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Abstract 48 

Zebrafish have become an essential tool in screening for developmental neurotoxic chemicals 49 

and their molecular targets. The success of zebrafish as a screening model is partially due to their 50 

physical characteristics including their relatively simple nervous system, rapid development, 51 

experimental tractability, and genetic diversity combined with technical advantages that allow 52 

for the generation of large amounts of high-dimensional behavioral data. These data are complex 53 

and require advanced machine learning and statistical techniques to comprehensively analyze 54 

and capture spatiotemporal responses. To accomplish this goal, we have trained semi-supervised 55 

deep autoencoders using behavior data from unexposed larval zebrafish to extract quintessential 56 

“normal” behavior. Following training, our network was evaluated using data from larvae shown 57 

to have significant changes in behavior (using a traditional statistical framework) following 58 

exposure to toxicants that include nanomaterials, aromatics, per- and polyfluoroalkyl substances 59 

(PFAS), and other environmental contaminants. Further, our model identified new chemicals 60 

(Perfluoro-n-octadecanoic acid, 8-Chloroperfluorooctylphosphonic acid, and 61 

Nonafluoropentanamide) as capable of inducing abnormal behavior at multiple chemical-62 

concentrations pairs not captured using distance moved alone.  Leveraging this deep learning 63 

model will allow for better characterization of the different exposure-induced behavioral 64 

phenotypes, facilitate improved genetic and neurobehavioral analysis in mechanistic 65 

determination studies and provide a robust framework for analyzing complex behaviors found in 66 

higher-order model systems. 67 

  68 
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Author Summary 69 

We demonstrate that a deep autoencoder using raw behavioral tracking data from zebrafish 70 

toxicity screens outperforms conventional statistical methods, resulting in a comprehensive 71 

evaluation of behavioral data. Our models can accurately distinguish between normal and 72 

abnormal behavior with near-complete overlap with existing statistical approaches, with many 73 

chemicals detectable at lower concentrations than with conventional statistical tests; this is a 74 

crucial finding for the protection of public health. Our deep learning models enable the 75 

identification of new substances capable of inducing aberrant behavior, and we generated new 76 

data to demonstrate the reproducibility of these results. Thus, neurodevelopmentally active 77 

chemicals identified by our deep autoencoder models may represent previously undetectable 78 

signals of subtle individual response differences. Our method elegantly accounts for the high 79 

degree of behavioral variability associated with the genetic diversity found in a highly outbred 80 

population, as is typical for zebrafish research, thereby making it applicable to multiple 81 

laboratories. Utilizing the vast quantities of control data generated during high-throughput 82 

screening is one of the most innovative aspects of this study and to our knowledge is the first 83 

study to explicitly develop a deep autoencoder model for anomaly detection in large-scale 84 

toxicological behavior studies.  85 
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Introduction 86 

Significant progress continues to be made in our understanding of neurodevelopmental disorders 87 

such as autism spectrum disorder, attention deficit hyperactivity disorder (ADHD), developmental 88 

delay, learning disabilities, and other neurodevelopmental problems. As incidences continue to 89 

rise globally and affect 10-15% of all births, more work must be done to improve our 90 

understanding of these disorders (Boyle et al., 2011; Neurodevelopmental Diseases, 2021; US 91 

EPA, 2015b). Meta-analyses suggest strong and consistent epidemiological evidence that the 92 

developing nervous system is particularly vulnerable to low-level exposure to widespread 93 

environmental contaminants, as the anatomical and functional architecture of the human brain is 94 

mainly determined by developmental transcriptional processes during the prenatal period 95 

(Grandjean & Landrigan, 2014; Green & Planchart, 2018; Miller et al., 2014; Rock & Patisaul, 96 

2018; US EPA, 2015b). Therefore, identifying associations between developmental exposures and 97 

neurological effects is a core objective to improve public health by informing disease and disability 98 

prevention (A Blueprint for Brain Development, 2014; Neurodevelopmental Diseases, 2021). 99 

As the number of environmental contaminants grows to nearly one million, comprehensive data 100 

on the neurodevelopmental toxicity of these contaminants remain sparse or nonexistent (Krewski 101 

et al., 2020; US EPA, 2015a, 2015b; Wambaugh et al., 2013). In response, high-throughput 102 

screening (HTS) assays have been developed to expedite chemical toxicity testing using in vitro 103 

and in vivo systems (Judson et al., 2010; Richard et al., 2016; Truong et al., 2014). However, in 104 

vitro cell and cell-free assays cannot fully capture systemic organismal responses in terms of 105 

anatomy, physiology, or behavior (Thomas et al., 2012). Zebrafish (Danio rerio) have emerged 106 

as an ideal model for studying low-level chemical exposure because of their high fecundity, 107 

rapid development, genetic tractability, and amenability to high-throughput data generation 108 

(Bugel et al., 2014; Planchart et al., 2018; Truong et al., 2014). The zebrafish brain’s structural 109 

organization, cellular morphology, and neurotransmitter systems are very similar to other 110 

vertebrates, including chickens, rats, and humans (Horzmann & Freeman, 2016; Kalueff et al., 111 

2014; Lowery & Sive, 2004; Tropepe & Sive, 2003). Furthermore, zebrafish have behavioral 112 

patterns highly similar to mammals, and genetic homologs for 70% of human genes and 82% of 113 

human disease genes, making them a powerful tool for revealing the neuronal developmental 114 

pathways underlying behavior (Basnet et al., 2019; Howe et al., 2013; Postlethwait et al., 1998).  115 
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Zebrafish larvae show mature swimming patterns following swim bladder development at four to 116 

five days post-fertilization (dpf), which can be assessed using various locomotor behavioral 117 

assays (Hernandez et al., 2018; Tegelenbosch et al., 2012). One of these assays, the larval 118 

photomotor response (LPR), utilizes a sudden transition from light to dark, eliciting a 119 

stereotyped large-angle O-bend, followed by several minutes of increased movement, which 120 

gradually reduces (Burgess & Granato, 2007c; Emran et al., 2008). Exposure to toxicants has 121 

been shown to alter this stereotypical behavioral response (Basnet et al., 2019; Truong et al., 122 

2016). Current HTS for behavioral neurotoxicity focuses heavily on analyzing locomotor 123 

behavior using distance moved and population-based statistical methods (Basnet et al., 2019; G. 124 

Zhang et al., 2017). However, while the behavior repertoire of larval zebrafish is less 125 

sophisticated when compared to that of adult zebrafish and other higher-order vertebrates, they 126 

are capable of numerous distinct behaviors (Basnet et al., 2019; Kalueff et al., 2013; Mirat et al., 127 

2013). These behaviors, such as thigmotaxis, and light avoidance cannot always be captured 128 

when using distance moved as a sole indicator of neurobehavioral toxicity in analyses of this 129 

data. Moreover, as most laboratory zebrafish populations feature significant genetic 130 

heterogeneity, individual responses to exotic toxicants cannot be expected to be homogeneous 131 

for simplistic measures such as distance moved (Balik-Meisner et al., 2018).  132 

Improved accessibility to computing resources and application interfaces, together with recent 133 

advances in deep-learning makes it possible to analyze complex behavioral data in novel ways 134 

and predict neurodevelopmental toxicity (Arifoglu & Bouchachia, 2017; Pereira et al., 2020; Xia 135 

et al., 2018). The volume and diversity of data generated during HTS experiments, combined 136 

with the variety in toxicological response within populations, present an opportunity that is well-137 

suited for machine learning (ML). In particular, analysis of zebrafish HTS data from five dpf 138 

larvae exposed to 1,060 unique chemicals reveals that only 8% of chemical-concentration pairs 139 

(a unique combination of chemical and concentration, e.g. 6.4 µM Nicotine) exhibit changes in 140 

distance moved (G. Zhang et al., 2017), which is alarmingly low given the known toxicity 141 

profiles of the chemical set. This challenge provides an opportunity to apply methods developed 142 

for anomaly detection from areas such as financial fraud (Awoyemi et al., 2017), medical 143 

application faults (Pachauri & Sharma, 2015), security systems intrusion (Sargolzaei et al., 144 

2016), system faults (Warriach & Tei, 2013), and others (Fazai et al., 2019; Jaiswal & Ruskin, 145 
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2019). In anomaly detection, we learn the pattern of a normal process, and anything that does not 146 

follow this pattern is classified as an anomaly. This learning model is particularly applicable, as 147 

many HTS data sets have large amounts of control data to analyze (G. Zhang et al., 2017). One 148 

intriguing approach to achieving this is by applying an autoencoder (Feng et al., 2021; Frassek et 149 

al., 2021; Goodfellow et al., 2016; Le Borgne et al., 2022; Nicholaus et al., 2021; Ranjan et al., 150 

2019). An autoencoder is a neural network of two modules, an encoder and a decoder 151 

(Goodfellow et al., 2016; Gupta & Singh, 2019). The encoder learns the underlying features of a 152 

process, and these features are typically in a reduced dimension. The decoder then uses this 153 

reduced dimension to recreate the original data from these underlying features.  154 

In the present study, we trained deep autoencoder models to recognize the pattern of 155 

quintessential larval zebrafish behavior and identify abnormal behavior following developmental 156 

chemical exposure. The performance of our deep autoencoders was compared against traditional 157 

statistical methodologies, the gold standard for behavioral assessment. In addition to model 158 

development, we assessed the features driving performance through feature permutation and 159 

generated new confirmatory data to assess model reproducibility and confirm novel findings.  160 
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Results 161 

Statistical classification of behavior 162 

After classifying each of the 96-well plates by differences in the movement of controls into 163 

hyperactive, normal, or hypoactive, we compared treated vs control behavioral response to 164 

light/dark cycling in zebrafish larvae at five dpf. We identified 39 chemical-concentration 165 

combinations from ten chemicals capable of inducing a significantly different (p < 0.05) 166 

behavioral response (Supp. Table 2). Using the 30th and 70th percentiles, we defined 227 167 

individual larvae as abnormal (Fig 1a). These 227 larvae formed the validation set used to test 168 

the performance of our models. 169 

Training performance 170 

Autoencoder models were trained using only control data for each of the activity states 171 

(hypoactive, normal, and hyperactive) per phase of the second light cycle. This resulted in six 172 

trained models (Supp Fig 1 the training loss plots for the models). Table 1 shows the results for 173 

the six deep autoencoder models trained using control data and validated using data from 174 

zebrafish defined as abnormal using the K-S test. All the models performed well with values 175 

ranging from 0.615 – 0.867 and 0.740 – 0.922 for the Kappa and AUROC, respectively. As 176 

expected, the models consistently produced high specificity (SP) levels as this value indicated 177 

how well the models classify control data. There was greater variability in the sensitivity (SE) 178 

with the dark phase models matching or outperforming the light phase models for each activity 179 

state. Further, we observed a noteworthy trend across all models producing high positive 180 

predictive value (PPV). Overall, these results show that deep autoencoders trained using control 181 

data is capable of distinguishing between normal and abnormal larval zebrafish behavior with a 182 

high degree of accuracy.  183 

  184 
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 185 

A 

B 

C  D  

Figure 1:  Assessment autoencoder performance. (A) Schematic representation of the differences in statistical 

and autoencoder based classification of behavioral response in larval zebrafish. (B) Venn diagram showing 

overlap between statistical and autoencoder classified abnormal zebrafish. (C) Evaluating the change in model 

performance when the values of a single feature are randomly shuffled. Kappa – Cohen’s Kappa statistic, 

AUROC - area under the receiver operating characteristic. Figure depicts means ± SEM. (D) Coefficients of 

variation for each of the main numerical features. 
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Table 1. Deep autoencoder model performance in behavioral classification. Table showing 186 

performance of model trained using different activity states of the control data in both light and 187 

dark phases.  188 

Model Performance Metrics 

Baseline 

Control 

Activity 

Level 

Light 

Phase 
SE SP PPV Kappa AUROC 

Hypoactive 
Light 78.5 100 99.7 0.867 0.892 

Dark 78.3 98.0 88.4 0.800 0.882 

Normal 
Light 48.3 99.7 93.1 0.615 0.740 

Dark 73.3 94.8 77.6 0.695 0.840 

Hyperactive 
Light 79.2 97.5 85.5 0.790 0.883 

Dark 86.9 97.5 90.2 0.855 0.922 

Evaluation of unknowns 189 

Using the six trained models, we evaluated the 2,719 treated zebrafish larvae (Fig 1). The 190 

autoencoders correctly classified 156 of the 227 larvae that fell below or above the 30th and 70th 191 

percentiles, respectively. In addition, our deep autoencoders identified 463 larvae as abnormal 192 

from the 2,492 larvae defined as normal using the K-S test (Fig 1b). The majority (422) of these 193 

619 larvae were from one of 66 chemical-concentration combinations from 13 chemicals (Table 194 

2). The deep autoencoders successfully identified nine of the ten statistically abnormal chemicals 195 

and identified these chemicals at or below the lowest concentration shown to be statistically 196 

significant. While the deep autoencoders did not identify Perfluorodecylphosphonic acid as 197 

capable of inducing abnormal behavior, but they did identify 3-Perfluoropentyl propanoic acid 198 

(5:3), Perfluoro-n-octadecanoic acid, 8-Chloroperfluorooctylphosphonic acid, and 199 

Nonafluoropentanamide, which were missed in the statistical testing framework. These results, 200 

summarized in fig 2, show that deep autoencoders can match the performance of the K-S test and 201 

are more sensitive at detecting abnormal behavior. 202 

  203 
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 204 

 

Figure 2: Summary of behavioral analysis pipeline and results. Utilizing our analysis pipeline produced six deep autoencoder models (three for the light 

phase and three for the dark phase) capable of classifying larval zebrafish behavior with high Kappa and AUROC values. The trained models were then used 

to classify the non-significant exposed larvae and identified Nonafluoropentanamide, Perfluorohexanesulfonic acid, (Heptafluoropropyl)trimethylsilane, 2-

Methylphenanthrene, 8-Chloroperfluorooctylphosphonic acid, Perfluoro-n-octadecanoic acid, and others as capable of inducing abnormal behavior. 
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Table 2. Autoencoders identified chemicals. Table showing chemicals and concentrations 205 

flagged for displaying abnormal behavioral when evaluated using Autoencoder. Compounds that 206 

were picked up by Autoencoder, but not KS test are highlighted in red.  207 

 208 

Features driving improved autoencoder performance 209 

To determine the features in the model that were most important in driving classification 210 

performance, we employed permutation feature importance. This technique is a model agnostic 211 

inspection technique used for any fitted estimator to determine the importance of each feature in 212 

the model. Larger the decrease in model performance (Kappa or AUROC) when a single feature 213 

value is randomly shuffled, the more important the feature. Our results, shown in fig 1c, indicate 214 

that phase, trial time, x position, and y position are the largest drivers of model performance, 215 

while distance moved and velocity contribute very little. Coefficients of variation show greater 216 

variability in the x and y positional data between control and exposed groups compared to either 217 

velocity or distance moved (fig 1d).  This trend is consistent irrespective of the larval activity 218 

state (hypoactive, normal activity, or hyperactive) relative to their respective controls (Fig 3). 219 

  220 

CASRN Chemical Name Concentration (µM) 

71751-41-2 Abamectin 0.1, 0.2, 0.4, 0.6 

308068-56-6 Multi-Walled Carbon Nanotube 10, 23.2, 50, 75, 100 

2531-84-2 2-Methylphenanthrene 1, 2.54, 6.45, 16.4, 35, 74.8, 100 

832-69-9 1-Methylphenanthrene 1, 2.54, 6.45, 16.4, 35, 74.8, 100 

914637-49-3 3-Perfluoropentyl propanoic acid (5:3) 0.25 

192-51-8 Dibenzo[e-l]pyrene 0.01, 0.025, 0.065, 0.164, 0.35, 0.75, 1, 2.54, 16.4, 35, 100 

16517-11-6 Perfluoro-n-octadecanoic acid 0.25 

355-46-4 Perfluorohexanesulfonic acid 0.015, 0.14, 0.41, 3.7, 11.1, 33.3, 66.5, 100 

3834-42-2 (Heptafluoropropyl)trimethylsilane 0.015, 0.046, 0.41, 1.23, 11.1, 33.3 

 8-Chloroperfluorooctylphosphonic acid 0.167 

31253-34-6 2-Aminohexafluoropropan-2-ol 0.015, 0.046, 0.41, 1.23, 3.7, 11.1, 33.3, 66.5, 100 

13485-61-5 Nonafluoropentanamide 0.41, 3.7, 11.1 

439-14-5 Diazepam 1, 3, 5, 8, 12 
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 221 

222 

 

Figure 3: Coefficients of variation per larval activity state. Coefficients of variation (CVs) for each of the main numerical features (A – C) in the light (D – 

F) and in the dark. Columns show CVs of larval zebrafish significantly (p < 0.05) (A, D) hypoactive, (B, E) normal activity, or (C, F) hyperactive relative to 

their respective controls. 
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Experimental confirmation of autoencoder findings 223 

To provide an unbiased evaluation of the final model fits, we generated new data using 2-224 

Methylphenanthrene, and Nonafluoropentanamide. The data collected confirmed that our models 225 

accurately classified all controls as normal while detecting similar levels of abnormal behavior 226 

response across the concentration range (Fig 4). These results show that the trained model is 227 

capable of producing similar results across experimental replicates. 228 

  229 

 

Figure 4: Experimental model evaluation. Comparison of the performance of deep autoencoder models 

between the training set and two chemicals identified by the models to elicit abnormal larval zebrafish behavior. 

Percent of larval zebrafish classified as abnormal based on their behavioral response to developmental exposure 

to (A) 2-Methylphenanthrene and (B) Nonafluoropentanamide 
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Discussion 230 

Statistical analysis identified 39 chemical-concentration combinations from ten chemicals 231 

capable of inducing a significantly different (p < 0.05) behavioral response. Utilizing the 227 232 

abnormal individuals identified by the statistical test as our validation set, we trained six deep 233 

autoencoder models using control data for each of the activity states (hypoactive, normal, and 234 

hyperactive). All of the resulting models performed well with values ranging from 0.615 – 0.867 235 

and 0.740 – 0.922  for the Kappa and AUROC, respectively. All models achieved SP values 236 

above 94.8% and PPV values above 77.6% while SE values for all dark phase models 237 

outperformed the light phase models for each activity state (Table 1). Assessment of permutation 238 

feature importance indicates that phase, trial time, x-position, and y-position are the largest 239 

drivers of model performance (fig 1c). The calculated coefficients of variation shed some light 240 

on this surprising finding (fig 1d). They show that variation in the x and y positional data is 241 

greater than observed for velocity or distance moved between control and exposed groups. These 242 

differences in variation likely make it easier for the models to distinguish between treated and 243 

exposed groups.  244 

When we examined exposed larvae defined as normal using the K-S test (Fig 1), our deep 245 

autoencoders identified 66 chemical-concentration combinations from 12 chemicals (Table 2) 246 

with Perfluoro-n-octadecanoic acid, 8-Chloroperfluorooctylphosphonic acid, and 247 

Nonafluoropentanamide only identified by our autoencoders. These results show that a deep 248 

autoencoder-based model can classify larval zebrafish behavior as normal or abnormal with very 249 

good efficacy and often identified abnormal behaviors at lower concentrations than current 250 

statistical methods. Further, the models identified three novel chemicals, Perfluoro-n-251 

octadecanoic acid, 8-Chloroperfluorooctylphosphonic acid, and Nonafluoropentanamide as 252 

capable of inducing abnormal behavior (Fig 3). 253 

Recognition and categorization of swimming patterns in larvae is a challenging task and a 254 

number of approaches have been used. These can range from subjective analysis based on 255 

experienced observations (Fero et al., 2011; Kalueff et al., 2013, p. 0) or more recently through 256 

the application of unsupervised ML (Budick & O’Malley, 2000; Burgess & Granato, 2007a, 257 

2007b, 2007c; Kimmel et al., 1974; Mirat et al., 2013; H. Zhang et al., 2013). These studies have 258 

focused on the analysis and categorization of behavioral patterns in wild-type strains (Burgess & 259 
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Granato, 2007c; H. Zhang et al., 2013), mutant strains (Burgess & Granato, 2007b; Mirat et al., 260 

2013), or larvae exposed to neuroactive chemicals (Mirat et al., 2013) but do not classify 261 

behavior as normal or abnormal. In addition, these unsupervised approaches have utilized 262 

highspeed camera systems which are medium to low throughput and have limited potential in the 263 

screening of tens of thousands of chemicals for behavioral effects. As introduced above, 264 

classification of behavior is one of the primary goals of toxicological screening and tends to 265 

result in highly imbalanced datasets and lend themselves to anomaly detection methodologies. 266 

While these methods are common in manufacturing (Fan et al., 2018; Fazai et al., 2019; Jaiswal 267 

& Ruskin, 2019; Nicholaus et al., 2021), information systems (Pachauri & Sharma, 2015; 268 

Warriach & Tei, 2013), security systems (Feng et al., 2021; Sargolzaei et al., 2016), and financial 269 

fraud (Awoyemi et al., 2017) they have only very recently been applied to biological data 270 

(Frassek et al., 2021; Homayouni et al., 2021; Nwokedi et al., 2021). To the best of our 271 

knowledge, this is the first study to explicitly develop a deep autoencoder model for anomaly 272 

detection in toxicological behavior studies.  273 

Overall, our results show that a deep autoencoder utilizing raw behavioral tracking data from 274 

five dpf zebrafish larvae can accurately distinguish between normal and abnormal behavior. We 275 

show that these results are reproducible and allow for the identification of new compounds 276 

capable of eliciting abnormal behavior. Further, our models were able to identify abnormal 277 

behavior following chemical exposure at lower concentrations than with traditional statistical 278 

tests. Our approach accounts for the high degree of behavioral variability associated with the 279 

genetic diversity found within a highly outbred population typical of zebrafish studies, thereby 280 

making it extensible to use across labs. Looking to the future, neurodevelopmentally active 281 

chemicals identified using our deep autoencoder models may represent heretofore undetectable 282 

signals of subtle differences in individual responses, suggesting chemicals that should be 283 

investigated further as eliciting differential population responses (i.e. interindividual 284 

susceptibility differences).  285 

These findings will facilitate the application of behavioral characterization methods discussed 286 

above, such as Zebrazoom (Mirat et al., 2013), using highspeed cameras to identify the 287 

behavioral traits most perturbed by the chemical exposure and allow for more mechanistic 288 

discovery. One of the key innovations presented in this study is leveraging vast amounts of 289 
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control data generated as part of any high-throughput screening (HTS) – setting the stage for 290 

predictive toxicological applications and safety assessments for the enormous backlog of as-yet 291 

untested chemicals. 292 

  293 
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Materials and methods 294 

This section describes the autoencoder models utilizing a semi-supervised ML algorithm and 295 

logistic regression (LR) to discriminate between normal and abnormal behavior in chemically 296 

exposed five dpf zebrafish. An overview of our approach is shown in Fig 3. Briefly, we created 297 

and trained six autoencoder models for each phase of the assay; namely, hyperactive, normal, 298 

and hypoactive depending on the control movement in the light or dark phases of the assay. 299 

Finally, treated plates were tested on one of these, depending on which category, its controls fell 300 

under.  We used experimental data collected on a large and diverse compound set of 30 301 

chemicals including an insecticide, nanomaterial, perfluorinated chemicals, and aromatic 302 

pollutants at a range of concentrations (133 chemical-concentration pairs) to assess the 303 

neurotoxic effects of these chemicals following developmental exposure (Supp. Table 1).  304 

Zebrafish husbandry 305 

Tropical 5D wild-type zebrafish were housed at Oregon State University's Sinnhuber Aquatic 306 

Research Laboratory (SARL, Corvallis, OR) in densities of 1000 fish per 100-gallon tank 307 

according to the Institutional Animal Care and Use Committee protocols (Barton et al., 2016). 308 

Fish were maintained at 28 °C on a 14:10 h light/dark cycle in recirculating filtered water, 309 

supplemented with Instant Ocean salts. Adult, larval and juvenile fish were fed with size-310 

appropriate GEMMA Micro food 2–3 times a day (Skretting). Spawning funnels were placed in 311 

the tanks the night prior, and the following morning, embryos were collected and staged 312 

(Kimmel et al., 1995; Westerfield, 2007). Embryos were maintained in embryo medium (EM) in 313 

an incubator at 28 °C until further processing. EM consisted of 15 mM NaCl, 0.5 mM KCl, 314 

1 mM MgSO4, 0.15 mM KH2PO4, 0.05 mM Na2HPO4, and 0.7 mM NaHCO3 (Westerfield, 315 

2007). 316 

Developmental chemical exposure 317 

The empirical data used to develop our model were gathered as described in Truong et al. and 318 

Noyes et al.(Noyes et al., 2015; Truong et al., 2014, 2022). The experimental design consisted of 319 

the 30 unique chemicals tested (Supp Table 1) with at least 7 replicates (an individual embryo in 320 

singular wells of a 96-well plate) at each concentration for each chemical. 321 
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Developmental toxicity assessments 322 

Mortality and morphology 323 

At 24 hours post-fertilization (hpf), embryos were screened for mortality and 2 developmental 324 

endpoints. At 120 hpf, mortality and incidence of abnormality in 9 morphology endpoints were 325 

evaluated as binary outcomes. Any individuals identified with a physical abnormality were 326 

excluded from any behavioral analysis as these abnormalities might confound the results. 327 

Photomotor responses 328 

The larval photomotor response (LPR) assay was conducted at 120 hpf when the 96-well plates 329 

of larvae were placed into a Zebrabox (Viewpoint LifeSciences) and larval movement was 330 

recorded. The recorded videos were then tracked with Ethovision XT v.11 analysis software for 331 

24 min across 3 cycles of 3 min light: 3 min dark. The trial time(s), x-position, y-position, 332 

distance moved (µm), and velocity (mm/s) by each larva in the 2nd light/dark cycle were the 333 

features used for behavioral assessment (Supp Fig 2). The 2nd light/dark cycle was chosen as it 334 

exhibited less noise than the 1st cycle and was less influenced by any learning that might have 335 

occurred in the 3rd cycle. For all assessments, data were collected from embryos exposed to 336 

nominal concentrations of chemical and uploaded under a unique well-plate identifier into a 337 

custom LIMS (Zebrafish Acquisition and Analysis Program [ZAAP]) – a MySQL database and 338 

analyzed using custom R scripts that were executed in the LIMS background (Truong et al., 339 

2016). 340 

Data preprocessing and statistical analysis pipeline 341 

Preprocessing 342 

All data processing, statistical analysis and ML were implemented in Python using the open 343 

source libraries Tensorflow (Martín Abadi et al., 2015), Keras (U.S. Environmental Protection 344 

Agency, 2021), Scikit-learn (Pedregosa et al., 2011), Pandas (McKinney, 2010), and Numpy 345 

(Harris et al., 2020) within a purpose build Singularity container environment (Sylabs.io, 2019). 346 

The x-position and y-position data was standardized relative to the center of each well and 347 
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forward filled if datapoints were missing. Outliers were normalized to the maximum likely 348 

distance a zebrafish larva could move in 1/25th of a second. Considering that the average length 349 

of a 5 dpf larval zebrafish is 3.9 mm and can move about 2.5 times it's body length during a 350 

startle response (120 frames at 1000 frames/second) the threshold for distance moved in our 351 

system was set at 3.25 mm per frame (Burgess & Granato, 2007b; ZFIN Zebrafish 352 

Developmental Stages, n.d.). This resulted in 5,445 of the 30,825,000 frames being normalized.  353 

Statistical analysis 354 

Interexperimental zebrafish larval response to light/dark cycling is highly variable (Supp Fig 2).  355 

Therefore, a two sample Kolmogorov–Smirnov test (K-S test) was used to compare mean of 356 

controls from individual 96-well plates to mean control movement across all plates. The K-S test 357 

is a non-parametric two-sided test and no adjustments were made for normality or multiple 358 

comparisions. Controls from individual plates with statistically significant (p < 0.01) differences 359 

in movement compared to the average of all controls were grouped together as hyperactive, 360 

normal, or hypoactive. Following grouping the K-S test was used to compare each chemical-361 

concentration combination with their respective same plate control (p < 0.05). Individuals in the 362 

30th and 70th percentiles of each chemical-concentration combination were defined as abnormal. 363 

Autoencoder architecture 364 

Deep autoencoders were developed using zebrafish control data to distinguish between normal 365 

and abnormal zebrafish behavior. The model was trained on a Dell R740 containing two Intel 366 

Xeon processors with 18 cores per processor, 512 GB RAM, and a Tesla-V100-PCIE (31.7 GB). 367 

The autoencoders consisted of an input and output layer of fixed-size based on the size of a 368 

single phase (25 frames per 180s) of the second light cycle (4500 frames by 5 features). The 369 

encoder network was composed of eight fully connected hidden layers using a normal kernel 370 

initialization, tanh activation, a dropout value of 0.2, L1 and L2 regularization values of 1e-05, 371 

and an adadelta optimizer. The size of each hidden layer was reduced by increasing multiples of 372 

15 and resulted in a compressed representation (bottleneck) size of 250. The decoder network 373 

was composed of six fully connected hidden layers using tanh activation, and a dropout value of 374 

0.2. All hidden layers used an adadelta optimizer (learning_rate=0.001, rho=0.95, and 375 
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epsilon=1e-07) and mean squared error for the loss function (He et al., 2015; Osl et al., 2012; 376 

Ramachandran et al., 2017). For each model, we optimized the hyperparameters (i.e., the number 377 

of hidden layers, the number of nodes in the layers, loss functions, optimizers, regularization 378 

rates, and dropout rates) by grid search technique trained on all control data over 500 epochs 379 

using Cohens Kappa statistic as the objective metric. The final encoder models were trained over 380 

the course of 125000 epochs. The resulting compressed representation was used as input into a 381 

logistic regression layer trained using a 100 fold cross-validation with each fold consisting of 382 

4000 epochs using a limited-memory BFGS solver. The code and sample training data that 383 

implements the models are available at GitHub [https://github.com/Tanguay-384 

Lab/Manuscripts/tree/main/Green_et_al_(2023)_Manuscript]. A complete dataset is available 385 

apon request. 386 

 387 

Network performance and evaluation 388 

The data showed strong normal vs abnormal class imbalance (Fig 1). Classifiers may be biased 389 

towards the major class (normal) and therefore, show poor performance accuracy for the minor 390 

class (abnormal) (Lemaître et al., 2017). Normal vs abnormal classification accuracy was 391 

evaluated using a confusion matrix, Cohen’s Kappa statistic, and area under the receiver 392 

operating characteristic (AUROC) as Kappa and AUROC measure model accuracy, while 393 

compensating for simple chance (Ben-David, 2008). The primary metrics we used from the 394 

confusion matrix included sensitivity (SE), specificity (SP), and positive predictive value (PPV) 395 

as these parameters give us the true positive rate, true negative rate, and the proportion of true 396 

positives amongst all positive calls (Parikh et al., 2008; Pearson, 1904; Townsend, 1971). 397 

Chemical-concentration combinations were defined as abnormal if the autoencoders identified 398 

more individual as abnormal in the exposed than their respective controls and at least 25% of the 399 

individuals were abnormal. Permutation feature importance was used to evaluate which features 400 

are the most important for model performance. In brief, one feature (variable) is shuffled 401 

randomly and all features are fed into the model the resulting Kappa and AUROC values are 402 

calculated. This is repeated 1000 times per feature and average Kappa and AUROC are 403 

calculated across each shuffle (Breiman, 2001). To determine why one feature might be more 404 
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important than another a coefficient of variation was calculated for each of the features in the 405 

control and exposed groups (variation() in the Scipy package). 406 
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