SCC

(that is, (i) every pair of nodes in S (excluding possible external parameters) is connected by

a directed path, and (ii) the inclusion of any additional node in S will break this property), we

call the subnetwork a module.

The wiring diagram of any Boolean network F is either strongly connected or it consists

of a collection of SCCs where connections between two SCC point in only one direction. Let

W1, . . . ,Wm be the SCCs of the wiring diagram, with Yi denoting the set of variables in SCC

Wi (note ∪iYi = Y and Yi 6= Yj for i 6= j). Then, the modules of F are F |Y1 , . . . , F |Yn , the

restrictions of F to the Yi. By setting Wi → Wj if there exists at least one edge from a node in

Wi to a node in Wj , we obtain a directed acyclic graph

Q = {(i, j)|Wi → Wj}, (1)

which describes the connections between the modules of F .

As we will show later, any Boolean network can be decomposed into modules and this

structural decomposition implies a decomposition of the network dynamics, which is of prac-

tical utility. The main question to be answered at this point, though, is whether there exists
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biological evidence that our concept of modularity and the structural and dynamic decomposi-

tion theory that follows does in fact reflect reality.

Modularity in expert-curated biological networks

A recent study investigated the features of 122 distinct published, expert-curated Boolean net-

work models (14). Analyzing the wiring diagrams of these models, we found that almost

all of them (113, 92.6%) contained at least one feedback loop and thus at least one non-

trivial SCC/module (which contains more than one node). The nine models that only con-

tained single-node SCCs mainly describe signaling pathways. Thirty models (24.6%) con-

tained even more than one non-trivial SCC, with one Influenza A virus replication model

possessing eleven (15). The directed acyclic graph structure (Eq. 1) of these models varied

widely (Fig. S1). While the average connectivity of a network was not correlated with the num-

ber of non-trivial SCCs (ρSpearman = 0.05, p = 0.61), network size was positively correlated

(ρSpearman = 0.35, p < 10−4). The same trends persisted when considering the binary vari-

able “multiple non-trivial SCCs” (multivariable logistic regression: connectivity p = 0.36, size

p = 0.003).

Modules are subnetworks that carry out key control functions in a cell. It would therefore

not be surprising if there was a selection bias among systems biologists to focus their attention

on such modules. Larger networks are still challenging to build and analyze since an accurate

formulation of a biological network model requires a substantial amount of data for a careful

inference and calibration of the update rules by a subject expert (16, 17). For this reason most

published expert-curated models might focus on one specific cellular function of interest and

contain therefore only one non-trivial SCC.
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Modularity confers phenotypical robustness and a rich dynamic repertoire

To provide additional evidence that SCCs form biologically meaningful modules, we performed

a computational study which shows that the presence of several modules confers robust pheno-

types and a rich dynamic repertoire, both desirable features for an organism.

Biological networks must harbor multiple phenotypes, allowing the network to dynamically

shift from one attractor to another based on its current needs. This shift is typically mitigated

by external signals. Many evolutionary innovations are the result of newly evolved attractors of

GRNs (18,19). The number of attractors of a Boolean network therefore describes its dynamical

complexity.

Furthermore, biological networks need to robustly maintain a certain function (i.e., pheno-

type) in the presence of intrinsic and extrinsic perturbations (20, 21). At any moment, these

perturbations may cause a small number of genes to randomly change their expression level.

For a Boolean GRN model, this corresponds to an unexpressed gene being randomly expressed,

or vice versa. The robustness of the network describes how a perturbation on average affects the

network dynamics. One popular robustness measure for Boolean networks, the Derrida value,

describes the average Hamming distance between two states after one synchronous update ac-

cording to the Boolean network rules, given that the two states differed in a single node (22).

Due to the finite size of the state space, any state of a BN eventually transitions to an attractor,

which corresponds to a distinct biological phenotype. Thus, the Derrida value is a meaningful

robustness measure

r(F ) =
1

n2n

∑
x∈{0,1}n

n∑
i=1

1
[
A(x) = A(x⊕ ei)

]
=

1

n2n−1

∑
x,y∈{0,1}n,
||x−y||=1

1
[
A(x) = A(y)

]
∈ [0, 1]

Here, ei is the ith unit vector and A(x) labels the attractor that state x transitions to. Geometri-
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cally, if we consider the Boolean hypercube with each vertex in {0, 1}n labeled by the attractor

that the vertex-associated state eventually transitions to, then r(F ) is the proportion of edges,

which connect vertices with the same value.

Clearly, r(F ) = 1 if a Boolean network F possesses only a single attractor. Moreover, the

expected value, E[r(F )], decreases as the number of attractors of F increases. This implies

that the phenotypical robustness and the dynamical complexity are negatively correlated and

that there exists a trade-off when trying to maximize both. It is reasonable to hypothesize that

evolution favors robust GRNs that give rise to sufficient variety in the phenotype space. In line

with this, we hypothesized that modular networks have higher robustness than non-modular

networks with the same dynamical complexity.

To test this hypothesis, we generated nested canalizing Boolean networks with N = 60

nodes, a fixed in-degree of 3, and m = 1, . . . , 6 modules (i.e., SCCs of the wiring diagram) of

size N/m. Networks with more modules possessed on average a higher dynamical complexity,

quantified here as the number of attractors (Fig. 2A). At a fixed dynamical complexity, the

more modular a network the higher was its average phenotypical robustness (Fig. 2B). This

finding supports the hypothesis that a modular design serves as an evolutionary answer to a

multi-objective optimization problem.

Structural decomposition of Boolean networks

Thus far, we have described how to define modules as restrictions of Boolean networks, and

provided evidence that modules defined this way are biologically meaningful. To obtain a

successful decomposition theory, we also require the inverse operation of a restriction: a semi-

direct product that combines two Boolean networks, F and G, such that F is the upstream

module and G is the downstream module. The coupling scheme P contains the information

which nodes in F regulate which nodes in G. We denote the combined Boolean network as
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Figure 2: Modularity confers dynamical complexity and phenotypical robustness. 60-node
nested canalizing Boolean networks with a constant in-degree of 3 and with 1-6 modules (i.e.,
SCCs of the wiring diagram) of equal size were generated (50,000 networks each). For each
modular network, a weakly connected directed graph describing the connections between mod-
ules, as well as a single edge connecting an upstream with a downstream module were selected
uniformly at random. By following the transitions of 500 random initial states to their attractors,
the phenotypical robustness and a lower bound for the dynamical complexity (here, number of
attractors) were established for each network. (A) Cumulative empirical density function of the
number of attractors, stratified by the number of modules or SCCs. (B) The mean phenotypical
robustness (y) is plotted against the number of discovered attractors (x), stratified by the number
of modules or SCCs (dots). Since y(1) = 1, the two-parameter function y = α+(1−α)e−k(x−1)

is fitted to the means of the number of attractors for x = 1, . . . , 19 (lines).
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F oP G and refer to this as the coupling of F and G by the coupling scheme P or as the

semi-direct product of F and G via P (detailed definition in SI Appendix, section 1). (The

motivation for the term “semi-direct product” comes from the fact that the combination of the

two subnetworks is like a product, except that F acts on G through P , which is not the case

in an actual product. The term is also used in mathematical group theory, which provided the

motivation for our decomposition approach.)

As an example, consider the Boolean networks F (x1, x2) = (x2, x1) and G(u1, u2, y1, y2) =

(u1∨ (u2∧ y2),¬u2∧ y1) where G possesses two external parameters, u1 and u2. With the cou-

pling scheme P = {x1 → u1, x2 → u2}, we obtain the combined nested canalizing network

F oP G : {0, 1}4 → {0, 1}4,

(F oP G)(x1, x2, y1, y2) = (x2, x1, x1 ∨ (x2 ∧ y2),¬x2 ∧ y1).

At the wiring diagram level, this product can be seen as the union of the two wiring diagrams and

some added edges determined by the coupling scheme P (Fig. 3). If instead G(u1, u2, y1, y2) =

u1 + u2 + y2, u2 + y1 with F and P as before, then we obtain the linear network

(F oP G)(x1, x2, y1, y2) = (x2, x1, x1 + x2 + y2, x2 + y1).

At the wiring diagram level, this product looks exactly the same (Fig. 3).

We can prove that every network is either a module or can be decomposed into a semi-direct

product of two networks. That is, if a Boolean network F is not a module (i.e., if its wiring

diagram is not strongly connected), then there exist F1, F2, P such that F = F1 oP F2, and

we call such a network F decomposable. We can even find a decomposition such that F1 is a

module. By induction on the downstream component F2, it follows that any Boolean network is

either a module or decomposable into a unique series of semi-direct products of modules. That

is, for any Boolean network F , there exist unique modules F1, . . . , Fm (m = 1 if F is itself a
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y1 y2

u1 u2

x1 x2

y1 y2

x1 x2x1 → u1, x2 → u2

Figure 3: Semi-direct product of Boolean networks. Wiring diagrams of independent Boolean
networks F and G (where G has external parameters) can be combined into F oP G, the semi-
direct product of F and G. The coupling scheme P describes which variables of F take the
place of the external parameters and act as inputs to G.

module) such that

F = F1 oP1 (F2 oP2 (· · ·oPm−1 Fm)), (2)

where this representation is unique up to a reordering, which respects the partial order induced

by the directed acyclic graph Q (Eq. 1). The collection of coupling schemes P1, . . . , Pm−1

depends on the particular choice of ordering, as well as on the placement of parentheses in

the decomposition of F , which may be rearranged in any associative manner. SI Appendix,

section 1 contains the proofs of these theorems.

Dynamic decomposition of Boolean networks

When the variables of a network F can be partitioned such that F = F1 oP F2 = F1 × F2 is

simply the cross product of two networks F1 and F2, i.e., the coupling scheme P = ∅, then the

dynamics of F can be determined directly from the dynamics of F1 and F2. The dynamics of F

consists of coordinate pairs (x, y) such that

x(t+ 1) = F1(x(t)), y(t+ 1) = F2(y(t)).
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Figure 4: Attractors of a Cartesian product and a semi-direct product. (A) The space of attrac-
tors of a Cartesian product F = F1×F2, with F1(x1, x2) = (x2, x1), F2(x3, x4) = (x4, x3), can
be seen as a Cartesian product of A(F1) and A(F2). To illustrate the different ways to combine
attractors of F1 and F2, in the panel we explicitly write (01, 10) and (10, 01) for F2. (B) In gen-
eral, the coupling of networks does not behave as a Cartesian product and the space of attractors
depends on this coupling. The crossed-out attractors indicate which attractors from the Carte-
sian product are lost when using a semi-direct product with coupling scheme P = {(x3, x2x4)},
and F1, F2 as in A.
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If trajectories (x(t))∞t=0 and (y(t))∞t=0 have periods l and m, respectively, then the periodicity

of the trajectory (x(t), y(t))∞t=0 is the least common multiple of l and m. Moreover, the set of

periodic points (i.e., attractors) of F is the Cartesian product of the set of periodic points of F1

and periodic points of F2.

For example, the Boolean network F (x1, x2, x3, x4) = (x2, x1, x4, x3) can be seen as F =

F1×F2, where F1(x1, x2) = (x2, x1) and F2(x3, x4) = (x4, x3). The sets of attractors of F1 and

F2 are A(F1) = {00, 11, (01, 10)} and A(F2) = {00, 11, (01, 10)} (where we omit parentheses

around steady states). By concatenating the attractors of F1 and F2, we obtain the attractors of

F (Fig. 4A). Note that we have two ways of concatenating the limit cycle (01, 10) of F1 and the

limit cycle (01, 10) of F2 to obtain attractors of F . In general, we have the following equation

that formally states that attractors of F1×F2 are given by concatenating attractors of F1 and F2.

A(F1 × F2) = A(F1)×A(F2) (3)

The computation of the attractors of F becomes more complicated when F is slightly

modified so that F (x1, x2, x3, x4) = (x2, x1, x2x4, x3) = F1 oP F2, where F1 as before and

F2 = (ux4, x3) with external parameter u and coupling scheme P = {x2 → u}. Since the cou-

pling between F1 and F2 is no longer empty, not every combination of attractors of F1 and F2

will result in an attractor of F (Fig. 4B). For example, (01, 10) ∈ A(F1) and (01, 10) ∈ A(F2)

do give rise to an attractor of F , while (01, 10) ∈ A(F1) and (10, 01) ∈ A(F2) do not. The set

of attractors, A(F ), is the union of 00 × 00, 11 ×A(F2), and (01, 10) × {00, (01, 10)}, and is

thus a subset of the attractors of the Cartesian product (Fig. 4A). This is, however, not always

the case but depends on the particular coupling between the networks. Hence, Eq. 3 is not valid

in general.

In order to study the dynamics of decomposable networks, we need to understand how a

trajectory, which describes the behavior of an “upstream” network at an attractor, influences
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the dynamics of a “downstream” network. The trajectory of an “upstream” m-node network F1

at an attractor C1 = (α1, . . . , αr) can be described by (g(t))∞t=0, a sequence with elements in

{0, 1}m. This trajectory has period r, the length of the attractor. The dynamics of the “down-

stream” n-node network F2 depend on F1. Therefore, F2 is a non-autonomous Boolean network,

defined by

y(t+ 1) = F2(g(t), y(t)),

where F2 : {0, 1}m+n → {0, 1}n. SI Appendix, section 2 contains a detailed definition and

examples of non-autonomous Boolean networks. To make the dependence of F2 on the choice

of upstream attractor C1 ∈ C1 explicit, we often write F C12 instead of simply F2. If C2 =

(β1, . . . , βs) is an attractor of F C12 , then

C1 ⊕ C2 = ((α1, β1), (α2, β2), . . . , (αl−1, βl−1))

is an attractor of the combined network F = F1 oP F2 of length l := lcm(|C1|, |C2|), the least

common multiple of |C1| and |C2|.

Iterating over all attractors of F1 (that is, all C1 ∈ A(F1)) as well as all attractors of the

corresponding non-autonomous networks F C12 (that is, all C2 ∈ A(F C12 )) yields all attractors

of the combined network F . After the structural decomposition theorem (Eq. 2), this dynamic

decomposition theorem constitutes the second main theoretical result. Mathematically, it can

be expressed as

A(F ) =
⊔

C1∈A(F1)

⊔
C2∈A(F

C1
2 )

C1 ⊕ C2, (4)

which can be written as A(F1) oP A(F2) to highlight the analogy between the structural de-

composition of a Boolean network and the decomposition of its dynamics. With this, the dy-

namic decomposition theorem states A(F1 oP F2) = A(F1) oP A(F2), which implies a dis-

tributive property for the dynamics of decomposable networks. Note that if P is empty, then

A(F C12 ) = A(F2) for all C1 and we recover Eq. 3, A(F1 × F2) = A(F1)×A(F2).
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The dynamics of a Boolean network F , which decomposes into modules F1, . . . , Fm, can

thus be computed from the dynamics of its modules. That is,

A(F ) = A(F1) oP1

(
A(F2) oP2

(
· · ·oPm−1 A(Fm)

))
, (5)

where the placement of the parentheses may be rearranged in any associative manner, just as for

the structural decomposition in Eq. 2. SI Appendix, section 2 contains the proof of the dynamic

decomposition theorem as well as instructional examples.

Efficient control of decomposable Boolean networks

The state space of a Boolean network grows exponentially in the number of variables. There-

fore, the decomposition theorems can reduce the time needed to perform various computations

by orders of magnitude for networks with several larger modules. Besides an efficient strategy

to compute all attractors of a Boolean network, the structural decomposition theorem can also

be applied to efficiently identify controls of Boolean networks, a topic that has received recent

attention (23–25). Drug developers wonder, for example, which nodes in a gene regulatory

network need to be controlled by an external drug to ensure the network transitions to a desired

phenotype, typically corresponding to a specific network attractor.

Two types of control actions are generally considered: edge controls and node controls. For

each type of control, one can consider deletions or constant expressions, as defined in (26). The

motivation for considering these control actions is that they represent the common interventions

that can be implemented in practice. For instance, edge deletions can be achieved by the use

of therapeutic drugs that target specific gene interactions, while node deletions represent the

blocking of effects of products of genes associated to these nodes (27, 28).

A set of controls µ stabilizes a Boolean network at an attractor C when the resulting net-

work after applying µ possesses C as its only attractor. As described in detail in (29), the

decomposition into modules can be used to obtain controls for each module, which can then be
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Figure 5: A multicellular Boolean cancer model (30), which describes the interactions of pan-
creatic cancer cells (purple nodes), pancreatic stellate cells (blue nodes), and their connecting
cytokines (yellow nodes). (a) Wiring diagram describing the regulations between nodes, which
are all monotonic, with black and red arrows indicating activation and inhibition, respectively.
The non-trivial modules are highlighted by amber, green, and gray boxes. (b) Directed acyclic
graph describing the connections between the non-trivial modules.

combined to obtain a control for an entire network. Specifically, for a decomposable network

F = F1 oP F2, if µ1 is a set of controls that stabilizes F1 in C1 and µ2 is a control that stabilizes

F C12 in C2, then µ = µ1 ∪ µ2 is a set of control that stabilizes F in C = C1 ⊕ C2, as long as C1 or

C2 is a steady state.

A recently published multicellular Boolean network model describes the microenvironment

of pancreatic cancer cells by modeling the interactions of pancreatic cancer cells (PCCs), pan-

creatic stellate cells (PSCs), and their connecting cytokines (30). This network has 69 nodes,

114 edges, and possesses three non-trivial modules (Fig. 5a). Fig. 5b shows the directed acyclic

graph, which describes the connections between the modules.

An effective treatment should induce the cancer cell to undergo apoptosis, which therefore

represents the desired attractor of this network. To find a set of controls that stabilizes the
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network in this attractor, one can exploit the structural decomposition of the network by first

controlling the upstream module (module 1), which has four attractors: two steady states and

two 3-cycles. This module consists of two feedback loops joined by the node TGFb1. It is

thus enough to control TGFb1 to stabilize this module into any of its attractors (31). Using

the methods from (32) or (26), the controls of module 2 can be identified. A minimal set of

two nodes needs to be controlled to stabilize this module: RAS in the pancreatic cell and

RAS in the stellate cell. After applying these controls, the nodes in the downstream module

(module 3) are all already constant and do therefore not require additional controls. Using the

modular structure of the network, three nodes can be easily identified, which suffice to control

the entire network. Notably, this never requires the consideration of the entire network, which

saves computation time. Disregarding the decomposition and identifying controls for the whole

network instead yields the same minimal set of three controls. However, this may not always

be the case. In rare cases, the module-by-module control identification strategy will yield a set

of controls that is larger than necessary.

Discussion

The search for “fundamental laws” has been part of systems biology since its beginning, in-

cluding features of biological systems that are characteristic of most or all systems of a given

type, such as gene regulatory networks. The concept of modularity can be considered as such a

feature, and has been studied extensively in several different contexts. Another focus of interest

has been the relationship between the structure and function of dynamic networks. The results

in this paper in essence provide evidence that modularity is in fact a key feature that connects

structure and function of networks.

Systems biology has been a field that is making extensive use of mathematical models as de-

scriptive language and analytic tool. Notions such as dynamic modularity are difficult or impos-
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sible to study without the use of mathematical models, as is the relationship between structure

and function of networks. A limitation of this approach is of course that published models are

partial and simplified representations of the requisite biology, so that caution is required when

drawing conclusions. But this approach has yielded useful results in studying motifs in static

networks (e.g., (20)). The advantage of a mathematical foundation is that it enables an analytical

treatment of concepts that might otherwise have to be studied using heuristics, examples, and

simulations. This is the essence of our approach in this study. Based on rigorous definitions, we

were able to prove the link between structural and functional modularity, as well as the broad

application to control of networks. We believe that we have only scratched the surface of results

that follow from the mathematical framework we have established. For instance, the flip side

of network decomposition is network construction through “concatenation” of modules. This

can be done in ways that achieve certain dynamic properties, of potential interest to problems

in synthetic biology.

Finally, while we have provided evidence that our concept of structural and functional mod-

ularity might have biological relevance, more work remains to be done. For instance, it would

be of interest to investigate the biological features of the individual modules found in the repos-

itory of Boolean network models from (14) to investigate whether modules in our definition

can be viewed as meaningful biological “functional units.” The implications of a functional

modular structure also remain to be explored beyond our initial result of control at the modular

level. We also believe that many of our results should hold in appropriate form for the modeling

framework of ordinary differential equations.
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Methods

Meta-analysis of published gene regulatory network models

We used the same repository of 122 published and distinct gene regulatory network models as

in (14). Some of these models include non-essential regulators. That is, a node is included as a

regulator in an update rule but a change in this node never affects the update rule. We removed

all non-essential regulators from the update rules, before computing for each network the num-

ber of genes (i.e., size), the average connectivity, all SCCs, as well as the size of each SCC.

From this, we derived the primary metric of interest, the number of non-trivial SCCs. Trivial

SCCs consist of one node only. Since SCCs are defined as the largest connected component

such that there is a path from every node to every other node, it is irrelevant whether the single

node in a trivial SCC regulates itself.

The logistic multivariable regression model, implemented in the Python module statsmodels.api

is given by
p

1− p
= eβ0+β1x1+β2x2 ,

where p is the probability of a model having multiple non-trivial SCCs, and x1, x2 are average

connectivity and network size.

Generation of Boolean networks for simulation study

To understand the effect of modularity on the phenotypical robustness and the dynamical com-

plexity, we resorted to simulation studies of Boolean networks with a specific structure and

a defined number of SCCs (i.e., modules). To reduce the number of potential confounders,

we fixed the network size at N = 60 and the in-degree of each node at n = 3, which is

slightly higher than the average in-degree in published gene regulatory network models (14).

We further considered only nested canalizing update rules since most rules in published gene
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regulatory networks are of this type (14). To generate networks with a defined number of

m ∈ {1, 2, . . . , 6} modules, each of which consists of N/m nodes, we first generated a random

directed acyclic graph ofmmodules by picking uniformly at random a weakly-connected lower

triangular binary m×m-matrix D with diagonal entries 1. If Dij = 1, a node in module i regu-

lates a node in module j. Otherwise, there is no connection. To ensure that the number of SCCs

was indeed m, we required each module to be a single SCC. We achieved this by randomly

generating wiring diagrams for a module until the wiring diagram was strongly connected (for

the sparsest modules (i.e., m = 1, N/m = 60), this took on average about 22 iterations).

Estimating dynamical complexity and phenotypical robustness

The size of the state space of the 60-node Boolean networks used in the computational study

prohibits the exhaustive identification of all attractors. To compute all attractors, we could have

exploited the decomposition into smaller modules for decomposable networks. However, this

does not help with the identification of attractors for non-decomposable networks consisting

of a single module of size 60. To avoid introducing any bias by using different methods, we

employed the same sampling technique to estimate a lower bound of the number of attractors

for each Boolean network. Specifically for each network F , we generated 500 random initial

states x0 ∈ {0, 1}60 and continued to synchronously update each x0 according to F (that is,

xi+1 = F (xi)) until a recurring state was found, indicating the arrival at an attractor.

Biologically meaningful attractors “attract” a substantial portion of the state space. With a

state space size of 260 and when starting from 500 random initial states, we have a 95% chance

of finding an attractor, which attracts 0.6% of the state space and even a 99% chance of finding

an attractor, which attracts 0.9% of the state space. Relying on sampling and the resulting lower

bound of the number of attractors should therefore not limit the validity of our findings.

To estimate the phenotypical robustness, we considered the same 500 random initial states
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x0 ∈ {0, 1}60 and generated for each x0 a corresponding state y0 = x0⊕ei by randomly flipping

one bit i ∈ {1, . . . , n} (where ei is the ith unit vector and ⊕ denotes binary addition). Just as

x0, we synchronously updated y0 according to F until it reached an attractor and compared

the attractors. As a consequence, all estimated phenotypical robustness values are multiples of

1/500.
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31. J. G. T. Zañudo, G. Yang, R. Albert, Proceedings of the National Academy of Sciences 114,

7234 (2017).

32. J. G. Zanudo, R. Albert, PLoS computational biology 11, e1004193 (2015).

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 12, 2023. ; https://doi.org/10.1101/2023.09.11.557227doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.11.557227
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Material

1 Proofs of the structural decomposition theorems

This section contains the proofs of the structural decomposition theorems described in the main

text. First, we define in full detail the semi-direct product, used to combine two networks in a

hierarchical fashion.

Definition 1.1. Consider two Boolean networks,

F = (f1, . . . , fk) : {0, 1}k → {0, 1}k

with variables x = (x1, . . . , xk) and

G = (g1, . . . , gm) : {0, 1}`+m → {0, 1}m

with external inputs u = (u1, . . . , u`) and variables y = (y1, . . . , ym). Let Λ ⊆ {1, . . . , k} such

that |Λ| = ` and define xΛ := (xλ1 , . . . , xλ`). Then,

H = (h1, . . . , hk+m) : {0, 1}k+m → {0, 1}k+m

defines a combined Boolean network by setting

hi(x, y) =

{
fi(x) if 1 ≤ i ≤ k,

gi−k(xΛ, y) if k + 1 ≤ i ≤ k +m.

That is, the variables xΛ act as the external inputs of G. The corresponding coupling scheme is

defined to be

P = {xλ1 → u1, xλ2 → u2, . . . , xλ` → ul}.

We denote H as H := F oP G and refer to this as the coupling of F and G by (the coupling

scheme) P or as the semi-direct product of F and G via P .

Theorem 1.1. If a Boolean network F is not a module, then there exist F1, F2, P such that

F = F1 oP F2. Furthermore, we can find a decomposition such that F1 is a module.
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Proof. Let F = (f1, . . . , fn) be a Boolean network with variables X = {x1, . . . , xn} and

assume F is not a module. Then the wiring diagram of F is not strongly connected, implying

there exists at least one node y and one node xj 6= y such that there exists no path from xj to y

in the wiring diagram of F . Let X2 = {xj1 , xj2 , . . . , xjm} denote the set of all such nodes, i.e.,

the nodes for which there exists no paths to y. Further, let X1 = X\X2 denote the complement

set of nodes to X2. Note that for every xi ∈ X1, there exists a path from xi to y but no paths

originating from X2 to xi.

Define Λ to be the subset of indices Λ = {λ1, . . . , λ`} ⊂ {1, . . . , k} such that for each

λ ∈ Λ there exists at least one function fji with xji ∈ X2 which depends on xλ.

If Λ = ∅, then the sets X1 and X2 represent two groups of nodes, which are disconnected in

the wiring diagram. Hence the network F is a Cartesian product of F1 and F2. It follows that

F = F1 oP F2 with P = ∅.

If Λ 6= ∅, then for any xi ∈ X1, the corresponding update function fi does not depend onX2

by construction, as there are no paths from X2 to xi, and we set F1 to be the restriction of F to

X1, (F1)i := (F |X1)i = fi. For any xi ∈ X2, if the corresponding update function depends on a

node xj ∈ X1, then xj ∈ Λ by the definition of Λ. It follows by construction that any function

fi then can be written as a Boolean function on X2 with external inputs from xΛ.

Hence, F = F1 oP F2.

Note that in the above proof we can choose the node y such that it belongs to a SCC that

receives no edge from any other SCC. X1 will contain the nodes of this SCC and hence F1 will

be a module.

The main structural decomposition theorem follows directly from this:

Theorem 1.2. For any Boolean network F , there exist unique modules F1, . . . , Fm such that

F = F1 oP1 (F2 oP2 (· · ·oPm−1 Fm)),

2
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where this representation is unique up to a reordering, which respects the partial order of Q

(Eq. 1), and the collection of coupling schemes P1, . . . , Pm−1 depends on the particular choice

of ordering.

Proof. If F is a module, then m = 1 and the result follows.

If F is not a module, we use induction on the downstream subnetwork F2 in Theorem 1.1

to obtain the result.

2 Non-autonomous Boolean networks

This section contains the full definition of non-autonomous Boolean networks, as well as two

examples.

Definition 2.1. A non-autonomous Boolean network is defined by

y(t+ 1) = H(g(t), y(t)),

where H : {0, 1}k+m → {0, 1}m and (g(t))∞t=0 is a sequence with elements in {0, 1}k. The

network, denoted Hg, is non-autonomous because its dynamics depend on g(t).

A state c ∈ {0, 1}n is a steady state of Hg if H(g(t), c) = c for all t. Similarly, an ordered

set with r elements, C = {c1, . . . , cr} is an attractor of length r of Hg if c2 = H(g(1), c1),

c3 = H(g(2), c2), . . . , cr = H(g(r − 1), cr−1), c1 = H(g(r), cr), c2 = H(g(r + 1), c1), . . .. In

general, g(t) is not necessarily of period r and may even not be periodic.

If H(g(t), y) = G(y) for some network G for all t (that is, it does not depend on g(t)), then

y(t+ 1) = H(g(t), y(t)) = G(y(t)) and this definition of attractors coincides with the classical

definition of attractors for (autonomous) Boolean networks.

Example 2.1. Consider the non-autonomous network defined by

H(u1, u2, y1, y2) = (u2y2, y1)

3
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and the two-periodic sequence (g(t))∞t=0 = (01, 10, 01, 10, . . .), which corresponds to a 2-cycle

of the upstream 2-node network. If the initial point is y(0) = (y∗1, y
∗
2), then the dynamics of Hg

can be computed as follows:

y(1) = H(g(0), y(0)) = H(0, 1, y∗1, y
∗
2) = (y∗2, y

∗
1),

y(2) = H(g(1), y(1)) = H(1, 0, y∗2, y
∗
1) = (0, y∗2),

y(3) = H(g(2), y(2)) = H(0, 1, 0, y∗2) = (y∗2, 0).

Thus for t ≥ 1, y(2t) = (0, y∗2) and y(2t + 1) = (y∗2, 0). It follows that the attractors of Hg are

given by 00 (one steady state) and (01, 10) (one cycle of length 2). Note that (10, 01) is not an

attractor because (10, 01, 10, 01, ...) is not a trajectory for this non-autonomous network. This

is a subtle situation that can be sometimes missed when not considering all trajectories a limit

cycle represents.

Example 2.2. Consider the non-autonomous network defined by H(u1, u2, y1, y2) = (u2y2, y1),

as in the previous example, and the one-periodic sequence (g(t))∞t=0 = (00, 00, . . .), which

corresponds to a steady state of the upstream 2-node network. If the initial point is y(0) =

(y∗1, y
∗
2), then the dynamics of Hg can be computed as follows:

y(1) = H(g(0), y(0)) = H(0, 0, y∗1, y
∗
2) = (0, y∗1),

y(2) = H(g(1), y(1)) = H(0, 0, y∗2, y
∗
1) = (0, 0).

Then, y(t) = (0, 0) for t ≥ 2, and the only attractor of Hg is the steady state 00.

3 Proof of the dynamic decomposition theorem

For a decomposable network F = F1 oP F2, we introduce the following notation for attractors.

First, note that F has the form F (x, y) = (F1(x), F2(x, y)) where F2 is a non-autonomous

network. Let C1 = (r1, . . . , rm) ∈ A(F1) and C2 = (s1, . . . , sn) ∈ A(F C12 ) be attractors of

4
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length m and n, respectively. Then, the sequence ((rt, st))
∞
t=0 has period l = lcm(m,n), so we

define the sum (or concatenation) of these attractors to be

C1 ⊕ C2 = ((r1, s1), (r2, s2), . . . , (rl−1, sl−1)).

Note that the sum of attractors is not a Cartesian product, C1 × C2 = {(ri, sj)| for all i, j}.

Similarly, for an attractor C1 and a collection of attractors A we define

C1 ⊕ A = {C1 ⊕ C2|C2 ∈ A}.

Our second main theoretical result shows that the dynamics (i.e., the attractor space) of a

semi-direct product can be seen as a type of semi-direct product of the dynamics of the de-

composable subnetworks. When applied iteratively, this enables a computation of the attractor

space from the attractor space of each module.

Theorem 3.1. Let F = F1 oP F2 be a decomposable network. Then

A(F ) =
⊔

C1∈A(F1)

C1 ⊕A(F C12 ) =
⊔

C1∈A(F1)

⊔
C2∈A(F

C1
2 )

C1 ⊕ C2.

Proof. LetX1 andX2 be the variables ofF1 andF2, respectively. Further, let C = {c1, . . . , cl} ∈

A(F ) be an arbitrary attractor ofF with length l. We can define C1 = pr1(C) = (pr1(c1), . . . , pr1(cl)) =:

(c1
1, . . . , c

1
l ) as the projection of C ontoX1, and similarly C2 = pr2(C) =: (c2

1, . . . , c
2
l ) as the pro-

jection of C onto X2. By definition, F1 does not depend on X2. Thus, F1(pr1(x)) = pr1(F (x)),

and for any c1
j ,

F1(c1
j) = F1(pr1(cj)) = pr1(F (cj)) = pr1(cj+1) = c1

j+1.

Iterating this, we find that in general F k
1 (c1

j) = c1
j+k, from which it follows that C1 ∈ A(F1).

5
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Next, we consider the non-autonomous network F C12 defined as in Definition 2.1 where

y(t+ 1) = pr2F (g(t), y(t)), and g(t) = c1
t . If y(1) = c2

1, then

y(2) = pr2F (g(1), c2
1) = pr2F (c1

1, c
2
1) = pr2F (c1) = pr2(c2) = c2

2

and in general

y(k + 1) = pr2F (g(k), c2
k) = pr2F (c1

k, c
2
k) = pr2ck+1 = c2

k+1

Hence y(l + 1) = pr2F (cl) = pr2c1 = y(1) and thus C2 ∈ A(F C12 ). From this we have that

C = C1 ⊕ C2 ∈ C1 ⊕A(F C12 ) and thus

A(F ) ⊂
⊔

C1∈A(F )

C1 ⊕A(F C12 ).

Conversely, let C1 ∈ A(F1) and C2 ∈ A(F C12 ). We want to show that C1 ⊕ C2 ∈ A(F ). Let

g(t) = c1
t , y(1) = c2

1, and y(t+1) = pr2F (g(t), y(t)). Since C2 ∈ A(F C12 ), then y(t+1) = c2
t+1

by definition. Let N = |C2|. Then

F (c1
k, c

2
k) = (pr1F (c1

k, c
2
k), pr2F (g(k), y(k))

= (F1(c1
k), F

C1
2 (c1

k, y(k + 1)))

= (c1
k+1, c

2
k+1).

Thus FN(c1
1, c

2
1) = F (c1

N , c
2
N) = (c1

1, c
2
1) and hence C1 ⊕ C2 ∈ A(F ). It follows that

⊔
C1∈A(F1)

C1 ⊕A(F C12 ) ⊂ A(F ),

from which we can conclude that the sets are equal.

The following two examples highlight how Theorem 3.1 enables the computation of the dy-

namics of a decomposable network from the dynamics of its modules. To match attractors from

6
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the upstream module with the attractor spaces of the corresponding non-autonomous down-

stream networks, it is useful to consider the space of attractors in a specified order: we use

parentheses (curly brackets) to denote an ordered (unordered) space of attractors. If there is no

ambiguity, in practice we can use o instead of oP .

Example 3.1. Consider the Boolean network F (x1, x2, y1, y2) = (x2, x1, x2y2, y1). We can de-

compose F = F1 oF2 where F1(x1, x2) = (x2, x1) is an upstream module and F2(u2, y1, y2) =

(u2y2, y1) is a downstream module with external parameter x2. To find all attractors of F by

using Theorem 3.1, we find the attractors of F1 and the attractors of F2 induced by each of

those attractors. It is easy to see that A(F1) = {00, 11, {01, 10}} (where we denote steady

states C = {c} simply by c).

• For C1 = 00, the corresponding non-autonomous network is y(t + 1) = F2(0, 0, y(t)). If

y(0) = (y∗1, y
∗
2), then

y(1) = F2(0, 0, y∗1, y
∗
2) = (0, y∗1),

y(2) = F2(0, 0, 0, y∗1) = (0, 0).

Thus, the space of attractors for F C12 is

A(F C12 ) = {00}.

• For C2 = 11, the corresponding non-autonomous network is y(t + 1) = F2(1, 1, y(t)). If

y(0) = (y∗1, y
∗
2), then

y(1) = F2(1, 1, y∗1, y
∗
2) = (y∗2, y

∗
1),

y(2) = F2(1, 1, y∗2, y
∗
1) = (y∗1, y

∗
2).

Thus, the corresponding space of attractor is

A(F C22 ) = {00, 11, (01, 10)}.

7
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• For C3 = (01, 10), we define g(t) : N → {0, 1}2 by g(0) = (0, 1), g(1) = (1, 0), and

g(t+ 2) = g(t). F C32 is given by y(t+ 1) = F2(g(t), y(t)). If y(0) = (y∗1, y
∗
2), then

y(1) = F2(0, 1, y∗1, y
∗
2) = (y∗2, y

∗
1),

y(2) = F2(1, 0, y∗2, y
∗
1) = (0, y∗2),

y(3) = F2(0, 1, 0, y∗2) = (y∗2, 0),

y(4) = F2(1, 0, y∗2, 0) = (0, y∗2).

Then, the corresponding space of attractors is

A(F C32 ) = {00, (01, 10)}.

To reconstruct the entire space of attractors for F , we have

A(F ) = A(F1) oA(F2)

= (00, 11, (01, 10)) o
(
A(F C12 ),A(F C22 ),A(F C32 )

)
= 00⊕ {00} ∪ 11⊕ {00, 11, (01, 10)} ∪ (01, 10)⊕ {00, (01, 10)}

= {0000, 1100, 1111, (1101, 1110), (0100, 1000), (0101, 1010)},

which agrees with the space of attractors shown in Fig. 4B.

Example 3.2. Consider the linear Boolean network

F (x1, x2, y1, y2) = (x2, x1, x2 + y2, y1).

We can decompose F = F1 o F2 into modules F1(x1, x2) = (x2, x1) and F2(u2, y1, y2) =

(u2 + y2, y1). The space of attractors of the upstream module F1 is

A(F1) = {00, 11, (01, 10)} .

8
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Using the dynamic decomposition theorem (Theorem 3.1), we can identify all attractors of F

as follows (see Fig. S2 for a graphical description).

• For C1 = 00, the corresponding non-autonomous network is y(t+ 1) = F 2(0, 0, y(t)). If

y(0) = (y∗1, y
∗
2), then y(1) = F 2(0, 0, y∗1, y

∗
2) = (y∗2, y

∗
1). Thus, the space of attractors for

F C12 is

A(F C12 ) = {00, 11, (01, 10)}.

• Similarly, for C2 = 11, we find that the space of attractors for F C22 is

A(F C22 ) = {(00, 10, 11, 01)}.

• For C3 = (01, 10), we define g(t) : N → X1 by g(0) = (0, 1), g(1) = (1, 0), and

g(t+ 2) = g(t). F C32 is given by y(t+ 1) = F2(g(t), y(t)). If y(0) = (y∗1, y
∗
2), then

y(1) = (1 + y∗2, y
∗
1),

y(2) = (y∗1, y
∗
2 + 1),

y(3) = (y∗2, y
∗
1),

y(4) = (y∗1, y
∗
2) = y(0),

and in general for t > 0,

y(4t) = (y∗1, y
∗
2),

y(4t+ 1) = (1 + y∗2, y
∗
1),

y(4t+ 2) = (y∗1, y
∗
2 + 1),

y(4t+ 3) = (y∗2, y
∗
1).

It follows that there are only 2 periodic trajectories in this case: (00, 10, 01, 00, 00, 10, 01, 00, . . .)

and (11, 01, 10, 11, 11, 01, 10, 11, . . .), which both have period 4. The corresponding at-

9
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tractor space is

A(F C32 ) = {(00, 10, 01, 00), (11, 01, 10, 11)}.

Note that the repetition of certain states is needed to obtain the correct attractors of the

full network F .

To reconstruct the space of all attractors for F , we have

A(F ) = (00, 11, (01, 10)) o
(
A(F C12 ),A(F C22 ),A(F C32 )

)
=


00⊕ {00, 11, (01, 10)}
11⊕ {(00, 10, 11, 01)}

(01, 10)⊕ {(00, 10, 01, 00), (11, 01, 10, 11)}


=


0000, 0011, (0001, 0010),
(1100, 1110, 1111, 1101),
(0100, 1010, 0101, 1000),
(0111, 1001, 0110, 1011)

 .

The linear network F possesses thus two steady states, one 2-cycle and three 4-cycles.

10
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Figure S1: Modular decomposition of all published expert-curated Boolean gene regulatory
network models with more than one non-trivial module. Each model is labeled by the Pubmed
ID of its source. Each red non-trivial module is labeled by its size, i.e., the number of nodes
contained in the module. Trivial modules consist of one node only. They are colored gray if
they are input or output nodes, i.e., nodes without incoming or outgoing edges, respectively.
Otherwise, they are colored pink. For models with more than 40 modules, input and output
modules are omitted for clarity, indicated by ∗ after the Pubmed ID. An arrow from module X
to module Y indicates that some node in X regulates some node in Y . The directed acyclic
graph of the multicellular pancreatic cancer model, analyzed in Fig. 5, is shown in row 4,
column 4 (Pubmed ID 35752283).
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Figure S2: Graphical description of the dynamic decomposition theorem (applied to Exam-
ple 3.2). The dynamics of F1 oP F2 can be seen as a semi-direct product between the dynamics
of F1 and the dynamics of F2 induced by F1 via the coupling scheme P . The dynamics of F2

induced by attractors of F1 can vary, and the dynamic decomposition theorem (Theorem 3.1)
shows precisely how to combine all of these attractors.
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