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Abstract:
Perceptual decision-making involves multiple cognitive processes, including accumulation of
sensory evidence, planning, and executing a motor action. How these processes are intertwined
is unclear; some models assume that decision-related processes precede motor execution,
whereas others propose that movements reflecting on-going decision processes occur before
commitment to a choice. Here we develop and apply two complementary methods to study the
relationship between decision processes and the movements leading up to a choice. The first is
a free response pulse-based evidence accumulation task, in which stimuli continue until choice
is reported. The second is a motion-based drift diffusion model (mDDM), in which movement
variables from video pose estimation constrain decision parameters on a trial-by-trial basis. We
find the mDDM provides a better model fit to rats’ decisions in the free response accumulation
task than traditional DDM models. Interestingly, on each trial we observed a period of time, prior
to choice, that was characterized by head immobility. The length of this period was positively
correlated with the rats’ decision bounds and stimuli presented during this period had the
greatest impact on choice. Together these results support a model in which internal decision
dynamics are reflected in movements and demonstrate that inclusion of movement parameters
improves the performance of diffusion-to-bound decision models.
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INTRODUCTION
Perceptual decision-making is a complex and integral part of our interaction with the world. It
involves the accumulation of sensory evidence, comparison with internal models, and
subsequent decision commitment (Gold and Shadlen 2007). This process allows us to select
the appropriate motor response based on the evidence available. Traditional models
conceptualize perceptual decision making as a serial process in which evidence accumulation
precedes decision commitment and motor execution (Hanks and Somerfield 2017). More recent
studies suggest an alternative model in which evidence accumulation and motor actions occur
in parallel (Pinto et al., 2018; Musall et al., 2019). In this model, aspects of ongoing motor
activity may reflect underlying cognitive dynamics (Shadlen and Kiani, 2013; Wipinski, 2020).
Reconciling these models has been challenging and the relationship between motor actions and
cognitive processing remains unclear (Lepora and Pezzulo 2015; Selen et al. 2012).

To better understand how movement is related to the decision making process, we developed
and applied two complementary methods. The first is a novel free response evidence
accumulation task for rodents. In this task, inspired by previous pulsed based accumulation
tasks (Brunton et al. 2013; Scott et al. 2015; Gupta et al. 2023) agents observe a series of
flashes from two choice ports. Selection of the choice port associated with the higher flash
probability was rewarded with a drop of sugar water. This task has two key new features: rats
are free to move at any time of the cue period, i.e. no head or nose fixation is involved, and
evidence is presented from trial initiation until a choice is reported. This design allowed us to
characterize animal movements and evidence accumulation throughout the duration of a trial
and to study how movements and decision processes co-occur across the entire trial. The
second method movement-based drift diffusion model (DDM) which incorporates pose
estimation to constrain decision parameters on a trial-by-trial basis. In this method, termed
mDDM, neural network-based video pose estimation is used to track the movements of a
decision-maker moment-by-moment. These movement parameters are then used to constrain
decision parameters of the DDM on a trial-by-trial basis.

We trained male and female rats to perform the free response task in an automated operant
training facility. Rats learned the task quickly, exhibited high accuracy and showed hallmarks of
evidence accumulation, including response time distributions that are well fit by a traditional
DDM. In parallel, we recorded behavioral videos of rats performing the task and then fit the
mDDM. Using this approach, we find that the mDDM outperforms traditional DDMs, based on
standard model comparison metrics, and provides a trial-by-trial estimate of decision
parameters including starting point, non-decision time and decision threshold. Interestingly we
also observe a period of relative immobility, prior to movement onset, and that evidence
presented during this period was a better predictor of subsequent choice than later evidence.
Together these results are consistent with a model of decision making in which movements
reflect the internal dynamics of the decision process, but that there exists a period of
deliberation, prior to movements, when the majority of evidence is accumulated. In addition, the
task and modeling approach we describe is well-suited for studying the decision-making
process and could be paired with neural recordings in future studies to further characterize
perceptual decision making in rats and other species.

1

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2023. ; https://doi.org/10.1101/2023.09.11.556575doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.11.556575
http://creativecommons.org/licenses/by-nc/4.0/


RESULTS

Rats accumulate evidence in a free-response perceptual decision-making
task
We developed a free-response version of a visual pulse-based evidence accumulation task
(Scott et al. 2015; 2017; 2018) which rats can perform in a 3-port operant chamber (Figure 1A).
To initiate the trial, the rat would nose poke in the center port. Following trial initiation, lights on
the left and right side reward ports flashed bilaterally indicating the start of the cue period.
During the cue period, the left and right side light ports flicker based on a Bernoulli process
(Figure 1B). The odds were set so that, in each 100ms time bin of the cue period, the correct
reward port would illuminate briefly (10 ms) with a 75% probability, while the incorrect port had a
25% chance of illuminating. During the cue period the animal was free to respond at any time. In
contrast to previous versions of the pulse-based accumulation tasks (Brunton et al. 2013; Scott
et al. 2015; Gupta et al. 2023) rats were not required to maintain fixation at the center poke and
could move their head freely during the cue period. The trial ended when the rat poked its nose
into one of the two side light pokes. If the poke with the higher generative probability was
selected, the animal received a drop of sugar water (10% sucrose), if the opposite side was
selected the animal received no reward.

We trained Long-Evans rats (n=13; 10 females, 3 males) in this task. Rats were trained in a
two-hour session once per day, five days a week. After progressing through a series of training
stages (Methods), rats performed an average of 409 trials per session, reached high accuracy
(76% correct on average) and exhibited relatively long response times (RT, the time between
when the rat initiated its trial and reported its choice) (mean = 0.956s) (Figure 1C, 1D). We
observed no differences between males or females in trials per session (One-way RM ANOVA,
p=0.458, F=0.592), accuracy (One-way RM ANOVA, p=0.469, F=0.564), or RT (One-way RM
ANOVA, p=0.393, F=0.789) .

Consistent with an evidence accumulation strategy, rats exhibited increased accuracy on trials
with longer RTs (Figure 1E). Next, we sought to evaluate how well the rats’ RT distributions and
accuracy were fit by drift diffusion models (Figure 2). The traditional DDM provided a good
description of the rats’ RT distributions (Figure 2B) and indicated relatively high decision
bounds, consistent with evidence accumulation. Next, to determine if the model fits could be
improved by taking into account the discrete nature of the stimulus we used a pulse-based DDM
(pDDM). The pDDM used the same 4 parameters as the DDM, and was similar with the
exception that the drift only occurs at stimulus presentation, rather than continuously during the
trial (Methods). Both models explained the full distribution of choices and response times
equally, determined by comparing the negative log likelihood of the models (Exact Two-Sided
KS Test, p=0.9992, Figure 2C). Moreover, we did not observe significant differences in the
magnitude of side-bias and non-decision time (the time an animal spends not making a decision
e.g. movement time etc.), between the DDM and pDDM (Figure 2D). The pDDM did
consistently predict larger drift rates and boundary parameter values (Exact Two-Sided KS Test,
p(drift rate)=1.923e-7, p(boundary)=0.00275, Figure 2D), however, these increases were
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correlated such that both models predicted similar RT distributions (Figure 2B). Taken together,
these results suggest that rats use an evidence-accumulation strategy to make a decision and
that the pDDM and DDM provide an equally good description of rat RTs during the task.

Rat’s head movements during decision making are well fit by a sinusoidal
model
In our task rats are free to move their heads during the cue period. This provided an opportunity
to study head movements during evidence accumulation. We recorded video from a subset of
rats (N = 6), extracted their movement trajectories, and fit a five parameter sinusoidal model to
their head movements on each trial.

A ResNet50-based DeepLabCut network (Mathis et al., 2018) was trained to track the nose,
ears, and back of the head of rats as they performed the perceptual-decision-making task
(Figure 3A-B). The position of the center of the head and the angle of the head relative to the
nose poke wall were derived from these key points. To characterize movement trajectories using
a small number of interpretable parameters, we utilized a five-parameter sinusoidal model
(Figure 3C). This model served to represent several aspects of the rat's behavior, including: i)
delay: the time taken to initiate movement, ii) shift: the position of the rat’s head at the start of
the trial, and iii) period: the total sinusoidal periods present in the trajectory. The model also
incorporated iv) offset: the movement period itself, reflecting head speed through the trajectory,
and v) magnitude: the magnitude of the trajectory. The sinusoidal model was fit to the head
movements of each rat on each trial and explained most of the data variance with an median
R^2 value of 0.9739 (Figure 3D). Model fits declined slightly but significantly for longer RT trials
(Figure 3E). However the model provided a good description of both correct and error trials for
both left and right choices (Figure 3E). These results suggest that rats’ head movements during
perceptual decision making in a three-port operant chamber are well captured by a 5 parameter
sinusoid model.

Rat’s movements provide information about internal decision variables
A long-standing question in the field is whether movements prior to a decision are reflective of
the latent decision making process (Shadlen and Kiani, 2013; Wipinski, 2020). To address this
question, we tested whether DDM models with movement information (i.e. mDDMs) could
explain rat choices and RTs better than a DDM without movement information (i.e. a traditional
DDM). We developed three different mDDMs variants to test three hypotheses about the
relationship between movement parameters and decision parameters (Figure 4). Our first
hypothesis was that, on each trial, the time the rats spent moving to the side-reward port
positively correlates with non-decision time. This hypothesis was evaluated using a model
where the non-decision time was a function of the movement time (defined as response time
minus the delay in the sinusoidal model). We referred to this variant as the Movement Time
DDM (mtDDM) (Figure 4A-B).

Our second hypothesis postulated that the delay before a movement onset predicts the decision
boundary parameter. This hypothesis reflects the intuitive idea that if a rat spends more time
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waiting before starting to move, it spends more time accumulating evidence. To test this
hypothesis, we used a model where the boundary was a linear function of the delay in the
sinusoidal movement model. This variant was known as the Movement Delay DDM (mdDDM)
(Figure 4C-D).

The third hypothesis proposed a correlation between the initial position of a rat's head and its
side bias. For example, if a rat's head is slightly angled to the right at the start of a trial, it would
be more likely to go right than if it were angled slightly to the left. We tested this hypothesis
using a DDM variant where the side bias parameter was a function of the side bias as measured
by the sinusoidal movement model. We termed this model the Movement Orientation DDM
(moDDM) (Figure 4E-F).

We compared the performance of each of these new models to the standard DDM. After fitting
to rat behavioral data all three movement-informed models (mtDDM, mdDDM, and moDDM)
resulted in a lower Bayes Information Criterion (BIC) value compared to the standard DDM
(Figure 4G). This suggests that the non-decision time variable is the most crucial for improving
model fits. This means that rats have significant variability in how much time they take to report
their choices after movement onset, which could be indicative of other latent dynamics of the
decision process. This suggests that incorporating movement parameters into decision models
can improve model fits.

Rat’s weigh evidence prior to movement onset most heavily
Our model comparison approach suggests that movement time is correlated with non-decision
time and that the delay in movement onset is correlated with decision bounds. One intuitive
explanation for this result is that the pre-movement period reflects a period of deliberation where
the animal weighs sensory information more strongly. To assess this hypothesis, we took
advantage of the known timing of sensory pulses and measured the influence of stimuli before
and after movement on the animal's decision using a binomial generalized linear model (GLM)
(Figure 5A). We fit three separate models: “All'', “Before”, “After”. The “All” model represents the
differences in right vs left flashes across the entire trial period (“All” model). The “before” and
“after” models correspondingly only consider the differences in flashes before movement onset
(“Before” model), after movement onset (“After” model), To assess the goodness of fit of each
model , we used 10-fold cross validation and used the negative log-likelihood as our objective
measurement and compared the predicted psychometric function of each model to the rats’
data. (Figure 5B-C). We found that, across all rats, the “All'' and “Before” model were largely
indistinguishable, and were better than the “After” model. These results are consistent with a
model in which rats base their decision on an accumulation process in which sensory
information received prior to movement onset is weighted most heavily.

DISCUSSION
In this study, we developed a free response version of a visual pulse-based evidence
accumulation task and trained rats to perform this task in a high-throughput operant facility.
Behavioral analysis suggests that rats solve this task by perceptual integration: high-accuracy
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with a positively skewed response time distribution, accuracy increases with response time,
choices, and response times were well fit by DDMs. Furthermore, we show that the use of head
related positional data to estimate DDM parameters on a trial-by-trial basis (mDDM) provided
better fits than a traditional DDM. We also found that even though rats are free to move during
the entire trial, rats tend to exhibit a period of fixation prior to movement to their choice.
Interestingly, we find that sensory information presented during this interval prior to movement
initiation was as effective in predicting choice as stimuli presented over the whole-trial and
significantly better than stimuli presented after movement initiation. Together these findings
suggest that this task is useful for studying the decision making process, that rats are capable of
performing a free-response task with high accuracy and long response times, and that
movement related information can be used to infer the latent parameters of a DDM.

These results are inconsistent with the serial model of decision making, in which motor output
follows the decision process (Hanks and Somerfield 2017). For example, our results indicate
that head position and angle prior to accumulation predicts the starting point of accumulation in
a drift diffusion process. In contrast, our observations are consistent with the parallel or
"continuous flow" model, and the embodied cognition model (Lepora and Pezzulo 2015; Kim et
al., 2021). Both parallel and embodied cognition models have received substantial support in
recent years. In virtual reality navigation-based decision tasks involving perceptual decision,
mice typically make pre-emptive movements to a choice target during the accumulation and
delay phases of the VR environment (Pinto et al. 2018). Furthermore, rats' head movement
seem to reflect changes of mind (Resulaj et al. 2009) and deliberation, such as
vicarious-trial-and-error events at decision points in mazes (Redish 2016). It has also been
shown that the eye saccades and reaching behaviors of primates (including humans) reflect
internal decision states like indecisiveness and future choices (Seideman, 2018; Król and Król,
2019; Shadmehr et al, 2019; Korbish et al. 2022).

Although our data is consistent with growing evidence for the parallel and embodied cognition
models, it is interesting to note that freely moving rats exhibit a phase of relative immobility
which corresponds to a period of maximal sensory evidence accumulation. This observation
might appear supportive of the serial model or a hybrid model in which animals alternate
between brain states where movement and cognition are differently coupled.

Comparison of diffusion models of decision-making
One of the advantages of the task we report here is that we are able to measure response times
which enables fitting of the traditional DDM and a more direct comparison between
accumulation models. DDMs are used to delve deeper into the decision-making process,
researchers often employ these to model an agent's behavior in two-alternative forced choice
(TAFC) tasks. DDMs assume that an agent continuously accumulates evidence for one option
versus another until a level of evidence reaches a predefined threshold, leading to a decision
(Ratcliff, 1978, Bogacz et al, 2006). DDMs are instrumental in inferring latent process variables
that profoundly affect an observer's behavioral strategies and have greatly increased our
understanding of the evidence accumulation phenomenon (Bogacz et al., 2006).
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The data from this task allowed us to fit both traditional DDMs in which the drift occurs
continuously throughout the cue period, as well as the pDDM, in which the drift is coupled to
the exact time of stimulus presentations. For the data set described here, the continuous and
pulse models perform equivalently. However we point out that the pDDM we fit is just one
example of a much larger range of accumulation models designed for pulse-based tasks. For
example Brunton and colleagues designed a 9-parameter accumulation model which
incorporated estimates of noise from a variety of sources (Brunton et al. 2012). Perhaps
alternative parameterizations of the pDDM would outperform the DDM in fitting to data from this
task.

We chose to use the continuous DDM as a foundation for our movement DDM for several
practical reasons. First and most importantly, it provided a good description of choices and
response times in this task. Secondly, it was significantly less computationally intensive to
calculate the trial-by-trial likelihood than the pulse DDM. Ultimately, this approach revealed that
information from rat’s movement trajectories improved inference of DDM parameters (i.e., that
the parameters better described rat behavior) on a trial-by-trial basis, as indicated by an
improvement in the Bayes Information Criterion (BIC). In future studies it may be possible to
incorporate the movement variables into the pDDM which may improve model performance
further.

Comparison with other accumulation tasks
Perceptual decision making is commonly studied using two types of accumulation tasks:
continuous and pulse-based. Continuous accumulation tasks present a steady stream of
evidence that an observer can integrate continuously. For instance, in the Random Dot Motion
(RDM) task, observers must determine the direction of motion encoded by a field of
stochastically moving dots which are presented throughout the cue period (Roitman and
Shadlen, 2002). In contrast, evidence in pulse based tasks is presented in a stream where the
timing of each packet of information is precisely known and readily controllable. This stimulus
design facilitates quantitative analysis and precise interrogation of the decision process
(Brunton et al., 2013).

Several variants of pulse-based tasks have been used to study evidence accumulation in a
variety of species, including humans (Brunton et al., 2013; Keung et al, 2019, Do et al., 2023),
rats (Brunton et al. 2013, Scott et al. 2015) and mice (Morcos and Harvey, 2016; Pinto et al.,
2018). While these previous pulse-based tasks provided valuable insights into the mechanisms
of perceptual decision-making, they often include a fixed accumulation period (Brunton et al.
2013; Scott et al. 2015; Scott et al. 2017, Scott et al; 2018, Colizoli et al, 2018). This poses
several challenges, chiefly that DDMs are difficult to apply as they depend on the distribution of
response times, which are fixed in a non-free-response version.

Recently, Gupta and colleagues reported an auditory pulse evidence accumulation task that
allows for free responses, meaning an observer can respond at any point during the cue period
(Gupta et al., 2023). The authors demonstrated that rats could learn this task and used the task
to ascertain how history dependence contributes to suboptimal choices in decision making. This
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newer version effectively addresses the issues of other variants by permitting quantifiable
response time distributions (Gupta et al., 2023). However, this task was designed to stop
presenting stimuli once an animal breaks its fixation in a nose port, which precludes its ability to
answer questions related to accumulation during movement periods. In contrast,the task we
describe here poses fewer constraints on the animal movements which allows for greater
expression of behaviors.

Limitations of the current study
Our results suggest that there is a separate stage in the evidence accumulation process, prior to
movement, when the rat is heavily integrating sensory evidence. It is worth noting that we
cannot effectively rule out the possibility that evidence accumulation occurs over the entire trial.
One reason for this could be that across most of the trials, the flash difference across the
pre-trial and the entire trial are highly correlated (Pearson’s r=0.96). This suggests that we
cannot fully distinguish between the pre-movement and whole trial flashes in terms of predicting
choice. However, since the pre-movement is largely indistinguishable from the model fit of the
whole-trial flashes, this would still suggest that stimuli integrated prior to movement onset are
most important for determining choice.

A second limitation is that our identification of movement onset is based on the sinusoidal model
of head movements. While we show this model to be an accurate description of the rat's head
trajectory during our task, we did not evaluate other forms of movement, such as limb or trunk
position. It is possible that incorporation of other forms of movement into the DDM would further
improve model fits. Body movements and changes in posture can drive changes in circuits that
are of interest in evidence accumulation studies, such as the posterior parietal cortex (Mimica et
al. 2018; Tombaz et al. 2020). Therefore a more global picture of movements during evidence
accumulation may be valuable to better interpret neural dynamics associated with decision
making.

A third limitation is that we were not able to determine whether the strength of evidence differs
between the pre-movement and movement period. In future studies our approach could be used
to quantify the weight of evidence pulses during movement and non-movement phases. Or
alternatively, using real time pose tracking methods, closed-loop experiments could be designed
to alter evidence during the different phases of the task to probe the influence on the choice
process.

Integration with neural recordings
Prior studies have performed electrophysiological or calcium recording while rodents and
primates perform continuous and pulsed-based accumulation tasks (Roitman and Shadlen,
2002; Hanks et al. 2015; Scott et al. 2017; Pinto et al., 2018; Boyd-Meredith et al., 2022). These
studies have identified many cells that exhibit changes in firing rate or that correlated with
decision and task variables, including the instantaneous evidence and accumulated evidence
(or decision variable). Some have interpreted these dynamics as evidence in favor of a neural
implementation of the drift-diffusion like process (Gold and Shadlen 2007, Brody and Hanks
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2016). However, despite technological advancements in neural measurement and analysis,
concrete interpretations of dynamics recorded during these decision tasks have remained
elusive (Costello et al., 2013; Musall et al. 2019). However, it is evident that movement is widely
represented across the cortex and therefore should be considered as a factor driving neural
dynamics during decision making (Musall et al. 2019; Umeda et al. 2019). This presents a
difficulty in interpreting neural dynamics recorded during these tasks: to what extent are signals
that represent accumulation and decision, separate from movement? Our results suggest that
there appears to be a stage of evidence accumulation prior to movement onset, at least in rats
performing the visual pulse-based task. Thus, by incorporating video recordings of behavior into
decision making models, future studies can better separate neural dynamics related to evidence
accumulation from those associated with movement.

Extension to other species
In this study we show that rats are able to learn the response-time visual pulse-based task in a
computer-controlled facility, reach peak performance in a relatively short time and exhibit
several hallmarks of evidence accumulation with relatively low lapse rates (16.3%). In future
studies it would be useful to extend this task to other species in order to evaluate within and
across species differences in evidence accumulation. Previous work has shown that fixed
duration visual pulse-based tasks, similar to those developed for rats (Scott et al. 2015), can be
performed by mice in a virtual navigation setting (Morcos and Harvey 2016, Pinto et al. 2018)
and by humans in a lab setting (Brunton et al. 2013) or as an online game (Do et al. 2023).
Furthermore, non-verbal feedback-based training pipelines, similar to those used in animal
studies, have also been incorporated into human studies (Do et al. 2023). These non-verbal
training pipelines allow a more direct comparison between human and animal subjects and may
allow measurement of evidence accumulation in individuals with difficulty following
language-based instructions, such as minimally verbal autistic individuals.
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Figure 1. A free response pulse based accumulation task for rats. A) Schematic of the
behavioral task. Rats initiate a trial by inserting their nose into the center port of a 3-port operant
training chamber. After initiation rats are presented with a series of flashes from the left and
right ports according to a Bernoulli process. The trial ends when rats insert their noise into one
of the two side ports. Rats obtain reward if they choose the side with the higher flash probability.
B) Timing of events in an example behavioral trial. C) Behavioral performance of rats (n = 3
male, 10 female) performing the task. Rats exhibit similar trial numbers (One-way RM ANOVA,
p=0.458, F=0.592) (upper panels), accuracy (One-way RM ANOVA, p=0.469, F=0.564) and
response time (One-way RM ANOVA, p=0.393, F=0.789) (lower panels) across sexes D)
Histogram of rat response times across all rats. E) Accuracy vs. response time curve derived
from a generalized additive mixed model.
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Figure 2. Response times in the accumulation task are well described by diffusion
models. A) Schematic of the accumulator value across 50 example trials as predicted by the
drift diffusion model (DDM, left panel) and pulse-based model (right panel). The top histogram
represents model predicted response times to the upper boundary (i.e., decisions to go right),
the bottom histogram represents model predicted response times to the bottom boundary (i.e.
decisions to go left). B) Histogram of response times for a single rat showing correspondence
between the data (gray), DDM model (light blue line) and pulse model (dark blue line). C)
Comparison of the goodness of fit (log likelihood) for the pulse-based model (y-axis) and DDM
(x-axis). Each dot represents a different animal. D) Comparison of 4-parameters - drift rate,
boundary, non-decision time and starting point - between the pulse-based model (y-axis) and
DDM (a-axis). Each dot represents an individual rat. Both models predict similar non-decision
times and starting points, whereas the pulse model predicts a larger drift rate and boundary
value.
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Figure 3. Rats’ head movement trajectories during decision making are well described by
a 5 parameter model. A) Schematic of the key tracking points on the rat head. Colored dots
represent the four target features tracked by DeepLabCut: nose (red), left ear (orange), right ear
(yellow) and back of the head (green). The teal plus sign and angle indicate the center of head
and head angle, respectively, derived from these target features. B) Example images from a
single trial overlaid with the position of the target features described in panel A. Left panel
shows the rat entering the center port with target features for the previous 10 frames (~300 ms)
overlaid. Right panel shows the rat entering the right port with the target features for the
previous 10 frames overlaid. Note the rightward trajectory of the animal indicated by the trail of
dots reflecting the rightward choice of the animal. C) Schematic of each of the 5-parameters in
the head position model. D) Trajectories for head position (left) and angle (right) position on
eight example trials. Solid blue lines indicate the data and dashed blue lines indicate model fits.
E. Goodness of fit of the model (R^2) across trials with different response times (left) and
across correct and error trials.
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Figure 4. Integration of movement variables improves diffusion model fits. A) Equation for
the non-decision time (ndt) in the movement DDM (mt-DDM) model. B) Comparison of the ndt
predicted by the DDM and mt-DDM during an example behavioral session. C) Equation for the
decision boundary in the movement delay DDM (md-DDM) model. D) Comparison of the
boundary predicted by the DDM and md-DDM during an example behavioral session. E)
Equation for the side bias in the movement offset DDM (mo-DDM) model. F) Comparison of the
side bias predicted by the DDM and mo-DDM during an example behavioral session. G. Left:
Model comparison (BIC) between the mt-DDM, md-DDM and mo-DDM. Horizontal dashed line
represents the performance of the original DDM before incorporating movement parameters.
Right: Values for each of the two movement parameters (position and angle) in each of the three
models, mt-DDM, md-DDM and mo-DDM.
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Figure 5. Rats' choices are better predicted by stimuli before movement onset than
stimuli presented during movement execution. A.) Functional form of the model for the
movement flashes regression analysis. 𝜓 represents the lapse parameter. B.) Psychometric
curves comparing model predictions and rat behavior. Black dots represent rat data, error bars
reflect the 95% confidence interval. Colored lines represent the predictions of the model shown
in A. In the “All” model flash difference is computed using the entire stimuli presented during the
trial. In the Before model, only the stimuli presented prior to movement onset are used. In the
“After” model, only stimuli presented during movements are used. C.) Bar plot comparing the
negative log-likelihood plots for all fitted models. Colored dots represent model fits for each of
the six rats. “Before” and “All” are the best fits to the behavioral data.
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MATERIALS AND METHODS
All experiments and procedures were performed in accordance with protocols approved by the
Boston University Animal Care and Use Committee. Long evans adult rats (N=31; aged 3
months to 2 years) were purchased from Taconic or bred in house. Both male and female rats
were used and trained in the same room at the same time. Rats were food restricted to
90-100% of their body weight and fed once per day (typically 3-4 pellets of food per day). They
received 0.025-0.04 ml (depending on the session and rat) of 10% sucrose (100g/L). Reward
volume was consistent within a session. Both 24-hour trained rats and daily trained rats were
housed on a 14:10 ON:OFF light schedule with the ON phase corresponding to daylight hours in
Boston, MA USA.

Behavioral control system
Behavioral control system was inspired by Poddar et al. 2013 and Dhawale et al. 2015. Rats
were trained in custom acrylic chambers with three nose ports. Nose ports were 3D printed
(Sanworks or custom made) and equipped with a visible LED for stimulus delivery (Sanworks),
peristaltic pump for reward delivery, and an IR LED and photodetector as a beam break
(Sanworks). Behavioral control software to implement the task and control individual boxes
was written in MATLAB. Boxes were controlled through a Teensy-based microcontroller system
(Bpod Sanworks). A custom written python application was used to control multiple Bpod
instances from a single control computer, requiring an edited version of the Bpod MATLAB
software library (edited Bpod library: https://github.com/RatAcad/Bpod_Gen2; Custom python
application: https://github.com/RatAcad/BpodAcademy). Further details about the software
implementation can be found in the respective code repositories. The floor of the chambers
contained bedding with bedding (part no) which was changed after each session.

Daily training
Rats (n=13) were housed in pairs in an animal facility and moved to the training room in the
laboratory each morning for training. Rats ran for 2 hour shifts, 5 days per week in the late
morning (10am-noon) or early afternoon (1pm-3pm). Feeding was conducted in the late
afternoon after behavioral training (1-4pm). Each chamber also contained a video camera
mounted above the chamber.

Training pipeline
Rats were rewarded with 10% sucrose at all stages of training and testing. Training took 1-4
weeks depending on the rat and progressed through 3 stages. In the first stage (1-3 days) rats
were rewarded for inserting their nose into a side port with an illuminated LED. In stage 3 (1-21
days) rats received reward for inserting their nose into the center port and then the side port
with an illuminated LED. In the third stage, they received a reward for inserting their nose into
the center port and then the side port with a flashing LED. Once rats reached criterion 80-100%
correct, the probability of flashes on the incorrect side increased in the following way 100:0 ->
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90:10 -> 80:20. Progression through this third stage took 1-2 days per condition. After
completion of all stages and conditions rats performed the task with a flash probability of 75:25.

Behavioral task
At the start of a trial, the light in the center port turned on indicating that the rat could initiate the
trial at its leisure. Once the rat nose poked in the center port, a single flash would occur
simultaneously in both the left and right ports. After this one light flash on both sides, the rat
would see a series of light flashes according to a Bernoulli process – every 100 ms, the rat
would see a flash on either the right or the left side with a probability of 75:25 that the flash
would occur on the correct side vs. the incorrect side; the correct side was drawn randomly on
each trial. To record a response, the rat nose poked in either the left or right port and the series
of light flashes would terminate as soon as this decision was recorded. If the rat responded
correctly, the light in the correct side port turned on for 2 s and a 30uL sucrose water reward
was delivered immediately. If the rat responded incorrectly, all lights turned off and no reward
was delivered, and new trials would start after a 2s delay. For daily testing, rats participated in 2
hour sessions Monday-Friday.

To determine if rats displayed a speed accuracy trade off, a generalized additive mixed model
was fit to the binary trial outcome (i.e. 1 for correct decision) against RT. We fit trials up to 3s of
response time because greater than 90% of trials occurred within this period.

To determine how trial lengths affected the model fit, the trial R2 for the observed trajectory was
modeled using a mixed effects beta regression with a logit link function to evaluate the model fit
as a function of response time and an intercept term. The trial length was found to be
statistically significant in predicting the model R^2 (p<2e-16).

Diffusion models of decision-making
Drift diffusion models (DDMs) are commonly used to describe decision-making in two-choice
tasks. DDMs assume that a decision-maker accumulates noisy evidence for one response vs.
the other time and commits to a response when the level of evidence reaches a pre-defined
threshold. Two diffusion models were applied to behavioral data: the extended drift diffusion
model (Ratcliff 1978) and novel pulsed evidence drift diffusion model based on Brunton et al.,
2012.

The extended drift diffusion model assumes that, on average, evidence for one option vs. the
other grows linearly over time: the change in evidence, dx, is updated by a constant drift rate, v,
and a gaussian noise term, cdW:

In the extended drift diffusion A decision is made at the first time point at which the evidence x,
crosses a boundary, a. The response time on the decision is then the time from the trial start to
the boundary crossing + a non-decision time parameter, ndt, which represents any additional
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time that goes into executing a response, such as the time it takes to move to the reward port
after committing to a decision. The extended drift diffusion also includes one additional
parameter: the side bias, x0, which accounts for a bias to go left vs. right – according to the drift
diffusion model, a bias to go left means that the animal requires less evidence to commit to the
choice to go left vs. right.

The extended drift diffusion model also allows for random trial-to-trial variability in the drift rate,
the non-decision time, and the starting point:

;
;

.

In the pulse diffusion model, evidence is accumulated per unit of stimulus rather than
continuously over time:
Where is the stimulus at time t, during a right pulse, during a left pulse, and

otherwise.

Additionally, consistent with the pulsed evidence accumulation model by Brunton et al., 2012,
the drift rate does not vary trial-by-trial but it drifts over the course of the trial:
. Furthermore, in this model, variability in the side bias across trials follows a normal distribution
rather than a uniform distribution: .

Video recording and image processing
Video was recorded during a subset of daily testing sessions using USB webcams. Videos were
recorded at 30 fps using the same custom python application used to control behavioral
boxes(github.com/RatAcad/BpodAcademy). To synchronize video data with behavioral data, the
time of each camera frame and a TTL signal indicating the start of the trial (center light turned
on) and trial initiation (nose poke in center port) were both recorded using the python time
package. TTL signals were sent from the Bpod State Machine and recorded using serial input
from a Teensy 3.2 microcontroller.

The position of the rat during a behavioral session was extracted from the video data using
DeepLabCut (Mathis et al, 2018). Experimenters identified the position of the ears, nose and
back of the head (see Figure 3A) on 620 frames across 5 animals which were used as training
data (95% of frames) and validation (5% of frames). A ResNet-50 base neural network was
used for 160,000 training iterations with a test error of 6 pixels (640-480 pixel images). A
p-cutoff of 0.75 was used to condition (X, Y) coordinates for future analysis.

To standardize rats’ positions across sessions despite slight differences in camera position and
angle in different boxes, key points were first corrected for any translation and rotation using the
following procedure:
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i) The (X, Y) coordinates of each nosepokes were defined as the average coordinate of the
nose at the time of each nosepoke (e.g., to find the center nosepoke, the average of the nose
position on frames that aligned in time with rats’ nose poke in the center port).
ii) All keypoints were translated such that the center nose poke was at coordinate (0,0)
iii) Keypoints were rotated and scaled such that the left and right nose poke positions were at
coordinates (-1, 0) and (1, 0) respectively.

Finally, two keypoints of interest were computed: i) the center of the head as the center point in
between the nose, back of head, and between the ears and ii) the angle of the head relative to
the nose-poke wall as the angle of the intersection between a line drawn from the nose and
back of head and a line drawn between the nose pokes).

Sinusoidal Movement Model
To reduce the dimensionality of movement trajectories (~100-300 observations per trial), a
sinusoidal model was fit separately to the position of the head and the angle of the head for
each rat on each trial. The model was formulated as:

time_of_movement = {
time_from_initation > t_i : time_from_initiation - t_i
time_from_initiation <= t_i : 0

}

predicted_trajectory = choice * y_s * sin(x_s * time_from_movement + x_t / dt) + y_t

where time_from_initiation is the time since the rat nose poked in the center port, choice is the
rat’s choice on the trial (coded as -1 for left, 1 for right), dt = 0.01 is the resolution of the
trajectories, and the following 5 free parameters:

i) t_i (movement delay): the time from the center nose poke to the initiation of movement
ii) y_t (position offset): the lateral position (or angle) of the rat’s head relative to the center
nosepoke (i.e., is the rat leaning to the left or right at the start of the trial)
iii) y_s (movement magnitude): the amplitude of the sinusoidal curve
iv) x_t (starting phase): the phase of the sinusoidal curve when the rat initiates movement (i.e.,
is the rat at the beginning of the phase – moving in the opposite direction before turning back –
or the end of the phase – moving straight to the chosen reward port)
v) x_s (the sinusoidal period): how fast the rat moves through the phase (i.e., did the rat
accelerate quickly throughout the movement or progress more slowly)

Free parameters were estimated by maximizing the R2 between the predicted and observed
trajectories using generalized simulated annealing (GenSA R package; Xiang et al., 2013).
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Data analysis and model fitting
Data analysis was performed in R version 4.3.1. Calculation of standard statistical tests(e.g. KS
tests, ANOVAS) were performed using the stats and aov packages. To fit the accuracy vs.
response time curve in Figure 1E, we used the mgcv (Wood, 2017) package to fit a generalized
additive mixed model. The beta regression was fitted using the glmmTMB (Brooks et al, 2017)
package.

DDM and pulse DDM models were fit using a custom R package (rddm;
https://github.com/gkane26/rddm). For comparison of the DDM and the pulse DDM, parameters
were estimated by maximizing the quantile maximum probability estimate (Heathcote et al.,
2002; 2004) with differential evolution as the optimization routine (RcppDE package). To
estimate the influence of movement parameters from the sinusoidal model on trial-by-trial
changes in DDM parameters, DDM model parameters were estimated using maximum
likelihood estimation. Trial-by-trial likelihoods (as implemented in the rddm package) were
calculated using the rtdists R package (Singmann et al. 2022; Voss & Voss, 2008).

To fit our lapse parameter binomial GLM we wrote a custom link function in R and performed
constrained optimization of the negative log-likelihood function using the L-BFGS-B algorithm in
the optim function in R such that the lapse parameter was bounded between 0 and 1. For the
optimization we used 10-fold-cross validation. To do this, we fit the model to each rat, and did
CV within each animal's trial data.

All plots were generated using ggplot2.
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