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Abstract 
The effects of genetic variation on complex traits act mainly through changes in gene regulation. 

Although many genetic variants have been linked to target genes in cis, the trans-regulatory cascade 

mediating their effects remains largely uncharacterized. Mapping trans-regulators based on natural 

genetic variation, including eQTL mapping, has been challenging due to small effects. Experimental 

perturbation approaches offer a complementary and powerful approach to mapping trans-regulators. 

We used CRISPR knockouts of 84 genes in primary CD4+ T cells to perturb an immune cell gene network, 

targeting both inborn error of immunity (IEI) disease transcription factors (TFs) and background TFs 

matched in constraint and expression level, but without a known immune disease association. We 

developed a novel Bayesian structure learning method called Linear Latent Causal Bayes (LLCB) to 

estimate the gene regulatory network from perturbation data and observed 211 directed edges among 

the genes which could not be detected in existing CD4+ trans-eQTL data. We used LLCB to characterize 

the differences between the IEI and background TFs, finding that the gene groups were highly 

interconnected, but that IEI TFs were much more likely to regulate immune cell specific pathways and 

immune GWAS genes. We further characterized nine coherent gene programs based on downstream 

effects of the TFs and linked these modules to regulation of GWAS genes, finding that canonical JAK-

STAT family members are regulated by KMT2A, a global epigenetic regulator. These analyses reveal the 

trans-regulatory cascade from upstream epigenetic regulator to intermediate TFs to downstream 

effector cytokines and elucidate the logic linking immune GWAS genes to key signaling pathways. 

 

Introduction 
A primary mission of human genetics is to discover genetic variation that is associated with 

disease. Genome-wide association studies (GWAS) have identified thousands of variant-disease pairs in 

recent years, spanning disease, behavioral, and molecular phenotypes. Functional analyses of GWAS loci 

have revealed that most GWAS SNPs are non-coding, demonstrating that the effects of genetic variation 

on complex traits largely manifest through regulatory variation1,2. However, the identification of the 

molecular consequences of non-coding SNPs has proven challenging. Recent efforts have catalogued 

expression quantitative trait loci (eQTLs) across diverse tissues and contexts3–6. These eQTL studies have 

been very successful in identifying genetic variation that associates with expression variation in cis. 

However, except for a small number of examples, the trans-regulatory cascade of these cis-acting 

genetic variants remains largely unknown. Recent analyses of the genetic architecture of complex traits 

have shown that the bulk (60-90%) of expression heritability is mediated through a constellation of trans 

effects which typically have small effects individually but have a large contribution in aggregate7–9. These 

trans effects are difficult to discover with natural genetic variation because their effect sizes are small 

and may only exist in contexts that are missed in bulk-tissue steady state models of gene expression10–13. 

Thus, alternative approaches are needed to map the trans-regulatory effects of cis-acting eQTLs.  

We previously mapped the trans-regulators of three key autoimmune disease genes, IL2RA, IL2, 

and CTLA4 in primary human CD4+ T-cells using CRISPR knock-outs (KOs)14 . In contrast to natural 

genetic variation, experimental perturbations are unconstrained by natural selection, which enables the 

manipulation of gene expression in ways that are unlikely to be permitted by natural selection15. We 

therefore sought to apply this approach to inborn errors of immunity (IEI) genes, which are associated 
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with monogenic immune disease spanning regulation and function16. Although hundreds of these genes 

have been reported, the transcriptional consequences of their loss of function remain largely 

uncharacterized. We selected 30 IEI transcription factors (TFs) for CRISPR ablation in human CD4+ T cells 

to both characterize their function and construct a regulatory network. CD4+ T cells have previously 

been implicated as a causal cell type in the pathology of many autoimmune traits, including rheumatoid 

arthritis, multiple sclerosis, type 1 diabetes, among others17,18. To enable characterization of the 

properties of the IEI TFs as a whole, we selected 30 background TFs that are matched to the IEI genes in 

terms of pLI19 and expression level in CD4+ T-cells but have not been implicated in GWAS of immune 

phenotypes. We also included 24 upstream regulators of IL2RA which we had previously perturbed using 

the same protocol14. In total, we perturbed 84 genes from three gene sets which we used to construct a 

high-fidelity gene network relevant to immune disease. 

Building on recent advances in the causal inference literature20,21, we developed a novel 

statistical method for estimating causal GRNs from perturbation data. In contrast to differential 

expression or correlation analyses, incorporation of causal inference approaches enables the estimation 

of both direct and indirect regulatory effects, where edges are interpreted as direct effects. We 

emphasize that in this work the term ‘direct effect’ is used to convey that the effect of one gene on 

another is adjusted for confounding pathways among other perturbed genes, rather than a claim of 

physical interaction. Direct effects are useful because they facilitate a coherent interpretation of gene 

networks as directed probabilistic graphical models. Our approach differs from many other gene 

networks in two key ways: 1) because our network is derived from experimental perturbations, the 

edges are much more likely to be causal than the edges in a network estimated from observational co-

expression data, where the constituent variation is often of an unknown genesis; 2) our method enables 

estimation of possibly cyclic graphs, rather than the common restriction to directed acyclic graphs 

(DAGs)20,22–24. Human genetics has identified several examples of cyclic regulatory behavior25, so the 

restriction of GRNs to DAGs represents an artificial constraint that we circumvent with appropriate 

statistical technology.   

We report the causal, cyclic GRN derived from applying our novel statistical method to the 84 

CRISPR KOs. Because this method is a Bayesian modification of the Linear Latent Causal (LLC) algorithm, 

we refer to our method as LLC Bayes (LLCB). Using our network, we systematically characterized the 

properties of genes that distinguish background TFs from IEI TFs and the IL2RA regulators. We show that 

although IEI TFs and IL2RA regulators are much more likely to have outgoing connections than 

background TFs, all the genes form a highly interconnected network, rather than distinct communities of 

disease and background genes. Across the entire network, we found that IEI and IL2RA regulators are 

more likely to disrupt immune specific signaling pathways than background TFs. We then identified nine 

coherent gene programs among the 84 KOs and their downstream genes, which we characterized using 

enrichment analyses to identify points of functional convergence in T cell biology. In addition to 

downstream characterization, we used GWAS summary statistic heritability analyses to estimate the 

contribution of gene program linked SNPs to immune trait heritability. This profiling highlighted the 

importance of a module comprised of key JAK-STAT-IL2 signaling regulators and KMT2A, a global 

epigenetic regulator that we observed to be upstream of classic IL2 signaling TFs and receptors, 

including IRF4, STAT5B, and IL2RA.  

In summary, we perturbed a diverse set of genes to characterize the immune regulatory 

landscape and develop novel statistical methodology to characterize the CD4+ T cell network centered 
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around immune disease genes. Our network reveals the entire trans-regulatory cascade of these gene 

programs and elucidates the transcriptional logic of immune GWAS loci.   

 

Figure 1 | Study overview. Schematic describing the three gene sets that were perturbed with CRISPR 

knock outs and modeling of the gene network, network inference analyses and gene module 

identification, and integration with immune GWAS data.  

 

Results 

Perturbation of IEI TFs and matched background TFs 
 To construct a network enriched for genes relevant to immune disease in CD4+ T cells we 

perturbed 30 TFs from the IEI genes implicated in Mendelian forms of immune disease16. We also 

included 30 background TFs that were not annotated for immune function but were matched on gene 

constraint and expression to the IEI TFs in order to characterize the properties that distinguish IEI TFs. 
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Lastly, to expand the breadth of our network, we integrated data from 24 previously mapped IL2RA 

regulators14. (Methods, Figure 1).  We used CRISPR Cas9 ribonucleoproteins (RNPs) to perform arrayed 

perturbations in three donors as described in Freimer et al.14 . We validated the efficiency of our CRISPR 

editing by genotyping the 60 additional perturbed samples, which indicated a high editing efficiency 

(Extended Data Figure 1A-B). Using bulk RNA-seq, we detected ~13,000 genes that were expressed 

highly enough for analysis (Methods). As our data were generated in two batches, we performed 

stringent quality control of the RNA-seq data. We performed alignment and gene count quantification 

using one pipeline on the 84 samples and performed PCA analysis of the normalized expression data. 

Pathway enrichment analysis revealed that the first four PCs were associated with very broad biological 

phenomena including cell cycle regulation and ribosome activity. Because the PCs also captured batch 

effects, we included the first four PCs as covariates in downstream analyses. Regressing out PCs has 

previously been shown to improve inference of gene networks26.  

 Next, we developed a statistical method to estimate the GRN among the 84 genes. We extended 

the linear-latent-causal (LLC) method introduced by Hyttinen et al.21 by recasting the statistical estimand 

in a Bayesian framework, which enabled the incorporation of prior knowledge about the properties of 

biological networks. Briefly, LLC proceeds in three steps. First, the total effect 𝜓𝑖,𝑗 of a given 

perturbation of gene 𝑋𝑖 on another gene, 𝑋𝑗, is estimated on all observed (non-perturbed) genes. These 

total effects are estimated pairwise between all perturbed genes {𝑋𝑖: 𝑖 ∈ 𝐽} and all observed genes 

{𝑋𝑗: 𝑗 ∈ 𝑈}. Second, a system of equations that relates 𝝍 to the direct effects, 𝜷, using trek rules is 

constructed. Third, this system of equations is solved to deconvolve 𝝍 into 𝜷. The conditions that 

permit identifiability of 𝜷 for LLC include a collection of single gene perturbations among all nodes in the 

graph, which corresponds to our experimental design, indicating that we have a sufficient number of 

perturbations to identify 𝜷. Because most of the 84 genes are TFs, the elements of 𝜷 are likely to be 

greatly enriched for physical binding interaction and other mechanisms of direct transcriptional 

regulation. However, 𝜷 may also capture post-transcriptional regulation mechanisms that manifest as 

statistical direct effects on expression. In this experiment we are unable to account for the effects of 

genes that were not perturbed, suggesting that some effects of unmeasured genes may be attributed to 

direct effects among the 84 perturbed genes.  

We extended the LLC framework in two ways (Methods). First, we regressed out the first four 

expression PCs from the variance-stabilizing transform27 normalized expression data. Second, we 

estimated 𝜷 in a Bayesian framework where we incorporated a graph prior, 𝜋(𝜷). We included a 

penalty on the sum of the L1 norms of the columns of 𝜷, which penalizes the number of incoming 

connections to a given gene. We included this penalty as it is known that the distribution of out-going 

connections from a gene has more dispersion than the distribution of in-coming connections. Following 

recent advances in differentiable DAG search20,28,29, we also included a gaussian prior over the norm of 

the spectral radius of 𝜷, which enables indirect tuning of the degree to which 𝜷 contains cycles. We 

performed inference using pathfinder, a recently developed approach to inferring posteriors using 

pseudo-Hessian optimizers applied to a variational inference objective30. We chose a variational 

inference approach rather than MCMC as MCMC approaches have been shown to be computationally 

very intensive when sampling over large discrete graph structures23,24,31,32. We termed this statistical 

method LLCB. We validated LLCB theoretically using simulations of cyclic GRNs (Methods). 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2023. ; https://doi.org/10.1101/2023.09.17.557749doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.17.557749
http://creativecommons.org/licenses/by-nd/4.0/


6 
 

Network inference from LLCB reveals that the gene groups are highly interconnected 
We then used LLCB to estimate the causal CD4+ GRN among the 84 genes (Figure 2A-B). We 

identified 350, 211, and 151 total edges (out of 6,972 possible) when thresholding |𝛽𝑖𝑗| at 0.020, 0.025, 

and 0.030, respectively (Fig. 2A-C, Supplementary Table 1). We reported the network after thresholding 

on 𝜷 because filtering on local-false sign rate (lfsr)33 resulted in very dense networks (67% network 

density at lfsr < 5 x 10-3), reflecting the challenges in estimation of uncertainty in graph structures.  

To assess whether edges in this network estimate could be validated through orthogonal 

approaches, we compared our network estimate to two other estimates of the same network 

constructed from different sources. First, we constructed a GRN using ATAC-seq data that we previously 

generated for the 24 IL2RA regulators, permitting validation of a subset of the network. We gathered all 

possible enhancers of the 84 genes in CD4+ T cells using the predicted enhancer-gene pairs from the 

Activity-By-Contact34 model and cross-referenced the enhancer-gene pairs with differentially accessible 

chromatin (DAC) that we previously identified. We defined the children of a gene 𝑖 based on those genes 

that had ABC enhancers that intersected with the DACs from the KO of gene 𝑖, and we refer to this 

network as the ABC-GRN (Supplementary Table 2). We observed a striking enrichment (~4x) of edges in 

the LLCB estimate for the same edges in ABC-GRN, and this enrichment was robust to different |𝛽𝑖𝑗| 

thresholds (Extended Data Figure 2). Second, we used an external estimate of the T-cell regulatory 

network reported in Green et al.35, which was estimated using curated pathway information and co-

expression data. We similarly observed an enrichment of our edges in this external network (Extended 

Data Figure 3). Collectively, these two validations, derived from orthogonal data sources and modalities, 

show that our network estimate is replicable and reflective of biological properties.  

We then asked whether the topological properties of genes distinguished the three gene 

groups. We computed the out-degree, in-degree, and total degree for each node, and we observed that 

the IEI TFs and IL2RA regulators were strongly enriched for out-going connections, and the control TFs 

were relatively depleted (Figure 2C). Consistent with the known properties of IL2RA as a receptor, as 

opposed to a TF, we observed many more direct incoming connections than direct outgoing 

connections. This result was likely facilitated by our inclusion of the downstream effectors of IL2RA 

signaling within the graph, such that downstream effects were more likely to be attributed to these 

genes, such as STAT5A/B and JAK3, rather than IL2RA itself. To identify the properties of genes that 

associated with their centrality in the graph, we performed negative-binomial regressions for three 

measures of node centrality, including gene group status, gene expression at baseline, and gene 

constraint as covariates. We defined gene constraint using a recently developed empirical Bayes 

estimator of 𝑆ℎ𝑒𝑡, called GeneBayes36. 𝑆ℎ𝑒𝑡 is defined as the degree of selection acting against 

heterozygous loss of function variants in a given gene and is more predictive of functional and clinical 

importance than related measures including pLI and LOEUF. We observed that even after adjusting for 

𝑆ℎ𝑒𝑡 and expression, IL2RA regulators and IEI TFs were strongly enriched for outgoing connections 

relative to control TFs but were not enriched for incoming connections (Figure 2D). Taken together, 

these data suggest that constraint is much more strongly associated with the number outgoing 

connections from a gene than the number of incoming connections, and that IEI regulators exhibit more 

outgoing connections than control genes, despite being matched for constraint. 
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Figure 2 | The gene network of the 84 perturbed genes. A Estimate of the directed network that 
describes how the 84 perturbed genes interact. The radius of each point is proportional to the degree of 
that gene. Arrows are used to indicate directionality of the edges, such that an arrow pointing into a 
gene indicates that it is being regulated by another gene. Positive values in the color scale indicate that 
the parent gene is a positive regulator of the child gene. B A sub-network centered around STAT1. C A 
scatterplot of the indegree and outdegree of each of the 84 genes. D Association analyses between gene 
properties and their in-degree, out-degree, and total degree.  
 

 
  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2023. ; https://doi.org/10.1101/2023.09.17.557749doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.17.557749
http://creativecommons.org/licenses/by-nd/4.0/


8 
 

We asked whether edges were enriched between genes that were members of the same gene 

group. To generate a null distribution, we permuted the edges of the network 2,000 times while 

preserving the gene degree distributions (Methods). Of the edges in the unpermuted network, 37% had 

the same parent and child node gene group. Of the permuted networks, 8% had more edges within 

groups than in the original (unpermuted) network, indicating that the three gene groups do not cluster 

distinctly in the unpermuted network (Extended Data Figure 4). 

We then estimated indirect effects between pairs of genes, defined as the difference between 

the total effects and the direct effects Δ𝑖𝑗 = 𝜓𝑖𝑗 − 𝛽𝑖𝑗. The indirect effects can be interpreted as the 

sum of all effects of gene 𝑖 on gene 𝑗 that are not mediated through the direct effect 𝛽𝑖𝑗, and thus may 

include both proximal indirect effects comprised of short (< 3 genes involved) paths between the two 

genes or potentially distal effects from long, possibly cyclic paths. These indirect effects may include 

both instances of transcriptional regulation and post-transcriptional indirect effects. We observed that 

the bulk of variation in total effects (R2 = 99%) is explained by direct effects (Extended Data Figure 5), 

suggesting that direct effects between two genes are much larger than indirect effects. This observation 

is consistent with the intuition that indirect effects, which are defined as the product of several direct 

coefficients, are likely to be small unless all of the direct effects along the path are very large. Indeed, if 

all direct effects are less than 1.0 in magnitude, the product is guaranteed to be no larger than the 

smallest direct effect included in the path. We observed that the largest indirect effects were mediated 

by length-2 cycles with two large direct effects (Extended Data Figure 6). For example, we observed that 

KLF2 and MYB regulate each-other in a length-2 negative feedback loop, which may help prevent 

aberrant proliferation.  

Trans-eQTL derived networks have limited overlap with the perturbation derived network 
To compare our network estimate to one constructed from natural genetic variation, we first 

obtained the unfiltered trans-eQTL summary statistics from Yazar et al6, which contains the largest 

catalogue of CD4+ eQTLs mapped to date. We observed that only 24 of the 84 perturbed genes had at 

least one cis-eQTL (FDR < 0.01). The 24 genes with cis-eQTLs were much less constrained than the 60 

without (difference in mean 𝑆ℎ𝑒𝑡 = -0.07, 95% CI: (-0.15, 0.01)), corroborating our prior observations 

that eQTL discovery is biased towards genes tolerant to loss of function variation15. None of the 84 

genes had a trans-eQTL, even at liberal significance thresholds (FDR < 0.30), indicating that this eQTL 

catalogue was incapable of recapitulating any of the edges in our GRN despite considering trans-eQTLs. 

To evaluate whether the absence of trans-eQTLs among the 84 genes was the result of trans-eQTL 

network sparsity, we tabulated the number of trans-eGenes in CD4 naïve and effector cells at FDR < 

0.30, resulting in 12,185 trans-eGenes out of 16,025 tested genes. This implies that the probability of 

observing 84 randomly selected genes with no trans-eQTLs is 7 x 10-53, indicating that trans-eQTL 

sparsity alone cannot explain this observation. Collectively, these observations indicate that these TFs 

are strongly depleted of trans-eQTLs, potentially due to selective constraint, suggesting that mapping 

trans-regulators of highly constrained TFs with natural genetic variation is very under-powered at 

current sample sizes.  

Immune GWAS genes are enriched for regulation from IEI TFs and IL2RA Regulators  
Next, we expanded our network analyses to include all 12,803 other genes that were expressed 

highly enough for analysis (Methods), which we refer to as non-perturbed genes. We estimated the 

effects of the 84 perturbed genes on the non-perturbed genes using two methods. First, we used a 
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traditional differential expression approach using DESeq227, where we regressed the normalized 

expression of each gene against a design matrix that included an indicator for the perturbation status of 

the sample, the donor identity, and the first four expression PCs. Next, we used mashr37 to perform 

statistical shrinkage of the differential expression estimates. We refer to these results as DEG-mashr 

estimates. To model the effects of multiple upstream TFs at the same time, we developed a novel 

statistical estimator of the bipartite graph (BG), which models the effects of the 84 perturbed genes on 

the 12,803 non-perturbed genes jointly in a single linear model. In contrast to a differential expression 

approach the BG model is less likely to detect redundant causal pathways. We term this approach the 

BG model (Figure 3A, Methods).  

Among the non-perturbed genes, 7,299 (57%) had an incoming edge from at least one KO. 

Among the non-perturbed genes with at least one incoming edge, the median number of incoming 

edges was 5. The median number of downstream effects from the BG model was 251.5, ranging from 52 

(EGR3) to 2,634 (MED12). Estimates from both the DEG-mashr and BG approaches (Supplementary 

Tables S3-5) revealed the striking enrichment of IL2RA regulators among the genes with the largest 

number of downstream connections (Fig. 3B). We observed that MED12 and CBFB regulated more genes 

than any canonical T-cell transcription factor. MED12 is a sub-unit of the mediator complex, which 

transmits signals from enhancer bound TFs to RNA-polymerase II bound at the promoter38,39. Despite its 

large effects, MED12 has never been reported in any autoimmune GWAS, nor does it have a known cis-

eQTL in CD4+ T-cells6, underscoring the value of perturbations for characterizing its function.  

To our surprise, we also observed that three of the background TFs (DR1, YBX1, and BPTF) 

regulated more genes than any of the IEI TFs. The widespread effects of these three background TFs 

highlight the value of large-scale searches for upstream regulators, even in cell types with well 

annotated signaling pathways. Consistent with their large effects, these three TFs were highly 

constrained (𝑆ℎ𝑒𝑡 estimates of 0.38, 0.17, 0.30 for DR1, YBX1, BPTF). Although BPTF had no outgoing 

connections to the other 83 KO’d genes, it had an incoming connection from STAT1, suggesting that it 

may partially mediate the effect of STAT1 on downstream genes. Among the 7,299 downstream genes 

with at least one incoming connection, there were 10 genes with at least 26 incoming connections (Fig. 

3C), including genes involved in DNA damage response (ZMAT3), cell cycle regulation (CCND2), 

granzymes (GZMA, GZMB), and a T-cell cell costimulatory receptor (CD2).  

Next, we asked which properties of the 12,803 non-perturbed genes were associated with 

regulation from the three gene groups. We performed a series of negative-binomial regressions of the 

incoming connections to non-perturbed genes, including six gene annotations as covariates (Figure 3D). 

We observed non-perturbed autoimmune GWAS genes were much more likely to be enriched for 

regulation from IEI TFs (~20% enrichment) and IL2RA regulators (~30% enrichment). 𝑆ℎ𝑒𝑡 was negatively 

associated with incoming connections in three of the four regressions, consistent with our prior 

observation that gene constraint is more strongly associated with the number of outgoing connections 

from a gene than the number of incoming connections to the gene. We also observed that eQTL trans-

eGenes were strongly enriched for incoming connections in each regression, suggesting that trans-

eGenes reside in the periphery of the network with many incoming connections. Using GTEx, we also 

identified genes that were only expressed in whole blood and asked whether regulation of blood specific 

genes varied by the three gene groups. We observed that blood-specific genes were much more likely to 

be regulated by IEI TFs (~20% enrichment) and IL2RA regulators (~40% enrichment) than background 
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TFs. Collectively, these observations highlight that although background TFs have similar graph centrality 

to IEI TFs, they are much less likely to disrupt cell type-specific transcriptional pathways.  

Figure 3 | The landscape of downstream effects. A The statistical model used to relate the 84 perturbed 

genes to the expressed genes. B The distribution of the number of downstream effects for each of the 84 

genes, stratified by gene group. Genes that are outliers with respect to their gene group distribution are 

labeled. C The distribution of indegree for each of the non-perturbed genes. Outlier genes are labeled. D 

Association between the properties of downstream genes and the gene-set of the upstream regulators. 

Coefficients are estimated with negative binomial regressions of the gene-set specific indegree. 

Downstream gene annotations are indicated on the y-axis and the facets are used to indicate the gene-

set of the upstream regulator.  
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Gene modules link groups of genes to shared function  
Next, we asked whether there were groups of the 84 perturbed genes with similar effects on 

downstream pathways among the 12,803 non-perturbed genes. Hierarchical clustering of the DEG-

mashr results revealed the presence of nine gene modules (Figure 4), which we also grouped into a 

coarser set of super-modules. We remark that although the perturbed genes within each of these 

modules are mutually exclusive, the non-perturbed genes may overlap. To identify pathways that were 

regulated by these gene modules, we performed systematic enrichment analyses using KEGG genetic, 

signaling, and immune pathways40 (Figure 5A, Extended Data Figures 7-9, Supplementary Table S6).   

Figure 4 | The discovery of gene modules. Hierarchical clustering is used to identify clusters of shared 

downstream effects. The upstream gene members within each module are labeled in the left-handed 

margin of the plot, and the gene group of each gene is indicated by the text color. The total number of 

genes in the module, including both upstream and downstream effects, is included under the list of 

genes.  
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The perturbed genes in module 1 included 14 IEI TFs, 19 background TFs, and two IL2RA 

regulators (RELA and YY1). The perturbed genes in modules 1-2 were primarily IEI and background TFs, 

and modules 3-4 were primarily IL2RA regulators. We observed that module 1A was enriched for 

disruption of MAPK and p53 signaling. Module 1B included T-bet (TBX21), a transcription factor that is 

required for interferon-gamma production and the Th1 phenotype41, and three members of the Rel 

family (NFAT5, RELB, and REL), sub-units of NF-κb, a transcription factor complex that plays a role in T-

cell activation42. Surprisingly, this cluster also included four background TFs without any annotated 

immune function (ZNF329, ZNF791, ZBTB14, and ZKSCAN1). ZBTB7B has been observed to be required 

for CD4+ commitment, and interacts with NF-κB43, but many other members of the ZBTB family, 

including ZBTB14, remain relatively uncharacterized. The high proportion of shared effects between 

ZBTB14, T-bet, and the Rel family proteins suggests that ZBTB14 may have similar function to ZBTB7B.  

Genes in super-module 2 were enriched for effects on cell cycle regulation and apoptosis. 

Modules 3-4 were much more strongly enriched for IL2RA regulators than clusters 1-2. Consistent with 

their annotation, every gene in module 3-4 had downstream effects on the JAK-STAT and chemokine 

signaling pathways. Surprisingly, KMT2A, a methylation writer clustered in the same module as JAK3, 

STAT5A, STAT5B, IRF4, and IL2RA. Although translocations of KMT2A have been shown to cause 

lymphoid malignancy44, it has no annotated function in non-mutated cells in the JAK-STAT pathway45. 

We then examined the structure of module 4 (Figure 5B), observing that KMT2A is upstream of IRF4, 

STAT5A, and IL2RA, and directly regulates several downstream effector cytokines through pathways not 

mediated by the other perturbed genes.  

Several modules were strongly enriched for cell cycle and proliferation pathways. To determine 

if there was a uniform effect on in vitro expansion within any of the modules, we quantified the number 

of live cells per KO compared to cells where the guide RNA targeted the safe harbor locus AAVS1 from 

the respective donor. All members of module 2A, which was enriched for cell cycle effects, showed a 

mean increase in cell counts across three donors as the result of the perturbation. Collectively, the 

module had a 1.16-fold increase in live cells when KO’d compared to the controls, suggesting that genes 

in 2A function as proliferation repressors (Figure 5C). Concordant with these observations, a recent 

report described the proliferation promoting effects of disruption of a module 2A member, TET2, in 

CAR-T cells46. Our analyses suggest that other members of 2A may have similar properties to TET2 and 

thus may represent a group of genes that could be perturbed to alter engineered T-cell function. Several 

upstream members of 2A upregulated three of four CDKN genes which inhibit cyclin dependent kinases 

and potentially lead to reduced cycling (Extended Data Figure 10). Taken together, our inference of gene 

modules recapitulates known regulators of immune signaling pathways and identifies novel members of 

these modules. 
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Figure 5 | Gene module characterization. A Enrichment analyses of KEGG genetic, immune, and 

signaling pathways for each of the 84 perturbed genes, stratified by gene module. The JAK-STAT 

pathway is highlighted with a dashed-red box. B The JAK-STAT sub-network, which is organized such that 

cytokine genes are at the bottom and upstream regulators are at the top. C Effects of knock outs in the 

gene modules on a proliferation assay. Each point represents an individual gene perturbation sample 

plotted as the log2 fold change sample count as compared to AAVS1 KO control samples from the same 

donor. (*: p-value < 0.05, **** p-value < 0.001; n=3 donors per KO, the number of KOs per cluster is 

reflected in figure 4). 
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Heritability analyses link gene modules to immune disease risk 
 We then asked whether SNPs that were linked to the nine gene modules were enriched for 

heritability of autoimmune traits. We included GWAS summary statistics for 10 phenotypes from a 

combination of Finngen and disease specific consortia47,48. After linking SNPs to each of the nine 

modules using the Activity-By-Contact method34, we used LD score regression2,49 to estimate the 

contribution of these SNPs to the heritability to eight autoimmune traits and two allergy traits 

(Methods, Supplementary Table S7). As a reference point, we also included a group of SNPs linked to 

genes that were not regulated by any of the 84 genes, which we term module 0. To adjust for 

confounding genomic annotations, we included the LD-score baseline model. We observed that module 

4 SNPs were potent contributors generally, as half of the traits analyzed were enriched (Figure 6A, 

Extended Data Figure 11, Supplementary Table S8). Across the traits, there was substantial 

heterogeneity in the effects of modules. For example, only 4A and 2B SNPs were associated with 

psoriasis heritability, while 1A, 2B, 3A, 3B, and 4A all contributed to rheumatoid arthritis heritability. 

Among the baseline module 0, only multiple sclerosis was enriched. Remarkably, module 1B contributed 

little to heritability enrichment of any trait despite including TBX21.  

We also observed that module 2A, which was strongly enriched for effects on cell cycle 

regulation pathways, was enriched for regulation of atopic dermatitis GWAS genes. Next, we annotated 

the fine-mapped signals from the dermatitis GWAS. Of the 44 credible sets, 34 were linked to genes. Of 

these 34 hits, four were regulated by the module 2A TFs, including SATB1, IL22, LTK, and EZH1 (Figure 

6B). Given the putative effects of module 2A on cell proliferation, we then cross-referenced these four 

genes with cell proliferation annotation pathways. LTK is a receptor with tyrosine kinase activity and 

may contribute to proliferation through activation of the PI3K signaling pathway50. Similarly, IL22 has 

also been reported to regulate PI3K signaling51. Taken together, these analyses highlight the value of 

unbiased module discovery for identifying specific pathways that contribute to trait heritability. We 

illustrate how module 2A TFs regulate a subset of dermatitis GWAS genes that have been implicated in 

PI3K signaling, a common proliferation pathway.  

Figure 6 | Contribution of SNPs linked to the gene modules to heritability of autoimmune and allergy 

phenotypes. A. Estimated 𝜏 coefficients from LD score regression are plotted for each gene module and 

phenotype. Module 0 is defined as genes that were not included in any module but are still expressed in 

CD4+ T cells. B. Exemplar analysis annotating the fine-mapped genes from a Finngen dermatitis GWAS 

based on their presence in module 2A.  
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The transcriptional logic linking the JAK-STAT module to immune GWAS genes 
Given the substantial contribution of module 4 to autoimmune and allergy phenotype 

heritability and its large effects on T cell differentiation, we integrated multiple functional assays to 

elucidate the fine-grained structure of module 4. We observed that KMT2A was a positive regulator of 

IL17F and IL21 expression, two Th17 secreted factors (Figure 7A). We also observed concordant 
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decreases in chromatin accessibility near (5.7 kb and 40 kb upstream of TSS) IL17F and IL21 upon KO of 

KMT2A. Notably, IL17F had a striking decrease in expression (-5.9 log2 fold change) in the KMT2A KO. 

We then intersected the differentially accessible chromatin regions from the KMT2A KO condition with 

each of the KOs within module 4 and observed that STAT5B shared several differentially expressed sites, 

including regions upstream of IL17F (Extended Data Figure 12). An additional Th17 secreted factor, IL22, 

also had a shared region between the two conditions, although the transcript was only differentially 

expressed in the STAT5B KO. The STAT5B KO also abrogated chromatin accessibility 5.7 Kb upstream the 

IL17F promoter. Concordant with these observations, ChIP-seq data generated in IL-2 stimulated CD4+ T 

cells confirmed direct binding of STAT5B (Figure 7B). Because KMT2A is a methyltransferase that 

deposits activating methylation marks on H3K4, we then asked whether H3K4me3 was present in these 

same peaks in Th17s stimulated with IL-2, finding that H3K4me3 marks were indeed present in the 

differentially accessible peaks (Figure 7B). These observations led to us suggest the following mechanism 

for the regulatory logic of module 4: KMT2A, a global epigenetic regulator of transcription, collaborates 

with downstream factors, including STAT5B, to positively regulate IL17F through modulation of 

activating histone marks and chromatin remodeling of a regulatory element that is likely an IL17F 

specific enhancer in Th17 cells.  

These observations suggest that cis-regulatory elements near KMT2A may harbor autoimmune 

risk variants. To assess this hypothesis, we examined recent biobank GWAS in UKB52,53, Finngen47, and 

Biobank Japan54 (BBJ) for variants associated with autoimmune phenotypes near KMT2A. The A-allele of 

rs45480496, a common variant (MAF of 21% in TOPMed55) 36Kb from the TSS of KMT2A, is suggestively 

associated with autoimmune disease (“diseases marked as autoimmune origin”, OR = 1.04, pvalue = 2 x 

10-7) in Finngen and was also reported as suggestive hit in a BBJ-UKB meta-analysis56 (“autoimmune 

multi-trait”, OR = 1.08, pvalue = 2 x 10-6). A meta-analysis of these two signals results in genome-wide 

significance (pvalue = 2 x 10-12, Extended Data Figure 13) for this variant. We then looked for functional 

evidence linking rs45480496 to KMT2A. Although rs45480496 has not yet been reported as an eQTL for 

KMT2A, lookup of the SNP in a promoter Hi-C capture in immune cells57 revealed that it resides in a 

regulatory element that interacts with the promoter of KMT2A in megakaryocytes, naïve CD4s and CD8s, 

and effector CD4s and CD8s. Concordant with these observations, lookup of rs45480496 in 

regulomedb58 indicated that it is in an active enhancer in Th17 cells. The haplotype that rs45480496 tags 

also intersects with a predicted KMT2A enhancer in CD4+ T-cells from the ABC model34. Although the 

variant to gene predictions from OpenTargets59 suggest that other causal genes are possible in this 

locus, we remark that these predictions are made without knowledge of the causal cell type for a given 

phenotype. Collectively, these data report a novel risk locus for autoimmune traits upstream of KMT2A 

which likely contains a KMT2A enhancer.  
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Figure 7 | The transcriptional logic linking module 4 to GWAS loci. A, The sub-network of module 4 and 

Th17 cytokines. B, locus plot including tracks describing the functional characteristics of the region. Each 

track is constructed from publicly available ChIPseq data (methods) or ATAC-seq data from Freimer et al. 

Grey boxes indicate significantly different regions between the respective KO and AAVS1 control KO ATAC 

data (padj < 0.05, n = 3 donors per KO). The Y-axis displays normalized counts.   
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Discussion 
Human genetics has been remarkably productive in discovering complex-trait associated SNPs. 

There are now several resources to map the effects of these SNPs to molecular phenotypes in cis, 

however, the development of maps of the regulatory cascades of these SNPs has progressed much more 

slowly. Enabled by recent innovations in large-scale perturbation technologies, we are now able to 

systematically perturb large numbers of genes in primary human cell contexts. These perturbations 

complement natural genetic variation approaches to mapping trans-regulators as they facilitate the 

examination of biological variance that is unlikely to be observed in healthy cells. After network 

inference with LLCB, we observed 211 trans-regulatory causal connections in our upstream GRN, none 

of which were reported in the largest catalogue of CD4+ eQTLs performed to date6.  

We developed LLCB to infer the gene network which builds upon recent advances in the 

structure learning literature to estimate a graph with edge weights that are interpretable as direct 

effects. This stands in contrast to the majority of effect estimates reported in the functional genomics 

literature, which primarily report estimates from differential expression analyses performed separately 

in each perturbed gene. These estimates confer results that are difficult to interpret because they do 

not attempt to adjust for confounding pathways in the GRN, which are known to be highly abundant in 

biological networks. We use LLCB to estimate the topology and effect size of these confounding 

pathways. We found that direct effects were generally much larger than indirect effects in magnitude, 

and that the largest indirect effects were mediated by local feedback cycles. 

Using experimental perturbations, we investigated the properties of IEI TFs which are 

infrequently mutated in natural genetic variation. We performed a series of systematic analyses that 

delineate the commonalities and differences among the IEI TFs, background TFs, and IL2RA regulators. 

Consistent with our previous report14, we found that the IL2RA regulators were potent regulators of 

downstream effects. Both the IEI TFs and IL2RA regulators were enriched for being upstream and were 

much more likely than background TFs to disrupt autoimmune GWAS loci and whole blood specific 

genes even after adjustment for gene constraint. We also observed that the topology of the regulatory 

network is strongly associated with selective constraint. 𝑆ℎ𝑒𝑡 was among the best predictors of the 

topological properties of the perturbed genes: 𝑆ℎ𝑒𝑡  was strongly associated with the number of outgoing 

connections of a gene, but not the number of incoming connections. This is reflected in the dense 

downstream network identified for the IL2RA regulators with overall high levels of constraint, compared 

to the other TF groups. Overall, the difference in enrichment based on 𝑆ℎ𝑒𝑡  suggests that the centrality 

of genes is best expressed as a multi-dimensional construct. This further highlights the value of 

estimating GRNs with directed edges, as opposed to estimating undirected graphs from observational 

co-expression data, as the richer graphical structure enables much more granular topological analyses.  

Utilizing the novel connections in the GRN, we report several observations that improve 

annotation of canonical immune pathways. We observed that three of the background TFs (DR1, BPTF, 

and YBX1) regulated more downstream genes than any of the 30 IEI TFs, including TBX21, a master 

regulator of Th1 differentiation. After identifying gene modules and their downstream pathways, we 

observed multiple novel members of canonical gene modules, including KMT2A in the JAK-STAT 

pathway. We observed that KMT2A, a methyltransferase that deposits activating methylation marks, 

modulated the expression of canonical IL-2 signaling TFs. KMT2A collaborated with these TFs to 

upregulate IL17F, a pro-inflammatory cytokine that is secreted by Th17 cells, indicating that KMT2A is an 
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under-appreciated regulator of the IL2-JAK-STAT axis and Th17 activation. Meta-analysis of biobank 

autoimmune GWAS revealed a novel risk locus in a Th17 enhancer upstream of KMT2A. Collectively, 

these observations suggest that KMT2A inhibitors may be a productive therapeutic avenue for 

autoimmune disease.  

Although we have demonstrated that our regulatory network is useful for discovery of novel 

immune pathway biology and that it is validated by orthogonal data modalities, our study is not without 

limitations. The perturbation of additional genes in more donors, cell types, and cell contexts would 

undoubtedly result in increased discovery. The restriction to transcriptional regulation also inhibits the 

interrogation of post-translational regulation, which makes the interpretation of edges from genes 

where post-translational regulation important challenging. This suggests that the STAT proteins, which 

are known to be sensitive to phosphorylation, may regulate more genes than is estimated in our 

transcriptional network. The use of a bulk expression read-out, although more sensitive to genes with 

low expression than single cell assays, also precludes the analysis of more granular cell types and 

contexts.  

In conclusion, we describe the gene regulatory network of key CD4+ T cell regulators. This 

network enabled both the broad characterization of the properties of immune disease genes and the 

discovery of novel regulatory connections between TFs and signaling pathways that modulate immune 

disease genes. We anticipate that our approach can be applied in other cell types and contexts to 

generate maps of the molecular consequences of regulatory variation of disease genes.   
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Methods 
Cell Isolation and expansion 
 Primary CD25-CD4+ effector T cells were isolated from fresh Human Peripheral Blood Leukopaks 

(STEMCELL Technologies, #70500) from healthy donors, after institutional review board–approved 

informed written consent (STEMCELL Technologies). Peripheral blood mononuclear cells (PBMCs) were 

washed twice with a 1X volume of EasySep buffer (DPBS, 2% fetal Bovine Serum (FBS), 1mM pH 8.0 

EDTA). The washed PBMCs were resuspended at 200E6 cells/mL in EasySep buffer and isolated with the 

EasySep™ Human CD4+CD127lowCD25+ Regulatory T Cell Isolation Kit (STEMCELL Technologies, 

#18063), according to the manufacturer’s protocol. Cells were seeded at 1x106 cells/mL in complete 

RPMI-1640 supplemented with 10% FCS, 2 mM L-Glutamine (Fisher Scientific #25030081), 10 mM HEPES 

(Sigma, #H0887-100ML), 1X MEM Non-essential Amino Acids (Fisher, #11140050), 1 mM Sodium 

Pyruvate (Fisher Scientific #11360070), 100 U/mL Penicillin-Streptomycin (Sigma, #P4333-100ML), and 

50 U/mL IL-2 (Amerisource Bergen, #10101641) and stimulated with 6.25 uL/mL ImmunoCult™ Human 

CD3/CD28/CD2 T Cell Activator (STEMCELL Technologies, #10990). Following activation and 

electroporation, cells were split 1:2 every other day to maintain an approximate density of 1x106 

cells/mL. 

Cas9 RNP preparation and delivery 
 Custom crRNAs (Dharmacon) and Dharmacon Edit-R CRISPR-Cas9 Synthetic tracrRNA 

(Dharmacon, #U-002005-20) were resuspended in Nuclease Free Duplex Buffer (IDT, #11-01-03-01) at 

160uM stock concentration. In a 96 well plate, each crRNA was combined with tracrRNA at a 1:1 molar 

ratio and incubated at 37°C for 30 minutes. Single-stranded donor oligonucleotides (ssODN; sequence: 

TTAGCTCTGTTTACGTCCCAGCGGGCATGAGAGTAACAAGAGGGTGTGGTAATATTACGGTACCGAGCACTATCG

ATACAATATGTGTCATACGGACACG, 100uM stock) was added to the complex at a 1:1 molar ratio and 

incubated at 37°C for 5 minutes. Finally, Cas9 protein (MacroLab, Berkeley, 40 µM stock) was added at a 

1:2 molar ratio and incubated at 37°C for 15 minutes. The resulting RNPs were frozen at -80°C until the 

day of electroporation. 48 hours following effector T cell activation, the cells were pelleted at 100x g for 

10 minutes and resuspended in room temperature Lonza P3 buffer (Lonza, catalog no. V4XP-3032) at 

1.5x106 cells per 20 ul P3. The cells were combined with 5 ul aliquots of the thawed RNPs, transferred to 

a 96-well electroporation cuvette plate (Lonza, #VVPA-1002) and nucleofected with pulse code EH-115. 

Immediately following electroporation, the cells were gently resuspended in 90 ul warmed complete 

RPMI with IL-2 and incubated at 37 C for 15 minutes. After recovery, the cells were cultured in 96 well 

plates at 1x106 cells/mL for the duration of the experiment. To prevent edge effects, the guides were 

randomly distributed across each plate and the first and last column of each plate was excluded, being 

filled instead with PBS to prevent evaporation. 

RNA isolation and library preparation: 
 8 days after T cell isolation and activation, the cells were pelleted and resuspended at 1x106 cells 

per 300 ul of RNA lysis buffer (Zymo, #R1060-1-100). Cells were pipette mixed and frozen at -80 until 

RNA isolation was performed. RNA was isolated using the Zymo-Quick RNA micro prep kit (#R1051) 

according to the manufacturer’s protocol with the following modifications: After thawing the samples, 

each tube was vortexed vigorously to ensure complete lysis prior to loading into the extraction columns. 

In lieu of the kit provided DNAse, RNA was eluted from the isolation column after the recommended 

washes and digested with Turbo-DNAse (Fisher Scientific, AM2238) at 37 C for 20 minutes. Following 
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digestion, RNA was purified using the RNA Clean & Concentrator-5 kit (Zymo, #R1016) according to the 

manufacturer’s protocol. The resulting purified RNA was submitted to the UC Davis DNA Technologies 

and Expression Analysis Core to generate 3′ Tag-seq libraries with unique molecular indices (UMIs). 

Barcoded sequencing libraries were prepared using the QuantSeq FWD kit (Lexogen) for multiplexed 

sequencing on an Hiseq 4000 (Illumina). 

Cell proliferation quantification 
 One replica plate of cells from each donor was run on the Attune NxT Flow Cytometer (Thermo 

Fisher) within 24 hours of cell lysis for RNA extraction. Cell density per knock-out condition was 

quantified by the Attune using an equi-volume amount of sample. Counts were normalized to the mean 

AAVS1 density for the respective donor.  

RNA-seq alignment and gene count quantification 
 Adapters were trimmed from fastq files with cutadapt60. Low-quality bases from reads were 

trimmed using the Phred algorithm implemented in seqtk61. Reads were then aligned with STAR62 and 

mapped to GRCh38. Gene counts from deduplicated reads were quantified using featureCounts63. 

Sample quality control reports were generated with Fastqc64, rseqc65, and Multiqc66. 

Gene filtering and PCA analysis 
 Genes were first filtered to those with at least 10 counts in at least five samples. PCA was then 

performed on the variance stabilizing transformed27 (vst) counts of the 500 most variable genes. Three 

outlier samples were excluded and then the above process was repeated. The PCs were then assessed 

for association with batch effects and very broad cellular pathways. PCs 1-2 associated with batch 

effects, and PCs 3-4 were associated with cell cycle state, suggesting that PCs 1-4 should be included as 

covariates or otherwise adjusted for in downstream analysis.  

Differential expression analysis 
 Differential expression analysis was performed using DESeq227, including donor identity, PCs 1-4, 

and the KO as predictors of the response. Donor identity and PCs 1-4 were included as covariates to 

mitigate their confounding effects on gene expression. We emphasize that the statistical estimand in 

this analysis the total effect of the perturbation of a given gene on the readout gene. This effect may 

include several indirect paths between the perturbed gene and the readout gene.   

LLCB 
We formulate the GRN as a graph 𝑮 = (𝑿, 𝜷), where the 𝑃 nodes 𝑿𝟏, … , 𝑿𝒑 are each a vector of 

the vst normalized gene expression values. We restrict this analysis to the 84 KO’d genes reflecting the 

importance of satisfying the identifiability condition described in Hyttinen et al. 𝜷 is the adjacency 

matrix describing the direct linear effects between genes, where the rows encode the parent genes and 

the columns encode the children genes. We then construct a covariate matrix 𝑾 where the columns 

𝑾1, … 𝑾𝑙  indicate 𝑙 covariates to regress out. We then orthogonalize 𝑿 based on 𝑾 with the 

transformation  𝑿̃ = 𝑿̅ +  𝑿 ∗ (𝐼 − (𝑾𝑡𝑾)−1𝑾), where  𝑿̅ = 1𝑁𝑥𝑃 ∘ (𝑿1
̅̅̅̅ , … 𝑿𝑝

̅̅ ̅̅ ).  We add back in the 

column means 𝑿̅ to roughly preserve the original scale of 𝑿. In 𝑾, we include the donor identity and 

first four PCs as covariates.  

 We define 𝐾𝑂𝑗 as the indices indicating the samples in which 𝑿𝑗 was intervened upon and we 

set 𝑂𝑗 = {1, … , 𝑁} − 𝐾𝑂𝑗. We define 𝐶 as the indices in which safe-harbor AAVS1 control samples were 
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used. For all 𝑗 = 1, … , 𝑃 we recode 𝑿̃𝑖𝑗 = 0 for all 𝑖 ∈ 𝐾𝑂𝑗. This reflects our belief that the CRISPR KOs 

were effectively forcing the normalized functional transcript abundance to 0, i.e., we assume perfect 

interventions.   

 We then estimate 𝜷 in two steps: 1. Estimate the total effects 𝜓𝑖𝑗 between every pair of genes 

(𝑖, 𝑗) ∈ 𝑃 𝑥 𝑃; 2. Estimate 𝜷 from 𝝍 using a modification of the LLC algorithm21. To estimate 𝜓𝑖𝑗, we first 

center and scale 𝑿̃𝑗 based on its mean and standard deviation in the control samples 𝐶. Then, we use 

OLS to estimate the total effect of 𝑿̃𝒊 on 𝑿̃𝒋, limiting the samples used to {𝐾𝑂𝑖 , 𝐶}, such that we exclude 

all instances in which the child node 𝑿̃𝒋 has been KO’d. This analysis results in the matrix of estimated 

total effects, 𝝍̂. We emphasize that these coefficients are on a correlation scale because of the 

standardization procedure.  

 We assume asymptotic stability21 over the true 𝛽, which is equivalent to assuming that the 

largest eigenvalue is less than 1. Because we know 𝛽 is asymptotically stable, the following 

decomposition of true effects into direct effects is coherent: 

𝜓𝑖𝑗 = ∑ ∏ 𝛽𝑙𝑚

(𝑥𝑙→𝑥𝑚)∈𝑝𝑝∈𝑃(𝑥𝑖→𝑥𝑗)

 

This relationship indicates that total effect of a gene 𝑖 on gene 𝑗 is the sum of all possible paths between 

them, where the value of an individual path is defined by the product of direct effects along that path.  

To estimate 𝛽 from 𝜓̂, we use the LLC procedure Algorithm 1: 

 

Algorithm 1 

This procedure results in 𝑃 matrices 𝑻𝒋 of size (𝑃 − 1) 𝑥 (𝑃 − 1 ) and 𝑃 column vectors 𝒀𝒋. We then 

concatenate {𝒀𝒋}
𝑗=1,…,𝑃

 vertically into a column vector 𝒀 of length 𝑃 𝑥 (𝑃 − 1) and we form the block 

matrix 𝑻 = [

𝑻𝟏 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑻𝒑

] 

We then define the likelihood as the probability of 𝒀 conditional on 𝑻 and parameters 𝜷 and 𝜎𝑝. 𝑻 and 𝒀 

represent a system of linear equations relating the total effects 𝝍 to the direct effects 𝜷. For a given 

gene 𝑙 we define the set of rows in 𝑻 corresponding to experimental observations where we perturb a 
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putative parent of 𝑙 and record the effect on 𝑙 as 𝕃. For each row of 𝑻 and 𝒀 where the 𝑙𝑡ℎ gene is the 

child node, we specific the likelihood as: 

𝒀𝕃 |𝑻𝕃 , 𝜷, 𝜎𝑙~𝑁𝑝−1(𝑻𝕃 ∗ 𝒗𝒆𝒄(𝜷), 𝜎𝑙𝑰) 

Including a child node specific dispersion parameter 𝜎𝑙  allows for heterogeneity in the residual variance 

across the genes.  

 Because we have prior knowledge of what realistic gene networks look like, we specify the prior 

in three parts as follows: 

 

 𝑣𝑒𝑐(𝜷)~𝑁𝑃∗(𝑃−1)(0, 𝜆1) 

𝜌(𝜷)~𝑁(0, 𝜆2) 

where 𝜌(𝜷) is defined as the spectral radius of 𝜷, i.e., the maximum eigenvalue of 𝜷. We estimate the 

maximum eigenvalue of 𝜷 using power iteration. We incorporate a prior on the spectral radius because 

it is an upper bound over the NOTEARS DAG penalty20, which is a differentiable penalty that enables 

DAG search in a continuous optimization framework. Importantly, we encode this prior as a “soft-

constraint” with the Gaussian density to weakly penalize the divergence of 𝛽 from the space of DAGs 

while still allowing for cyclic elements.  

Over the columns of 𝜷, i.e., 𝜷∗𝒋 we place a sparsity inducing L1 prior: 

∑ |𝜷∗𝒋|
1

𝑗∈{1,…𝑃}

~ 𝑁(0, 𝜆3) 

The purpose of this term in the prior is to reflect our belief that the indegree of a gene should be 

relatively small; we know that genes are not directly regulated by hundreds of TFs. In contrast, a given 

TF may regulate hundreds of downstream genes, so we do not penalize the rows of 𝜷. Overall – this 

prior encodes the following three prior beliefs: 1. The effects should be somewhat small on a partial 

correlation scale; 2. The maximum eigenvalue should not be very large to penalize graphs with many 

cycles; 3. The indegree for each gene should be relatively small, while the outdegree should not be 

penalized.  

On the dispersion terms, 𝜎𝑝, we place a 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(−3, 5) prior. We estimate 𝑃 total dispersion terms 

because there may heterogeneity in the residual variance of the total effects across the KO’d genes.  

Causal network posterior inference 
 We use pathfinder30 to estimate the posterior. Briefly, pathfinder is a variational inference 

algorithm that optimizes the joint log probability of the model using L-BFGS, i.e., the maximum a 

posteriori objective. Along this optimization trajectory, it constructs a surrogate posterior at each point 

using the estimate of the hessian from L-BFGS as the precision of the surrogate posterior. Then, at each 

point, the evidence lower bound (ELBO) is evaluated. The variational approximation resulting in the 

largest ELBO is then returned as the posterior estimate. We compute seven runs of this optimization 

procedure in parallel, and then use importance resampling to combine the fits.  We initialize 𝛽 based on 

the component-wise sum of the MLE estimate of 𝜷 and a vector of gaussian noise i.e. 𝜷𝒊𝒏𝒊𝒕 = 0.1 ∗

 𝜷𝑴𝑳𝑬 + 0.1 ∗ 𝒛, 𝒛 ~𝑁(0, 1).  
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Causal network posterior uncertainty quantification 

 We compute a pseudo-posterior inclusion probability (PIP) we defined as 𝑃𝐼𝑃(𝛽𝑖𝑗) =

𝑃(|𝛽𝑖𝑗| > 𝜖). We set 𝜖 = 0.05. We also computed local-false sign rates (LFSR) estimates: 𝐿𝐹𝑆𝑅(𝛽𝑖𝑗) =

min(𝑃(𝛽𝑖𝑗 > 0), 𝑃(𝛽𝑖𝑗) < 0). We note that these summary statistics, although likely proportional to 

the ‘true’ values, are likely somewhat uncalibrated given that a) we do not model the underling discrete 

graph structure 𝐺 separately from the parameters 𝛽 and b) calibrated inference in a network setting has 

been shown empirically to be extremely challenging.  

Simulation of a cyclic network in a steady state 
 We start by simulating a given expression vector of 𝑃 genes as 𝑿𝟎~𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(1.00, 0.10). 

Then, for a given adjacency matrix 𝜷 we model the effect of a perturbation on the 𝑘𝑡ℎ gene as setting 

𝜷∗𝒌 = 0, i.e., we remove the incoming edges to this node. We denote this perturbed adjacency matrix 

as  𝜷̃. We then sample the “steady-state” limit as lim
𝑡→ ∞

𝑿𝒕 = 𝑿𝒐(𝑰 − 𝜷̃)
−1

. We assessed the performance 

of our algorithm on a 𝜷 corresponding to a cyclic network.  

ABC-GRN 
 We extracted the CD4+ enhancer to gene predictions from the ABC model34 and we intersected 

them with the differential ATAC peaks from Freimer et al., which were generated on samples where the 

24 IL2RA regulators were KO’d. For the 𝑖𝑡ℎ gene we included 𝑖 → 𝑗 as an edge in this graph if one its 

differential ATAC peaks intersected with an ABC enhancer for gene 𝑗, suggesting that perturbation of 

gene 𝑖 was perturbing a cis regulatory element for gene 𝑗. We then calculated the enrichment of these 

edges among those detected in the IL2RA regulator sub-network of causal network estimate.  

HBase validation network 
We downloaded the HumanBase35 predicted “T-Lymphocyte” network from 

https://hb.flatironinstitute.org/download . We downloaded the version of the network with only the top 

edges included. We then estimated enrichment in the same manner as with the ABC-GRN network.  

Bipartite graph model of downstream gene expression 
 We refer to a “downstream” gene as those that were measured among the 12,803 genes that 

were highly expressed but not among the perturbed genes. We form a matrix 𝒀 with 12,803 columns 

containing the vst normalized gene expression data. We define a matrix 𝑿 with the expression values of 

the 84 perturbed genes. We applied the same normalization data procedure as in our causal network 

estimation such that both 𝑿 and 𝒀 are vst transformed data that is orthogonal to covariates (donor 

identity, PCs 1-4). We specified the following likelihood for the 𝑖𝑡ℎ measurement of the 𝑗𝑡ℎ downstream 

gene: 

𝑌𝑖𝑗~𝑁(𝑿𝒊𝜷𝒋, 𝜎𝑗) 

Over the 𝜷𝒋 we place the following prior 𝜷𝒋~𝑁𝑝(0, 𝛼 ∗ 𝚺𝜷), where 𝚺𝜷 is defined as the asymptotic 

steady state covariance implied by our point estimate from the causal network model, i.e., 𝚺𝜷 =

(𝐼 − 𝜷̂)
−1

𝚺𝝐(𝐼 − 𝜷̂). This prior encodes the belief that similar effects among the 84 genes in the causal 

network will increase the likelihood of similar downstream effects. Because we used a conjugate prior 

the posterior has an analytic form:  
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𝜷𝒋|𝑿, 𝒀𝒋~𝑁𝑁(𝜏𝑗 ∗ 𝚲−𝟏𝑿𝒕𝒀𝒋, 𝜎𝑗
2𝑑𝑖𝑎𝑔(𝚲−𝟏)) 

where 𝚲 = (𝚺𝜷 + 𝜏𝑗 ∗ 𝑿𝒕𝑿) and 𝜏𝑗 =
1

𝜎𝑗
2 .  

We set 𝛼 = 0.10 in practice, although in principle empirical Bayesian approaches or other criteria could 

be used to set this hyperparameter. We estimate the residual variance parameter 𝜎𝑗
2 using maximum 

likelihood and we use lfsr as our variable selection criteria.  

Pathway analysis 
 Downstream enriched pathways were identified for each perturbation using pathfindR 

(v1.6.4)67. For each upstream gene perturbed, outgoing edges within the BG model were used as input 

for pathfinder, with a significance threshold of LFSR < 5 x 10-3. Gene sets were limited to KEGG40, 

Reactome45, and GO-BP50 and the minimum gene set size and enrichment threshold were set to 10 and 

0.05 respectively. Pathways were prioritized for visualization based on the number of genes within the 

module with enrichment for the pathway, median fold enrichment across all members of the module, 

and relevance to T cell biology. 

LD score regression analyses 
 We first defined gene sets corresponding to each of the nine modules (1A-C, 2A-C, 3A-B, 4) and 

module 0, which we defined as the set of genes that were expressed highly enough for analysis but were 

not associated with any of the KO’d genes (at a LFSR threshold of 5 x 10-3). For each of these 10 gene 

sets, we then linked SNPs to these genes (S2G) using seven possible methods following Dey at al68, 

including approaches that link SNPs based purely on physical distance to the nearest gene, fine-mapped 

eQTLs, promoter Hi-C capture, the ABC model, among others.   

 For each of the 10 phenotypes analyzed (Supplementary Table S7) we obtained the GWAS 

summary statistics and performed LD score regression analysis. We included the LD score baseline 

model v2.1 in the regression. We used the publicly available European ancestry LD score estimates for 

the HapMap SNPs available from:  

gs://broad-alkesgroup-public/LDSCORE/Dey_Enhancer_MasterReg/processed_data.   

ATAC and ChIPseq data visualization  
 Bigwigs for each of the tracks were downloaded from ChIP-Atlas. ATAC bigwigs and differentially 

expressed regions were procured from Freimer et al. and a representative donor was used for 

visualization of each perturbation effect at the IL17F locus. Visualization was performed with rtracklayer 

(v1.52.1) and ggplot2 (v3.4.1). APRIS gene structure was used for gene annotation with gggenes 

(v0.5.0).  

We included data from the following SRA sources:  

STAT5B KO ATAC- SRX10558086, KMT2A KO ATAC- SRX10558079, AAVS1 KO ATAC- SRX10558063, 

H3K4me3 ChIP- activated Th17 ChIP- SRX16500373 (GSM6376841), STAT5B ChIP- SRX041293 

(GSM671402)  
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Extended Data Figures 
 

Extended Data Figure 1 | CRISPR editing efficiency by gene group. A Percent of reads with indels, 

stratified by individual gene. B Percent of reads with indels, aggregating by gene group.  
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Extended Data Figure 2 | Enrichment of LLCB posterior mean edges in the ABC-GRN validation 

network 

 

Extended Data Figure 3 | Enrichment of LLCB posterior mean edges in the HBase T-cell network 
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Extended Data Figure 4 | Permutation test of the number of edges between genes that share the 

same gene group. A set of 2,000 null permutations of the network were generated by using the rewiring 

algorithm to preserve the node degree. Within each permutation, the number of edges with the same 

gene group were counted. The observed value is denoted by the red vertical line, and the empirical 2.5% 

and 97.5% quantiles from the permuted data are denoted by vertical dashed lines.  
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Extended Data Figure 5 | Comparison of direct to total effects among the 84 KO’d genes. The x-axis is 

defined as the posterior mean estimates of the adjacency matrix estimated by LLCB. Units are in terms 

of standard deviations of normalized gene expression. The y-axis is estimated through the processing 

procedure described in Methods.  

 

 

Extended Data Figure 6 | The largest indirect effects are mediated by cycles of short length 
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Extended Data Figure 7 | Enrichment of module effects on KEGG signaling pathways. Enrichment 

analyses were performed with pathfindR.  
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Extended Data Figure 8 | Enrichment of module effects on KEGG signaling pathways. Enrichment 

analyses were performed with pathfindR.  
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Extended Data Figure 9 | Enrichment of module effects on KEGG immune pathways. Enrichment 

analyses were performed with pathfindR.  
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Extended Data Figure 10 | Network plot demonstrates the effect of the cluster 2A upstream 

regulators on cell-cycle genes. The network using edges estimated from the BG model are plotted. 

Colors indicate the effect size and arrows indicate the direction of effect. The genes on the left-hand 

side are among the 84 KO’d genes, and the genes on the right are genes that are listed among the KEGG 

cell cycle pathway genes.  
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Extended Data Figure 11 | Marginal heritability estimates from LD score regression. LD score 

regression was used to estimate the heritability enrichment of SNPs linked to genes in each module for 

each phenotype. SNPs were linked to genes using the ABC predictions in T cells.  
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Extended Data Figure 12 | KMT2A and STAT5B jointly regulate chromatin accessibility at the IL17F 

locus (A) and IL21 locus (B).  

A 

 

B 
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Extended Data Figure 13 | Meta-analysis of autoimmune GWAS from Shirai et al. and Finngen v8. The 

KMT2A locus plot is displayed with a chromHMM69 track from Th17 cells. The predicted enhancers of 

KMT2A from the ABC model in CD4+ T cells are shown in red arcs at the bottom.  
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