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Abstract: A key challenge in neuroscience is to understand the structural and functional

relationships of the brain from high-dimensional, multimodal neuroimaging data. While con-

ventional multivariate approaches often simplify statistical assumptions and estimate one-

dimensional independent sources shared across modalities, the relationships between true

latent sources are likely more complex – statistical dependence may exist within and between

modalities, and span one or more dimensions. Here we present Multimodal Subspace Inde-

pendent Vector Analysis (MSIVA), a methodology to capture both joint and unique vector

sources from multiple data modalities by defining both cross-modal and unimodal subspaces

with variable dimensions. In particular, MSIVA enables flexible estimation of varying-size

independent subspaces within modalities and their one-to-one linkage to corresponding sub-
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2 1 INTRODUCTION

spaces across modalities. As we demonstrate, a main benefit of MSIVA is the ability to

capture subject-level variability at the voxel level within independent subspaces, contrasting

with the rigidity of traditional methods that share the same independent components across

subjects. We compared MSIVA to a unimodal initialization baseline and a multimodal initial-

ization baseline, and evaluated all three approaches with five candidate subspace structures

on both synthetic and neuroimaging datasets. We show that MSIVA successfully identified

the ground-truth subspace structures in multiple synthetic datasets, while the multimodal

baseline failed to detect high-dimensional subspaces. We then demonstrate that MSIVA bet-

ter detected the latent subspace structure in two large multimodal neuroimaging datasets

including structural MRI (sMRI) and functional MRI (fMRI), compared with the unimodal

baseline. From subsequent subspace-specific canonical correlation analysis, brain-phenotype

prediction, and voxelwise brain-age delta analysis, our findings suggest that the estimated

sources from MSIVA with optimal subspace structure are strongly associated with various

phenotype variables, including age, sex, schizophrenia, lifestyle factors, and cognitive func-

tions. Further, we identified modality- and group-specific brain regions related to multiple

phenotype measures such as age (e.g., cerebellum, precentral gyrus, and cingulate gyrus

in sMRI; occipital lobe and superior frontal gyrus in fMRI), sex (e.g., cerebellum in sMRI,

frontal lobe in fMRI, and precuneus in both sMRI and fMRI), schizophrenia (e.g., cerebel-

lum, temporal pole, and frontal operculum cortex in sMRI; occipital pole, lingual gyrus, and

precuneus in fMRI), shedding light on phenotypic and neuropsychiatric biomarkers of linked

brain structure and function.

Keywords: multimodal fusion; latent variable models; structural and functional MRI; age; sex; schizophre-

nia

1 Introduction

Neuroimaging techniques such as magnetic resonance imaging (MRI) have been developed to understand

the structural and functional properties of the brain, as well as their relationships to behavior. However,

it is challenging to directly associate behavior measures with raw MRI data, which typically includes

tens of thousands of voxels and subjects. Although the data in its original space appears complex, its

intrinsic dimensionality can be significantly lower. Recent studies have found that neural representations

in low-dimensional subspaces form the basis that supports motor functions such as reaching (Churchland

et al., 2012; Pandarinath et al., 2018) and timing (Remington et al., 2018; Wang et al., 2018), and
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cognitive functions such as perception (Bao et al., 2020; Chang & Tsao, 2017; Semedo et al., 2019;

She et al., 2024), generalization (Bernardi et al., 2020; Boyle et al., 2024; Courellis et al., 2024), and

decision-making (Hajnal et al., 2024; Johnston et al., 2024). Hence, it is important to develop latent

variable models to learn low-dimensional representations and structures from high-dimensional data. In

addition, each neuroimaging modality has its own strengths and weaknesses, and only captures limited

information about the brain. For example, structural MRI (sMRI) provides high-resolution anatomical

structure of the brain but does not capture temporal dynamics, while functional MRI (fMRI) measures

blood-oxygenation-level-dependent (BOLD) signals over time at the cost of lower spatial resolution. Joint

analysis of sMRI and fMRI can offer rich spatio-temporal information in the brain that is not captured by

a single modality. With the increasing availability of multimodal neuroimaging datasets, it is necessary to

develop multivariate approaches to effectively capture interpretable and multifaceted information about

the brain and its disorders from multiple imaging modalities (Calhoun & Sui, 2016; Lahat et al., 2015;

Sui et al., 2012; Zhang et al., 2020).

A variety of data-driven multivariate approaches have been developed to jointly analyze multiple neu-

roimaging datasets or data modalities, including joint independent component analysis (jICA) (Calhoun

& Adali, 2008; Calhoun, Adali, Giuliani, et al., 2006; Calhoun, Adali, Pearlson, & Kiehl, 2006; Franco

et al., 2008), linked ICA (Groves et al., 2011), multimodal canonical correlation analysis (mCCA) (Correa

et al., 2008, 2010; Mohammadi-Nejad et al., 2017), jICA+mCCA (Sui et al., 2011, 2013), and inde-

pendent vector analysis (IVA) (Adali et al., 2015a, 2015b). Notably, a unified framework Multidataset

Independent Subspace Analysis (MISA) (Silva et al., 2020) has recently been introduced, encompassing

multiple latent variable models, such as ICA (Comon, 1994), IVA (Adali et al., 2014; Kim et al., 2006),

and independent subspace analysis (ISA) (Cardoso, 1998). MISA can be applied to identify latent sources

from multiple neuroimaging modalities, including sMRI and fMRI (Silva et al., 2020). More recently, a

multimodal IVA (MMIVA) fusion method built upon MISA has been proposed to identify linked biomark-

ers related to age, sex, cognition, and psychosis in two large multimodal neuroimaging datasets (Silva

et al., 2021). However, one limitation of many existing approaches including MMIVA is that they assume

that sources are one-dimensional and independent within each modality, i.e. the subspace structure is

an identity matrix. The underlying relationships between true latent sources are likely more complex –

statistical dependence may exist within and across modalities, and span one or more dimensions. For

example, sources from the same modality may be linked, potentially grouped by their anatomical or

functional properties, and thus would not be optimally captured by MMIVA.

Aiming to better detect the statistical relationships from multimodal data, we present a novel methodol-

ogy, Multimodal Subspace Independent Vector Analysis (MSIVA), that captures linkage of vector sources

by defining cross-modal and unimodal subspaces with variable dimensions (Li et al., 2023). MSIVA is
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4 1 INTRODUCTION

built upon MMIVA by defining a block diagonal matrix as the subspace structure, instead of the identity

matrix used in MMIVA. In addition, MSIVA is initialized with the weight matrices obtained by combining

multimodal group principal component analysis (MGPCA) across modalities with separate ICAs for each

modality. By design, MSIVA can simultaneously estimate two types of latent sources – those linked across

all modalities and those unique to a specific modality, as well as their underlying relationships. Moreover,

by leveraging higher-dimensional subspaces, MSIVA sources show greater representation power, which

supports downstream analyses at both individual and voxel levels.

To comprehensively evaluate the effectiveness of MSIVA, we compared MSIVA with a fully unimodal ini-

tialization approach and a fully multimodal initialization approach. We first simulated multiple synthetic

datasets to evaluate whether MSIVA can successfully reconstruct both joint and unique sources, as well

as the ground-truth subspace structures. Next, we applied MSIVA and the baseline approach to two large

multimodal neuroimaging datasets, the UK Biobank dataset (Miller et al., 2016) and a schizophrenia

(SZ) patient dataset combined from several studies (Aine et al., 2017; Keator et al., 2016; Tamminga

et al., 2014). Our results indicate that MSIVA better detected the latent subspace structures in the neu-

roimaging datasets compared with the baseline approach. Using CCA (Hotelling, 1992), we conducted

a follow-up assessment of each cross-modal subspace separately and identified projections within the

optimal subspace structure yielding the post-CCA linked sources. We then performed age regression, sex

classification, and diagnosis classification to investigate the associations between these linked sources

and phenotype measures. Results from brain-phenotype modeling suggest that the post-CCA sources are

associated with age, sex and SZ-related effects. Furthermore, we proposed a voxelwise brain-age delta

analysis using reconstructed data from MSIVA. We found that brain-age gap can be explained by several

phenotype measures, such as lifestyle factors and cognitive test scores. Lastly, we identified modality- and

group-specific brain regions related to age, sex, SZ, cognitive function, and physical exercise. Overall, our

findings suggest that MSIVA can effectively reveal the latent sources related to phenotype variables from

multimodal neuroimaging data, thereby uncovering linked phenotypic and neuropsychiatric biomarkers of

brain structure and function.
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2 Methods

2.1 Multimodal subspace independent vector analysis

We consider the following problem that each observed data modality is a linear mixture of latent sources:

X[m] = A[m]S[m], (1)

where X[m] ∈ RV×N is the observed data, A[m] ∈ RV×C is a linear mixing matrix, S[m] ∈ RC×N is the

latent source, m is the modality index, V is the input feature dimensionality, and N is the number of

samples. Sources across M modalities are either statistically dependent or independent, according to the

subspace structure S defined using available a priori information. We aim to recover the latent sources

Ŝ[m] ∈ RC×N by estimating a linear unmixing matrix W[m] ∈ RC×V :

Ŝ[m] = W[m]X[m]. (2)

We refer to our proposed approach as Multimodal Subspace Independent Vector Analysis (MSIVA)

because it is an extension of MMIVA by allowing higher-dimensional cross-modal subspaces that are

constrained to have the same size across modalities. We consider five candidate subspace structures

that define different types of multimodal relationships (Figure 1) and three initialization workflows that

capture different amounts of joint information (Figure 2). Given a candidate subspace structure, MSIVA

consists of iterative combinatorial optimization of the source estimates (cross-modal subspace alignment)

and numerical optimization of the MISA loss (Equation 5). This process is repeated for each of the five

candidate subspace structures, followed by a best-fit determination based on the final quantitative metrics

of all candidates.

2.1.1 Subspace structures

Our interest lies in identifying groups of linked (i.e. not independent) sources within each modality,

while assuming sources in different groups are statistically independent. Here, these source groups are

referred to as subspaces. In addition, we aim to detect cross-modal linkage (i.e. statistical dependence)

between subspaces. This requires solving a challenging combinatorial optimization problem. For simplic-

ity, we limit the search space of cross-modal linkage by assuming that statistical dependence occurs only

between higher-dimensional (two-dimensional or above) subspaces with the same size across modalities.

Additionally, we assume all modality-specific subspaces to be one-dimensional (1D), i.e. a single source.
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6 2 METHODS

M2

S1 S2

M1

S3 S4 S5

Figure 1: Five plausible candidate subspace structures (S1−S5) for two modalities (M1−M2).
Each panel depicts the idealized association between sources from two modalities (M1 −M2), across
five different plausible scenarios (S1 − S5). The size of each block represents the number of sources
within a subspace (the subspace size). The colorful subspaces highlighted in blue are linked between
modalities, whereas the black subspaces highlighted in green (1 × 1 blocks in S1 − S4) are specific to
each modality (no cross-modal correlation). For each modality, sources within the same subspace are
statistically dependent while sources in different subspaces are statistically independent.

Building on the MISA framework, we require a user-defined candidate subspace structure that specifies

the expected linkage pattern. The goal of MSIVA is to determine which one of the candidate subspace

structures best fits the observed data. Two to four dimensions are commonly used to cluster functional

networks in functional imaging literature (Ma et al., 2010, 2011). Thus, we proposed five plausible

subspace structures (S1−S5) in two modalities (M1−M2), all with 12 sources in each modality (Figure

1):

• S1: One two-dimensional (2D) cross-modal subspace, one three-dimensional (3D) cross-modal

subspace, one four-dimensional (4D) cross-modal subspace, and three 1D unimodal subspaces.

• S2: Five 2D cross-modal subspaces and two 1D unimodal subspaces.

• S3: Three 3D cross-modal subspaces and three 1D unimodal subspaces.

• S4: Two 4D cross-modal subspaces and four 1D unimodal subspaces.

• S5: Twelve 1D cross-modal subspaces (no unimodal subspaces, as in MMIVA).

2.1.2 MSIVA initialization workflow

The MSIVA initialization workflow first utilized multimodal group principal component analysis (MGPCA)

to identify common principal components across all modalities and then applied ICA on the MGPCA-

reduced data of each modality. Unlike principal component analysis (PCA) that identifies orthogonal

directions of maximal variation for each modality separately, MGPCA identifies directions of maximal
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2.1 Multimodal subspace independent vector analysis 7

PCA

ICA

Combinatorial
Optimization

PCA

ICA

PCA + ICA

MISA

Unimodal Baseline Multimodal Baseline

MGPCA

ICA

Combinatorial
Optimization

ICA

MGPCA + ICA

MISA

MSIVA

Crossmodal information captured during initialization
None Maximum

MGPCA

Combinatorial
Optimization

GICA

MGPCA + GICA

MISA

Figure 2: Overview of three proposed initialization workflows. The initialization approaches from
left to right are separate PCAs followed by separate ICAs (PCA + ICA); multimodal group PCA with
separate ICAs per modality (MGPCA + ICA); multimodal group PCA with group ICA (MGPCA + GICA).
The MGPCA + ICA initialization workflow is denoted as MSIVA. After initialization, the combinatorial
optimization and numerical optimization with the MISA loss were performed for sufficient iterations until
the loss value converged.

common variation across all modalities. Eigenvectors were computed based on the average of the scaled

covariance matrices:

Σavg =
1

M

M∑
m=1

N
Σ[m]

trace (Σ[m])
=

1

M

M∑
m=1

N
X[m]⊤X[m]

||X[m]||2Fr
, (3)

where Σ[m] = X[m]⊤X[m]

V−1
≈ E

[
X[m]⊤X[m]

]
, E[·] is the expectation operator, and || · ||Fr indicates the

Frobenius norm. The scaling factor
trace(Σ[m])

N
is the ratio of the variance in the modality to the number

of samples. We define the whitening matrix W
[m]
MGPCA as follows:

W
[m]
MGPCA =

√
N − 1Λ− 1

2U[m]⊤λ[m], (4)

whereΛ andQ are the top C eigenvalues and eigenvectors ofΣavg, respectively,U
[m] =

(
λ[m]X[m]

)
QΛ− 1

2 ,

λ[m] =
√

N
M(V−1)trace(Σ[m])

=
√

N
M ||X[m]||2Fr

.

Next, the MGPCA-reduced data from each modality X
[m]
r = W

[m]
MGPCAX

[m] underwent a separate ICA
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8 2 METHODS

estimation using the Infomax algorithm (Bell & Sejnowski, 1995) initialized with an identity matrix to

obtain C independent sources per modality Ŝ
[m]
Infomax = W

[m]
InfomaxX

[m]
r . These estimates were further

optimized by running MISA as a unimodal ICA model initialized with W
[m]
Infomax, leading to the final

ICA source estimates Ŝ
[m]
ICA = W

[m]
ICAX

[m]
r . Finally, multimodal MISA was initialized by the combined

MGPCA+ICA estimates W
[m]
0 = W

[m]
ICAW

[m]
MGPCA from both modalities. Subsequently, we compared

MSIVA with a fully unimodal initialization workflow and a fully multimodal initialization workflow to

comprehensively evaluate method performance.

2.1.3 Unimodal initialization workflow

The unimodal initialization workflow simply applied PCA and ICA on each modality separately. We first

projected the imaging data matrix from each modality X[m] into a reduced data matrix X
[m]
r with C

principal components and obtained the corresponding whitening matrix W
[m]
PCA. Next, we applied ICA on

each reduced data matrix X
[m]
r to obtain C independent sources and the corresponding unmixing matrix

W
[m]
ICA. The MISA initialization matrix in the unimodal baseline was defined as W

[m]
0 = W

[m]
ICAW

[m]
PCA.

2.1.4 Multimodal initialization workflow

The multimodal initialization workflow sequentially applied MGPCA and group ICA (GICA) across all

data modalities, resulting in the weight matrices W
[m]
MGPCA and W

[m]
GICA. GICA performed ICA on the

combined MGPCA-reduced data from all M modalities, i.e. Xr =
∑M

m=1 X
[m]
r . MISA in the multimodal

baseline was initialized by W
[m]
0 = W

[m]
GICAW

[m]
MGPCA.

2.1.5 Alternating combinatorial and numerical optimizations

All three workflows utilize MISA’s greedy combinatorial optimization and objective function to estimate

latent sources. MISA uses the relative gradient and L-BFGS algorithm (Liu & Nocedal, 1989) in a barrier-

type optimization (fmincon from MATLAB’s Optimization Toolbox). Greedy combinatorial optimization

and MISA optimization were performed iteratively until the loss value converged. Specifically, we ran 10

iterations for synthetic data, and 20 iterations for neuroimaging data. The loss function L(·) (Silva et

al., 2020) is defined as the Kullback-Leibler (KL) divergence between the joint distribution of all sources

p
(
Ŝ
)
and the product of all K subspace distributions q

(
Ŝ
)
=

∏K
k=1 p

(
Ŝk

)
, which is equivalent to

mutual information among K subspaces. The subspace distributions are modeled as the joint Kotz

distribution (Kotz, 1975) of the sources within each subspace. Thus, subspaces are assumed to be
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2.2 Datasets 9

statistically independent of each other within each modality. Sources within a subspace are considered

to be dependent on (or linked to) one another. We want to minimize the loss function L(·) by solving

the following optimization problem:

minL
(
Ŝ
)
= minE

ln p
(
Ŝ
)

q
(
Ŝ
)


= minE
[
ln p

(
Ŝ
)]
−

K∑
k=1

E
[
ln p

(
Ŝk

)]
= min

Ŵ,Pk,
k=1,...,K

E
[
ln p

(
ŴX

)]
−

K∑
k=1

E
[
ln p

(
PkŴX

)]
,

(5)

where Ŝ =
[
Ŝ[1]; . . . ; Ŝ[M ]

]
∈ RMC×N 1 is the estimated sources for allM modalities. X =

[
X[1]; . . . ;X[M ]

]
∈

RMV×N is the concatenated data with all M modalities. Ŵ ∈ RMC×MV is the estimated block-diagonal

unmixing matrix, such that Ŝ[m] = Ŵ[m]X[m]. Pk ∈ RCk×MC is the k-th subspace assignment ma-

trix defined by the subspace structure S in Section 2.1.1, and Ck is the number of sources in the kth

subspace.

2.2 Datasets

2.2.1 Synthetic data

For each subspace structure S, we generated a synthetic dataset with two modalities X =
[
X[1];X[2]

]
∈

R2V×N , where V is the dimensions of input features (V = 20000) and N is the number of samples

(N = 3000). V and N were chosen to approximate the number of voxels and samples in the UK

Biobank neuroimaging dataset (see Section 2.2.2). Each data modality is a linear mixture of 12 sources

spanning the subspaces defined in S, X[m] = A[m]S[m], A[m] ∈ RV×C , S[m] ∈ RC×N , m ∈ {1, 2}, and
C = 12. Each subspace is independently sampled from a multivariate Laplace distribution. Hence, the

marginal distributions correspond to the different sources within each subspace. Cross-modal sources

within each linked subspace are dependent with correlation coefficients uniformly sampled from 0.65 to

0.85. Unimodal sources (1D subspaces in S1−S4) are independent from all others, i.e. their correlation

coefficient is 0.

1We use semicolon (;) to denote that matrices are stacked vertically and comma (,) to denote that matrices are stacked
horizontally.
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10 2 METHODS

2.2.2 Neuroimaging data

We utilized two large multimodal neuroimaging datasets including two imaging modalities: T1-weighted

structural MRI (sMRI) and resting-state functional MRI (fMRI). The first dataset is from the UK Biobank

study (Miller et al., 2016). 2907 subjects from two sites (age mean ± standard deviation: 62.09± 7.32

years; age median: 63 years; age range: 46 − 79 years; 1452 males, 1455 females) were used for

formal analysis after excluding subjects with more than 4% missing phenotype measures (Smith et

al., 2015). The second dataset includes 999 patients and controls (age mean ± standard deviation:

38.61 ± 13.13 years; age median: 39 years; age range: 15 − 65 years; 625 males, 374 females; 538

controls, 337 patients diagnosed with schizophrenia, 63 patients with bipolar disorder, 11 patients with

schizoaffective disorder, 28 schizoaffective bipolar-type probands, and 22 schizoaffective depression-type

probands) combined across several studies, including Bipolar and Schizophrenia Network for Intermediate

Phenotypes (BSNIP) (Tamminga et al., 2014), Center for Biomedical Research Excellence (COBRE)

(Aine et al., 2017), Function Biomedical Informatics Research Network (FBIRN) (Keator et al., 2016),

and Maryland Psychiatric Research Center (MPRC). For each dataset, we preprocessed sMRI and fMRI

to obtain the gray matter (GM) and mean-scaled amplitude of low frequency fluctuations (mALFF)

feature maps, respectively. We resampled each GM or mALFF feature map to 3× 3× 3mm3 resolution

and applied a group-level GM mask on the feature map, resulting in 44318 voxels. Data acquisition and

preprocessing details are described in Appendix A.

Next, for each data modality in each dataset, we performed variance normalization (removed mean and

divided by standard deviation) for each subject, and then removed the mean across all subjects for each

voxel. Lastly, we regressed out site effects for each dataset as follows:

X[m] ←− X[m] −X[m]L
(
L⊤L

)−1
L⊤, (6)

where L = [1, ℓ], with 1 ∈ RN being a column vector of ones and ℓ being one-hot encoded site labels.

2.3 Experiments

2.3.1 Synthetic data experiment

We first verified whether the proposed approaches including MSIVA can identify and distinguish the

correct subspace structure (i.e. the one used to generate the data) from the incorrect ones in synthetic

data. For each of the five subspace structures (S1 − S5) described in Section 2.1.1, we generated
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2.3 Experiments 11

a synthetic dataset where the data distribution is defined by the corresponding subspace structure.

Next, we conducted experiments on all combinations of five subspace structures (Figure 1) and three

initialization workflows (Figure 2). Finally, we visualized the interference matrices Ŵ[m]A[m]2 to confirm

if the subspace structures were recovered. We quantitatively measured the normalized multidataset

Moreau-Amari intersymbol interference (ISI) (Amari et al., 1996; Macchi & Moreau, 1995; Silva et al.,

2020), a metric to evaluate the residual interference between the estimated sources and the ground-truth

sources:

ISI(H) =
1

2K(K − 1)

 K∑
i=1

−1 + K∑
j=1

|hij|
max

k
|hik|

+
K∑
j=1

−1 + K∑
i=1

|hij|
max

k
|hkj|

 , (7)

where H is a matrix with elements hij = 1⊤
∣∣∣PiŴAPj

∣∣∣1, the sum of of absolute values from all

elements corresponding to subspaces i and j in the interference matrix ŴA.

We also reported the corresponding MISA loss value defined in Equation 5. When evaluating method

performance on synthetic data, we prioritize the ISI metric and interference matrix as they leverage the

ground-truth information, and examine if the loss value is consistent with these metrics.

2.3.2 Neuroimaging data experiment

We performed experiments on each of two multimodal neuroimaging datasets separately, using each of

the same five candidate subspace structures S1−S5, and identified the optimal subspace structure as the

one yielding the lowest final MISA loss value. Note that the ISI is unavailable because the ground-truth

subspace structure is unknown in real data.

In addition, to evaluate cross-modal subspace alignment, we computed cross-modal source correlation

using both the linear Pearson correlation coefficient and the nonlinear randomized dependence coefficient

(RDC) (Lopez-Paz et al., 2013). Next, we calculated the mean correlation coefficient (MCC) summary

for each subspace structure in a two-stage manner: we first calculated the aggregated correlation in

each cross-modal subspace, and then computed the final MCC as the mean of the aggregated correla-

tions across all cross-modal subspaces. This two-stage estimation ensures a balanced contribution from

subspaces of different dimensions. Let the cross-modal correlation in the kth cross-modal subspace be

2The absolute values of Ŵ[m]A[m] entries are reported because their signs are irrelevant.
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12 2 METHODS

Rk ∈ RCk×Ck , then

MCC(R) =
1

K

K∑
k=1

1

2dk

Ck∑
i=1

(
max

(
Rk[i,:]

)
+max

(
Rk[:,i]

))
, (8)

where Ck is the number of sources in the kth subspace, dk is the dimension of the kth cross-modal

subspace, and K is the number of cross-modal subspaces in each subspace structure.

To further assess the cross-modal linkage strength of the estimated subspaces within the optimal subspace

structure, separate post-hoc CCA of each cross-modal subspace was used to recover projections with the

maximum correlation between the two modalities:

(pk,qk) = argmax
pk,qk

corr
(
p⊤
k Ŝ

[1]
k ,q⊤

k Ŝ
[2]
k

)
, (9)

where pk ∈ RCk and qk ∈ RCk are the CCA projection vectors for the kth cross-modal subspace, and

Ŝ
[1]
k ∈ RCk×N and Ŝ

[2]
k ∈ RCk×N are the recovered sources in the kth cross-modal subspace for two

modalities. After estimation, post-CCA sources in the kth cross-modal subspace are obtained as p⊤
k Ŝ

[1]
k

and q⊤
k Ŝ

[2]
k . This assessment is sensible because linear transformations of individual sources within the

same subspace are considered equivalently optimal3 (Cardoso, 1998; Szabó et al., 2012).

2.4 Brain-phenotype prediction

To evaluate the association between phenotype measures and cross-modal post-CCA sources, we per-

formed age prediction and sex classification tasks for the UKB dataset, as well as age prediction and

binary diagnosis classification tasks (controls vs patients with SZ) for the patient dataset. Specifically,

we trained a ridge regression model to predict age and a support vector machine with a linear kernel to

classify sex groups or diagnosis groups. For the UKB dataset, 2907 subjects were stratified into a training

set of 2000 subjects and a holdout test set of 907 subjects. For the patient dataset, 999 subjects were

stratified into a training set of 699 subjects and a holdout test set of 300 subjects in the age prediction

task; 875 controls and SZ patients were grouped into a training set of 612 subjects and a test set of

263 subjects in the diagnosis classification task. We performed 10-fold cross-validation to choose the

best hyperparameter (regularization parameter set: {0.1, 0.2, . . . , 1}) on the training set, then trained

the model using all training subjects and evaluated it on the holdout test set. Age regression perfor-

mance was measured by mean absolute error (MAE) between predicted age and chronological age. Sex

3While a subspace is uniquely identifiable, the individual sources within each subspace are not, warranting arbitrary
transformation within the subspace.
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2.5 Brain-age delta analysis on UK Biobank data 13

or diagnosis classification performance was assessed via balanced accuracy, i.e. 0.5×(true positive rate

+ true negative rate).

2.5 Brain-age delta analysis on UK Biobank data

A key benefit of MSIVA is that the estimated multimodal sources are more expressive by leveraging higher-

dimensional (≥ 2D) cross-modal subspaces. To demonstrate the utility of higher-dimensional subspaces,

we proposed to conduct a two-stage voxelwise brain-age delta analysis using the UKB estimated sources

from the optimal subspace structure. For each voxel in the reconstructed subspace (X̂
[m]
k = Â

[m]
k Ŝ

[m]
k

4),

we estimated an initial age delta at the first stage and corrected it for age dependence and other confound

variables at the second stage (Smith et al., 2019, 2020):

δ1 = X̂iβ1 − y, (10)

δ2 = δ1 −Yβ2, (11)

where X̂i indicates the i-th voxel’s reconstructed patterns from each subspace. Namely, they include

SVD-shared5 patterns from each cross-modal subspace, reconstructed sMRI patterns from each cross-

modal subspace, and reconstructed data from each unimodal subspace (see Appendix B for more details).

y ∈ RN is the demeaned chronological age. Y ∈ RN×10 includes the confound variables: the demeaned

linear, quadratic, cubic age terms, sex, the interaction between sex and each of the three age terms,

the framewise displacement variable, and the spatial normalization variables from sMRI and fMRI. An

advantage of the procedure described in Smith et al., 2019, 2020 is that it yields a breakdown of δ2 per

predictor in X̂i. Lastly, we partialized δ2 to remove residual associations between each predictor and the

other predictors, obtaining the partialized brain-age delta, δ2p.

We then correlated the voxelwise brain-age delta δ2p with 25 non-imaging phenotype variables such

as lifestyle factors and cognitive test scores (see Appendix C for the full list of phenotype variables) to

investigate multimodal brain-phenotype relationships. This voxelwise brain-age delta analysis allows us to

visualize a voxel-level spatial map showing how each phenotype variable relates to the difference between

chronological and estimated brain age.

4The modality-specific mixing matrix was estimated as the least-squares solution: Â[m] = X[m]Ŝ[m]⊤(Ŝ[m]Ŝ[m]⊤)−1.
5For each voxel, we utilized singular value decomposition (SVD) of the corresponding reconstructed patterns of all

modalities to capture the shared multimodal information of each cross-modal subspace.
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Figure 3: Synthetic data: ISI (lower is better). Each row represents the ground-truth subspace
structure used to generate the data and each column represents the test subspace structure used to
fit the model. If a workflow could correctly identify all ground-truth subspace structures, the lowest
ISI values would align along the main diagonal. The unimodal initialization workflow (PCA+ICA) and
the MSIVA initialization workflow (MGPCA+ICA) led to the lowest ISI values (≤ 0.02) along the main
diagonal, indicating that these two approaches successfully identified the correct ground-truth subspace
structures from the incorrect ones. However, the multimodal initialization workflow (MGPCA+GICA)
failed to detect the subspace structure S4 with a high ISI value (0.065) in the main diagonal. Thus,
MSIVA and the unimodal baseline are considered better than the multimodal baseline.

3 Results

3.1 MSIVA identifies the ground-truth subspace structure in synthetic data

We first verified whether the proposed approaches, including MSIVA and baseline methods, can identify

the correct subspace structures used for data generation in synthetic datasets. As shown in Figure 3,

the unimodal initialization workflow (PCA+ICA) and the MSIVA initialization workflow (MGPCA+ICA)

led to the lowest ISI values (≤ 0.02) along the main diagonal, demonstrating that both approaches

can correctly recover the ground-truth subspaces when the correct subspace structure is provided. The

multimodal initialization workflow, on the other hand, showed suboptimal performance with an elevated

ISI value (0.065) along the main diagonal and was thus excluded from subsequent neuroimaging data

experiments. According to Table 1, the loss values are largely consistent with the ISI results, except that

the loss value incorrectly implies that MSIVA S5 is a better fit when S4 is used to generate the data.

The loss values obtained with the multimodal initialization workflow (MGPCA+GICA) failed to detect

the ground-truth subspace structures containing 4D subspace(s), i.e. S1 and S4.

As presented in Figure 4, the recovered subspace structures from MSIVA (rows IV-V) and the unimodal

initialization workflow (rows II-III) under the correct subspace structure aligned well with the proposed

ground truth (row I), confirming the effectiveness of MSIVA and the unimodal baseline. However, the
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3.1 MSIVA identifies the ground-truth subspace structure in synthetic data 15

Table 1: Synthetic data: Final MISA loss values (lower is better). Each row represents the
ground-truth (GT) subspace structure used to generate the data and each column represents the test
subspace structure used to fit the model. The lowest loss value along the row is highlighted in bold,
which determines the selected subspace. Approaches performing consistently well in relation to the ISI
in Figure 3 will contain bold loss values only along the diagonal. The loss value is largely consistent with
the ISI value, except that it incorrectly implies that MSIVA S5 is a better fit when S4 is used to generate
the data. Further, the multimodal baseline results incorrectly imply that S3 and S1 are better when
S1 and S4 are the ground-truth subspace structures, respectively. Overall, the differences in diagonal
loss values between MSIVA and the unimodal baseline appear negligible considering the correspondingly
negligible differences in ISI (Figure 3).

Unimodal Baseline STest
1 STest

2 STest
3 STest

4 STest
5

SGT
1 42.692 42.884 42.762 42.992 43.230

SGT
2 42.649 42.300 42.851 42.868 42.918

SGT
3 42.720 42.858 42.635 43.100 43.256

SGT
4 43.091 43.239 43.174 42.976 43.507

SGT
5 43.401 43.010 43.497 43.773 42.021

MSIVA STest
1 STest

2 STest
3 STest

4 STest
5

SGT
1 42.677 42.865 42.751 43.038 43.111

SGT
2 42.656 42.229 42.628 42.764 42.749

SGT
3 42.695 42.862 42.620 43.040 43.126

SGT
4 42.689 42.397 41.120 39.937 33.609

SGT
5 43.405 42.966 43.388 43.975 42.005

Multimodal Baseline STest
1 STest

2 STest
3 STest

4 STest
5

SGT
1 23.824 23.947 23.819 24.028 24.274

SGT
2 27.766 27.442 27.803 28.162 28.182

SGT
3 23.931 24.029 23.779 24.036 24.229

SGT
4 17.265 18.660 17.290 17.564 19.731

SGT
5 36.764 36.359 36.758 37.265 35.262
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Figure 4: Synthetic data: Interference matrices Ŵ[m]A[m] corresponding to the diagonal ISI
values in Figure 3. Cross-modal subspaces are highlighted in blue while unimodal subspaces are
highlighted in green. The same subspace permutation was applied for both modalities for ease of
interpretation. The correct subspace structures were identified and aligned across both modalities by
three workflows (rows II-VII), in accordance with the ground-truth simulation design (row I), except that
the multimodal baseline failed to estimate S1 and S4 (rows VI-VII).
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3.2 MSIVA better detects the latent subspace structure in neuroimaging data 17

Table 2: Neuroimaging data: Final MISA loss values (lower is better). MSIVA with the subspace
structure S2 outputs the lowest loss values in both multimodal neuroimaging datasets, thus it is considered
as the optimal approach to capture the latent subspace structure in these two neuroimaging datasets. In
addition, relative to the loss values in Table 1, the loss values for MSIVA are consistently lower than for
the unimodal baseline, which serves as empirical evidence that MSIVA better fit these datasets.

Subspace Structure S1 S2 S3 S4 S5

UK Biobank Dataset
Unimodal Baseline 47.735 47.811 47.768 47.778 47.999

MSIVA 46.794 46.775 46.798 46.892 46.924

Patient Dataset
Unimodal Baseline 47.361 47.350 47.336 47.404 47.527

MSIVA 45.775 45.674 45.788 45.924 45.696

multimodal initialization workflow (rows VI-VII) could not recover the ground-truth subspace structures

for S1 and S4 even when given the correct subspace structure, indicating that the difficulty of the

cross-modal alignment optimization increases in the presence of high-dimensional subspaces.

3.2 MSIVA better detects the latent subspace structure in neuroimaging

data

We next applied MSIVA and the unimodal baseline on two large multimodal neuroimaging datasets

separately – the UK Biobank (UKB) dataset and the combined schizophrenia (SZ) dataset – to de-

tect their latent subspace structures. In the UKB neuroimaging dataset, we observe that within-modal

self-correlation patterns (Figure 5, rows I-II and IV-V) indicate negligible residual dependence between

subspaces, as expected (dependence within subspaces is acceptable, but not between them). We note

that MSIVA recovered stronger cross-modal correlations (higher MCCs) than the unimodal baseline for

all predefined subspace structures (Figure 5, row VI vs row III). Results from the nonlinear dependence

measure also confirm that sources in cross-modal subspaces are linked across modalities, while sources

in different subspaces within each modality are independent (Appendix D Figure 14). Among all combi-

nations of two initialization workflows and five candidate subspace structures, MSIVA with the subspace

structure S2 outputs the lowest final MISA loss value 46.775 (Table 2), suggesting that MSIVA S2 best

fits the latent structure of this dataset.

Similarly, in the patient dataset, MSIVA shows stronger cross-modal correlations (dependence) for all five

subspace structures (Figures 6 and 15, row VI vs row III). Same as the UKB dataset, MSIVA S2 yields
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Figure 5: UKB neuroimaging data: Within-modal Pearson correlations (rows I-II and IV-
V) and cross-modal Pearson correlations (rows III and VI) of the recovered sources before
applying post-hoc CCA. Cross-modal subspaces are highlighted in blue while unimodal subspaces
are highlighted in green. Within-modal self-correlation patterns indicate negligible residual dependence
between subspaces (rows I-II and IV-V). MSIVA shows stronger cross-modal correlations (higher MCCs)
than the unimodal baseline for all predefined subspace structures (row VI vs row III).
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Figure 6: Patient neuroimaging data: Within-modal Pearson correlations (rows I-II and IV-
V) and cross-modal Pearson correlations (rows III and VI) of the recovered sources before
applying post-hoc CCA. Cross-modal subspaces are highlighted in blue while unimodal subspaces
are highlighted in green. Within-modal self-correlation patterns indicate negligible residual dependence
between subspaces (rows I-II and IV-V). MSIVA shows stronger cross-modal correlations (higher MCCs)
than the unimodal baseline for all predefined subspace structures (row VI vs row III).
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20 3 RESULTS

Table 3: Phenotype prediction performance using post-CCA sources from MSIVA subspace
structure S2. For the UKB dataset, sources from subspaces 5 and 4 yielded the best age regression and
sex classification performance, respectively. For the patient dataset, sources from subspace 5 yielded the
best age regression and diagnosis classification performance (subspace 2 performed similarly). Overall,
the linked sources obtained by MSIVA S2 show strong associations with age, sex, and SZ-related effects.
Note that we estimated sources for the UKB data and the patient data independently, thus subspaces in
the UKB dataset do not correspond to those in the patient dataset.

Subspace 1 2 3 4 5

UK Biobank Dataset
Age MAE (years) 5.674 6.163 5.892 5.847 5.378

Sex Balanced Accuracy (%) 59.542 64.496 59.206 79.933 52.699

Patient Dataset
Age MAE (years) 10.720 10.470 11.226 11.445 10.307

SZ-HC Diagnosis Balanced Accuracy (%) 50.565 57.624 50.000 49.691 61.404

the lowest final loss value 45.674 in all cases (Table 2). In addition, relative to the loss values in Table 1,

the MSIVA loss values are consistently lower than the unimodal ones. These results imply that MSIVA

and the subspace structure S2 with five linked 2D subspaces can better fit the statistical relationships

in these two multimodal neuroimaging datasets.

3.3 MSIVA reveals linked phenotypic and neuropsychiatric biomarkers

After identifying the neuroimaging sources, we asked whether the linked subspaces are biologically mean-

ingful. To answer this question, we evaluated the brain-phenotype relationships between phenotype vari-

ables and neuroimaging sources estimated by MSIVA (with the optimal subspace structure S2 selected

based on Table 2). In the UKB dataset, visual inspection of individual variability from the cross-modal

CCA projections in each linked subspace (Figure 7) suggests that subspaces 1, 3, 4 and 5 are asso-

ciated with aging (especially cross-modal source 9 in subspace 5), while subspaces 2 and 4 show the

sex effect (especially cross-modal source 7 in subspace 4). Furthermore, we used the post-CCA sources

from each linked subspace to predict age and sex. The age regression and sex classification performance

also confirmed that subspace 5 is strongly associated with age while subspace 2 is strongly associated

with sex (Table 3). More specifically, the age prediction MAE in subspace 5 is the lowest (5.378 years),

and the sex classification balanced accuracy is the highest in subspace 4 (79.933%). As for the patient

dataset, according to the cross-modal CCA projections in each linked subspace (Figure 8), we observe

the age effect in source 3 from subspace 2, and both sources 9 and 10 from subspace 5. We also find
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3.3 MSIVA reveals linked phenotypic and neuropsychiatric biomarkers 21

Subspace 1 Subspace 2 Subspace 3 Subspace 4 Subspace 5
Color coded by age

Color coded by sex

Figure 7: UKB neuroimaging data: Post-CCA sources from MSIVA S2 cross-modal subspaces,
color coded by age and sex. Rows I and II show the age effect, while rows III and IV show the sex
effect. In particular, subspaces 1, 3, 4 and 5 are associated with aging (especially cross-modal source
9 in subspace 5), while subspaces 2 and 4 show the sex difference (especially cross-modal source 7 in
subspace 4).
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22 3 RESULTS

Subspace 1 Subspace 2 Subspace 3 Subspace 4 Subspace 5
Color coded by age

Color coded by diagnosis label

Figure 8: Patient neuroimaging data: Post-CCA sources from MSIVA S2 cross-modal sub-
spaces, color coded by age and diagnosis labels. Rows I and II show the age effect, while rows
III and IV show the SZ effect. In particular, subspaces 2 and 5 are associated with the age- (especially
cross-modal source 3 in subspace 2 and sources 9 and 10 in subspace 5) and SZ-related effects (especially
cross-modal source 4 in subspace 2 and sources in subspace 5).
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Subspace 5 (      vs      )

sMRI (reconstructed       )
(R2 = 7.064%)

fMRI (reconstructed       )
(R2 = 2.379%)

Subspace 4 (      vs      )

sMRI (reconstructed       )
(R2 = 5.112%)

fMRI (reconstructed       )
(R2 = 6.445%)

Male

Female

Male

Female

Younger

Older

Younger

Older

Figure 9: UKB neuroimaging data: Spatial maps of group-specific reconstructed data from
MSIVA S2 sources related to age and sex effects. Axial slices show the geometric median of the
reconstructed data (X̂

[m]
k ) for each modality (sMRI or fMRI) and each group (younger: 46 − 63 years,

older: 63 − 79 years; male or female). Voxel intensity is mapped to both color hue and opacity. The
contours highlight the brain areas where voxelwise cross-modal correlations are significant for each group
(P < 0.01, Bonferroni correction for 44318 voxels). Scatter plots show post-CCA sources color-coded
by age or sex. The reported R2 indicates the proportion of variance captured by the subspace in each
modality.

the SZ-related effect in source 4 from subspace 2, as well as sources 9 and 10 from subspace 5. These

associations were verified by the age regression and diagnosis classification results (Table 3).

Next, we utilized a dual-coded visualization (Allen et al., 2012) for the modality- and group-specific

geometric median spatial maps of the reconstructed data X̂
[m]
k = Â

[m]
k Ŝ

[m]
k from each representative

subspace k (Figures 9 and 10). Voxel intensity is mapped to both color hue and opacity. The contours

highlight brain regions where voxelwise cross-modal correlations are significant for each linked subspace

and each group (P < 0.01, Bonferroni correction for 44318 voxels), after eliminating small clusters of

voxels by applying morphological dilation and erosion to the original contours.

In the UKB dataset, source 9 from subspace 5 shows the strongest age effect, while source 7 from

subspace 4 shows the strongest sex effect (Figure 9). Subspace 5 : We observe age effects in the

cerebellum, precentral gyrus, cingulate gyrus, and paracingulate gyrus in sMRI; the occipital pole, lateral

occipital cortex, superior frontal gyrus, and precuneus in fMRI. In particular, younger subjects (whose

age is less than the median age in the UKB dataset, i.e. 46 − 63 years) show higher positive voxel
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Subspace 5 (      vs      )

sMRI (reconstructed       )
(R2 = 14.403%)

fMRI (reconstructed       )
(R2 = 5.624%)

Younger control

Younger patient

Older control

Older patient

Younger control

Younger patient

Older control

Older patient

Figure 10: Patient neuroimaging data: Spatial maps of group-specific reconstructed data from
MSIVA S2 sources related to age and SZ interaction effects. Axial slices show the geometric
median of the reconstructed data (X̂

[m]
k ) for each modality (sMRI or fMRI) and each group (younger:

15− 39 years, older: 39− 65 years; control or patient). Voxel intensity is mapped to both color hue and
opacity. The contours highlight the brain areas where voxelwise cross-modal correlations are significant
for each group (P < 0.01, Bonferroni correction for 44318 voxels). Scatter plots show post-CCA sources
color-coded by age or diagnosis label. The reported R2 indicates the proportion of variance captured by
the subspace in each modality.

intensities in these areas, while older subjects (whose age is greater than or equal to the median age in

the UKB dataset, i.e. 63− 79 years) show negative intensities in the same areas. Several brain regions

identified in our study align with previous findings. For example, cerebellar volume has been reported to

be associated with age-related decline (Jernigan et al., 2001; Luft et al., 1999; Romero et al., 2021).

Hogstrom et al., 2013 has observed strong age effect in the precentral gyrus and weak age effect in the

cingulate gyrus from structural brain imaging. Also, functional network research has identified significant

association with aging in the occipital lobe (Scheinost et al., 2015). Subspace 4 : Sex effects can be seen

in the frontal lobe, occipital lobe, and precuneus in both sMRI and fMRI. Female participants have strong

positive intensities in the cerebellum (sMRI), lateral occipital cortex (fMRI), subcallosal area (fMRI), and

precuneus cortex (sMRI and fMRI), and negative intensities in the frontal pole and postcentral gyrus

(fMRI). We observe the opposite patterns in male participants. Previous studies have also found sex

differences in the gray matter volume of the cerebellum (Fan et al., 2010) and the precuneus cortex

(Ruigrok et al., 2014), as well as in the frontal and occipital areas via functional measures (Tian et al.,

2011). Spatial maps for the other MSIVA S2 cross-modal subspaces in the UKB dataset are presented

in Appendix E Figure 16.
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3.4 Brain-age gap is associated with lifestyle factors and cognitive functions 25

In the patient dataset, sources from subspace 5 are significantly associated with different age and diagnosis

groups (Figure 10). The younger control participants show high positive intensities in the cerebellum,

temporal pole, and frontal operculum cortex in sMRI; the lingual gyrus, occipital pole, and precuneus

cortex in fMRI. They also exhibit negative intensities in the middle temporal gyrus, inferior temporal

gyrus, and occipital fusiform gyrus in sMRI. Additionally, we observe both strong positive and negative

voxel intensities in the frontal lobe of sMRI. The younger patients show slightly positive intensities in

the cerebellum, paracingulate gyrus, insular cortex, supplementary motor cortex, and cingulate gyrus in

sMRI, and the occipital fusiform gyrus in fMRI, but show negative intensities in the lateral occipital

cortex and occipital pole in fMRI. The older group (whose age is greater than or equal to the median

age in the patient dataset, i.e. 39− 65 years) has decreased intensities in the cerebellum, paracingulate

gyrus, insular cortex in sMRI, as well as in the lingual gyrus, precuneus cortex, and occipital pole in fMRI.

In particular, we observe reduced sMRI intensities in the cerebellum of the patient group compared to

their age-matched control group. This result aligns with the previous finding that the cerebellar gray

matter volume is significantly reduced in SZ patients (Moberget et al., 2018; Picard et al., 2008). We

also note that younger patients with SZ show negative fMRI intensities in the lateral occipital cortex

and occipital pole compared to younger controls, and the intensities in these areas are further reduced in

older patients. This finding may be explained by previous research that SZ is associated with impaired

function of the visual pathway (Mart́ınez et al., 2008). Spatial maps for the other MSIVA S2 linked

subspaces in the patient dataset are shown in Appendix E Figure 17.

In addition, we note that the number of voxels with significant cross-modal correlations (P < 0.01,

Bonferroni correction for 44318 voxels) for older patients diagnosed with SZ (25623) is 18.6% less than

their age-matched control subjects (31482) in subspace 5. Particularly, the brain areas with reduced

structure-function agreement include the insular cortex, lingual gyrus, occipital pole, inferior frontal

gyrus, and paracingulate gyrus. Apart from subspace 5, we observe consistent reductions in the number

of voxels with significant cross-modal correlations for older patients with SZ in the other three linked

subspaces (Appendix E Figure 18 subspaces 1-3), suggesting decreased coupling between brain structure

and function for older patients.

3.4 Brain-age gap is associated with lifestyle factors and cognitive functions

We performed a two-stage voxelwise brain-age delta analysis using the UKB sources estimated by MSIVA

using the optimal subspace structure S2 (see Appendix B for details). We investigated whether the brain-

age gap shows association with other phenotype variables by measuring Pearson correlation between δ2p

and each phenotype variable for each voxel. To examine effects specific to shared multimodal variability,
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Figure 11: Number of voxels with significant Pearson correlation between corrected brain-
age delta δ2p and phenotype variables. Brain-age gap shows significant positive (left) and negative
(right) associations with phenotype variables including physical exercise, time spent watching TV, sleep
duration, and fluid intelligence (P < 0.05, false discovery rate correction for 44318 voxels, 25 phenotype
variables, and 14 predictors).

we applied voxelwise singular value decomposition (SVD) to the combined reconstructed data from

both modalities (X̂
[1]
k and X̂

[2]
k ) for each of the five cross-modal subspaces. We find that the brain-age

deltas corresponding to the top SVD-shared voxel-level features from cross-modal subspaces 2, 4, 5

are significantly associated with various phenotype variables, including time spent watching TV, sleep

duration, fluid intelligence, and physical exercise (Figure 11). In particular, predictor 5 (SVD-shared

feature from cross-modal subspace 5), which shows the strongest age association (Table 3 and Appendix

B Figure 13), positively correlates with time spent watching TV and mean time to correctly identify

matches (cognitive performance), and negatively correlates with the first principal component of physical

exercise variables.

We visualize the relevant spatial maps of predictor 5 (SVD 5) in Figure 12. According to Table 3,

subspace 5 shows the strongest association with the chronological age. This aligns with the strong β1

coefficients and σ(δ2p) spatial maps from the first step of brain-age delta analysis (Figure 12, panel A,

rows I and II). The geometric median of brain-age delta δ2p is slightly negative (Figure 12, panel A,

row III), indicating that biological age is slightly lower than chronological age (i.e. the brain appears

younger). We also present spatial maps for three phenotype variables that show strong associations with

δ2p: time spent watching TV, mean time to correctly identify matches, and the first principal component

of physical exercise variables (Figure 12, panel B). Particularly, we observe significant effects in the

cerebellum, postcentral gyrus, cingulate gyrus, precuneus cortex, occipital lobe, and caudate nucleus for

time to watch TV; the frontal pole, precentral gyrus, and insular cortex for time to identify matches; the
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Unique effect of predictor 5 (SVD 5)

Correlations of brain age delta with phenotype variables
(Contours: P < 0.05, FDR correction for all voxels, all phenotypes, and all predictors)

Time spent watching television

Mean time to correctly identify matches

Physical exercise principal component 1

: association of predictor 5 with chronological age 

Standard deviation of      : age delta variability not due to chronological age 

Geometric median of      : "median" age delta not due to chronological age

A

B

Figure 12: Spatial maps of predictor 5 (SVD 5) from brain-age delta analysis. (A) Spatial maps
of β1, standard deviation of δ2p, and geometric median of δ2p. Voxel value is mapped to both color hue
and opacity. (B) Voxelwise correlations between δ2p and phenotype variables time spent watching TV,
mean time to correctly identify matches, the first principal component of physical exercise variables. The
voxelwise correlation is mapped to both color hue and opacity. The contours outline the brain regions
where the correlations are significant (P < 0.05, false discovery rate correction for 44318 voxels, 25
phenotype variables, and 14 predictors). 14431 voxels overlap within the contours in these three spatial
maps.
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cerebellum, occipital fusiform gyrus, and caudate nucleus for physical exercise measure. If the correlation

on the spatial map is negative (as in the first principal component of physical exercise), δ2p decreases as

the phenotype score increases and the brain appears younger. If it is positive (as in time to watch TV or

identify matches), δ2p increases as the phenotype score increases and the brain appears older. Therefore,

the more physical exercise, the younger the brain looks; the more time spent watching TV or identifying

correct matches, the older the brain looks. These findings indicate that increased physical activity and

reduced TV time can potentially improve brain health.

4 Discussion

We present a novel multivariate methodology, Multimodal Subspace Independent Vector Analysis (MSIVA),

to capture both cross-modal and unimodal sources. We first showed that MSIVA successfully identified

the ground truth when given the correct subspace structure, according to the ISI and interference matrix

results, and verified that the correct subspace structures led to the lowest loss values for all synthetic

data experiments, except for one case. We next applied MSIVA to two large multimodal neuroimaging

datasets and demonstrated that it better revealed the latent subspace structure, yielding lower loss values

compared with the unimodal baseline. Among all combinations of different initialization workflows and

subspace structures, MSIVA with the subspace structure S2 output the lowest loss value, thus being

considered as the best fit to the latent structure in both neuroimaging datasets. The CCA projections

within each cross-modal subspace were strongly associated with age, sex and SZ-related effects, as ver-

ified through the phenotype prediction tasks. Moreover, the voxelwise brain-age delta analysis on the

UKB dataset identified key non-imaging phenotype variables, including lifestyle factors and cognitive

performance, that are significantly correlated with voxel-level brain-age gap.

We evaluated three initialization workflows that capture different amounts of joint information. Interest-

ingly, MSIVA outperformed a unimodal baseline and a multimodal baseline. One reason can be that the

unimodal baseline uses random initialization without any cross-modal information, leading to potentially

unrecoverable misalignment, while the multimodal baseline might overfit the cross-modal information.

MSIVA, which captures intermediate level of cross-modal information for initialization, appears to strike

the best balance among the three initialization workflows.

Furthermore, MSIVA can be viewed as an extension of MMIVA which 1) uses a different initialization

method (MSIVA: MGPCA+ICA initialization; MMIVA: MGPCA+GICA initialization) and 2) allows for

arbitrary subspace structures (MSIVA: flexible subspace structures like S1 − S5 and more; MMIVA: rigid

subspace structures like an identity matrix S5). To further investigate the relationships between the
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estimated sources from MSIVA and MMIVA, we compared MSIVA (with the subspace structure S2)

and MMIVA by using MSIVA S2 sources to predict MMIVA sources, as well as using matched MMIVA

sources to predict MSIVA S2 sources. We find that the pair of MSIVA S2 sources from each subspace can

predict variability from more than two MMIVA sources, while pairs of matched MMIVA sources can also

predict variability from more than two MSIVA S2 sources (see Appendix F). Hence, there is no perfect

one-to-one mapping between MSIVA S2 sources and MMIVA sources. We conclude that MSIVA and

MMIVA apportion variability to their sources in different ways. We also note that the mismatch appears

to be more pronounced in the patient dataset than in the UKB dataset, which may be related to inherent

characteristics of the patient data, such as higher population heterogeneity and smaller sample size.

A limitation of our current work is the subspace structure used in MSIVA. MSIVA selects the best-

fitting subspace structure for the data from a predefined set, according to the ISI (when ground-truth is

available) or loss value (when ground-truth is not available). However, it is not computationally efficient

to exhaustively evaluate the merits of other potential subspace structures. Additionally, we make two

assumptions on the subspace structure: the cross-modal subspaces have the same dimensionality per

modality, and the unimodal subspaces are all one-dimensional. Yet, it is possible that these assumptions

might not represent the true underlying structure of the dataset. In future work, we plan to apply data-

driven subspace structures such as the NeuroMark template (Du et al., 2020; Fu et al., 2024), or learn

the underlying subspace structure from the data directly in an unsupervised manner. In this study, we

chose 12 latent sources to approximate each data modality for the sake of computational efficiency during

combinatorial optimization, but 12 sources only might not capture the necessary amount of variability in

the data to recover all multimodal links (Song et al., 2016). Further workflow optimization is needed to

efficiently estimate alignment for subspaces of higher dimensionality.

Although we utilized the loss value to select the optimal subspace structure in neuroimaging data due to

the lack of ground-truth information, we notice that the loss value might not always be a gold standard for

measuring the goodness of fit. For example, in synthetic data experiments, MSIVA successfully identified

S4 according to the ISI values (Figure 3) but failed to identify S4 according to the loss values (Table 1).

Hence, we suggest to comprehensively evaluate method performance using multiple metrics in addition

to the loss value, such as the MCC, which measures average cross-modal subspace alignment. Another

limitation is the linear mixing assumption in MSIVA. MSIVA assumes that each data modality can be

transformed to linearly mixed sources, but the true mixing process in neuroimaging data may be nonlinear,

especially considering the multiple nonlinear transformations in fMRI modeling and preprocessing stages.

To address this limitation, we are currently working on developing nonlinear latent variable models that

estimate multimodal sources which are nonlinearly mixed.
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30 5 CONCLUSIONS

5 Conclusions

Our proposed multivariate methodology MSIVA effectively captures both within- and cross-modal sources,

as well as their underlying subspace structure, from multiple synthetic and neuroimaging datasets. Ac-

cording to brain-phenotype modeling, the estimated sources from the MSIVA cross-modal subspaces are

strongly associated with phenotype variables including age, sex, and psychosis. Subsequent brain-age

delta analysis shows that voxel-wise brain-age gap in the recovered cross-modal subspaces is related to

lifestyle and cognitive function measures. Our results support that MSIVA can be applied to uncover

linked phenotypic and neuropsychiatric biomarkers of brain structure and function at the voxel level from

multimodal neuroimaging data.
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Picard, H., Amado, I., Mouchet-Mages, S., Olié, J.-P., & Krebs, M.-O. (2008). The role of the cerebellum

in schizophrenia: An update of clinical, cognitive, and functional evidences. Schizophrenia bulletin,

34(1), 155–172.

Qi, S., Sui, J., Pearlson, G., Bustillo, J., Perrone-Bizzozero, N. I., Kochunov, P., Turner, J. A., Fu, Z.,

Shao, W., Jiang, R., Yang, X., Liu, J., Du, Y., Chen, J., Zhang, D., & Calhoun, V. D. (2022).

Derivation and utility of schizophrenia polygenic risk associated multimodal MRI frontotemporal

network. Nat Commun, 13(1), 4929. https://doi.org/10.1038/s41467-022-32513-8

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 22, 2024. ; https://doi.org/10.1101/2023.09.17.558092doi: bioRxiv preprint 

https://doi.org/10.1038/s41467-022-32513-8
https://doi.org/10.1101/2023.09.17.558092
http://creativecommons.org/licenses/by/4.0/


36 REFERENCES

Remington, E. D., Narain, D., Hosseini, E. A., & Jazayeri, M. (2018). Flexible sensorimotor computations

through rapid reconfiguration of cortical dynamics. Neuron, 98(5), 1005–1019.

Romero, J. E., Coupe, P., Lanuza, E., Catheline, G., Manjón, J. V., & Initiative, A. D. N. (2021). Toward

a unified analysis of cerebellum maturation and aging across the entire lifespan: A mri analysis.

Human Brain Mapping, 42(5), 1287–1303.

Ruigrok, A. N., Salimi-Khorshidi, G., Lai, M.-C., Baron-Cohen, S., Lombardo, M. V., Tait, R. J., &

Suckling, J. (2014). A meta-analysis of sex differences in human brain structure. Neuroscience &

Biobehavioral Reviews, 39, 34–50.

Scheinost, D., Finn, E. S., Tokoglu, F., Shen, X., Papademetris, X., Hampson, M., & Constable, R. T.

(2015). Sex differences in normal age trajectories of functional brain networks. Human brain

mapping, 36(4), 1524–1535.

Schijven, D., Postema, M. C., Fukunaga, M., Matsumoto, J., Miura, K., de Zwarte, S. M., Van Haren,

N. E., Cahn, W., Hulshoff Pol, H. E., Kahn, R. S., et al. (2023). Large-scale analysis of struc-

tural brain asymmetries in schizophrenia via the enigma consortium. Proceedings of the National

Academy of Sciences, 120(14), e2213880120.

Semedo, J. D., Zandvakili, A., Machens, C. K., Byron, M. Y., & Kohn, A. (2019). Cortical areas interact

through a communication subspace. Neuron, 102(1), 249–259.

She, L., Benna, M. K., Shi, Y., Fusi, S., & Tsao, D. Y. (2024). Temporal multiplexing of perception and

memory codes in it cortex. Nature, 1–8.

Silva, R. F., Damaraju, E., Li, X., Kochunov, P., Belger, A., Ford, J. M., Mathalon, D. H., Mueller,

B. A., Potkin, S. G., Preda, A., et al. (2021). Direct linkage detection with multimodal iva fusion

reveals markers of age, sex, cognition, and schizophrenia in large neuroimaging studies. bioRxiv,

2021–12.

Silva, R. F., Plis, S. M., Adalı, T., Pattichis, M. S., & Calhoun, V. D. (2020). Multidataset independent

subspace analysis with application to multimodal fusion. IEEE Transactions on Image Processing,

30, 588–602.

Smith, S. M., Elliott, L. T., Alfaro-Almagro, F., McCarthy, P., Nichols, T. E., Douaud, G., & Miller,

K. L. (2020). Brain aging comprises many modes of structural and functional change with distinct

genetic and biophysical associations. elife, 9, e52677.

Smith, S. M., Nichols, T. E., Vidaurre, D., Winkler, A. M., Behrens, T. E., Glasser, M. F., Ugurbil, K.,

Barch, D. M., Van Essen, D. C., & Miller, K. L. (2015). A positive-negative mode of population

covariation links brain connectivity, demographics and behavior. Nature neuroscience, 18(11),

1565–1567.

Smith, S. M., Vidaurre, D., Alfaro-Almagro, F., Nichols, T. E., & Miller, K. L. (2019). Estimation of

brain age delta from brain imaging. Neuroimage, 200, 528–539.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 22, 2024. ; https://doi.org/10.1101/2023.09.17.558092doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.17.558092
http://creativecommons.org/licenses/by/4.0/


REFERENCES 37
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A Data acquisition and preprocessing

A.1 UK Biobank dataset

A.1.1 Acquisition parameters

T1-weighted structural MRI (sMRI) images were acquired using a 3D MPRAGE sequence with the

following parameters: repetition time (TR) = 2000ms, inversion time (TI) = 880ms, in-plane acceleration

factor = 2, voxel size = 1×1×1mm3, acquisition matrix = 208×256×256. Resting-state functional MRI

(fMRI) were acquired with the following parameters: TR = 735ms, echo time (TE) = 39ms, multiband

factor = 8, in-plane acceleration factor = 1, flip angle = 52◦, voxel size = 2.4×2.4×2.4mm3, acquisition

matrix = 88× 88× 64.

A.1.2 Preprocessing steps

For sMRI preprocessing, we performed tissue segmentation and normalization to the Montreal Neu-

rological Institute (MNI) template using the statistical parametric mapping toolbox (SPM12, http:

//www.fil.ion.ucl.ac.uk/spm/) (Ashburner et al., 2014), leading to gray matter (GM), white matter

(WM), and cerebrospinal fluid (CSF) tissue probability maps. Next, the normalized GM tissue probabil-

ity maps were spatially smoothed using a Gaussian kernel with a full width at half maximum (FWHM)

= 10mm. The smoothed images were then resampled to 3× 3× 3mm3. We next defined a group mask

for GM voxels. Specifically, an average GM tissue probability map from all subjects was obtained from

the normalized GM tissue probability maps at 1 × 1 × 1mm3 resolution. This group-average GM map

was binarized at a threshold of 0.2 and resampled to 3× 3× 3mm3 resolution, resulting in 44318 voxels.

For fMRI preprocessing, we utilized the distortion corrected, FIX-denoised (Griffanti et al., 2014), nor-

malized fMRI data from the UK Biobank data resource to compute subject-specific amplitude of low

frequency fluctuations (ALFF) maps, defined as the area under the low frequency band [0.01 − 0.08

Hz] power spectrum of each voxel time course in each scan. We then calculated a mean-scaled ALFF

(mALFF) map for each subject, which is the subject-specific ALFF map divided by its global mean ALFF

value for greater test-retest reliability (Zhao et al., 2018). The mALFF maps were smoothed using a

6mm FWHM Gaussian filter and resampled to 3 × 3 × 3mm3 isotropic voxels. We applied the same

group-average GM mask for the mALFF maps, resulting in 44318 voxels.
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A.2 Patient datasets

A.2.1 Acquisition parameters

BSNIP. We used the BSNIP dataset collected at two sites: 1) Baltimore with a 3-Tesla Siemens Trio

Tim scanner and 2) Hartford with a 3-Tesla Siemens Allegra scanner. Isotropic T1-weighted MPRAGE

scans were acquired using the following parameters: TR = 6.7ms, TE = 3.1ms, flip angle = 8◦, matrix

size = 256 × 240, total scan time = 10 : 52.6min, 170 sagittal slices, slice thickness = 1mm, voxel

size = 1 × 1 × 1.2mm3 (Giakoumatos et al., 2015). Resting-state fMRI scans were obtained with the

following parameters: 1) Baltimore, TR = 2210ms, TE = 30ms, flip angle = 70◦, number of slices = 36,

voxel size = 3.4× 3.4× 4mm3, and 140 time points; 2) Hartford, TR = 1500ms, TE = 27ms, flip angle

= 70◦, number of slices = 29, voxel size = 3.4× 3.4× 5mm3, and 210 time points.

COBRE. The COBRE dataset was collected at a single site using a 3-Tesla Siemens Tim Trio scanner.

A high-resolution T1-weighted multi-echo MPRAGE sequence was used with the following parameters:

TR = 2530ms, TE = [1.64, 3.5, 5.36, 7.22, 9.08]ms, TI = 900ms, flip angle = 7◦, acquisition matrix

= 256 × 256 × 176, voxel size = 1 × 1 × 1mm3, number of echos = 5, pixel bandwidth = 650Hz,

total scan time = 6min. Resting-state fMRI scans were collected with a standard single-shot full k-space

echo-planar imaging (EPI) sequence: TR = 2000ms, TE = 29ms, voxel size = 3.75× 3.75× 4.55mm3,

slice gap = 1.05mm, flip angle = 75◦, number of slices = 32, field of view (FOV) = 240 × 240mm2,

matrix size = 64× 64, and 149 volumes. See https://fcon 1000.projects.nitrc.org/indi/retro/cobre.html

for more details.

FBIRN. The FBIRN phase III dataset was collected from seven sites. Out of seven sites, six sites used

3-Tesla Siemens Tim Trio scanners and one site used a 3-Tesla General Electric (GE) Discovery MR750

scanner. A high-resolution Siemens MPRAGE sequence was acquired with the following parameters:

TR/TE/TI = 2300/2.94/1100ms, flip angle = 9◦, acquisition matrix = 256 × 256 × 160. Likewise, a

GE IR-SPGR sequence was acquired with the following parameters: TR/TE/TI = 5.95/1.99/45ms, flip

angle = 12◦, acquisition matrix = 256×256×166, FOV = 220×220mm2, voxel size = 0.86×0.86×1.2

mm3, collected in the sagittal plane with GRAPPA/ASSET acceleration factor = 2, and NEX = 1 (Qi

et al., 2022). The same resting-state fMRI parameters were used across all seven sites: a standard

gradient EPI sequence, TR/TE = 2000/30ms, voxel size = 3.4375× 3.4375× 4mm3, slice gap = 1mm,

flip angle = 77◦, FOV = 220× 220mm2, and 162 volumes (Qi et al., 2022).

MPRC. The MPRC dataset was collected at three sites, each using a different 3-Tesla Siemens scanner,

with a standard EPI sequence. T1-weighted 3D MPRAGE sequence was collected in the saggital plane

with voxel size = 1× 1× 1mm3 using a Siemens Allegra scanner (TE/TR/TI = 4.3/2500/1000ms, flip
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angle = 8◦) or a Siemens Trio scanner (TE/TR/TI = 2.9/2300/900ms, flip angle = 9◦) (Schijven et al.,

2023). Resting-state fMRI scans were collected using the following scanners and parameters: 3-Tesla

Siemens Allegra scanner (TR/TE = 2000/27ms, voxel size = 3.44×3.44×4mm3, FOV = 220×220mm2,

and 150 volumes); 3-Tesla Siemens Trio scanner (TR/TE = 2210/30ms, voxel size = 3.44×3.44×4mm3,

FOV = 220×220mm2, and 140 volumes); and 3-Tesla Siemens Tim Trio scanner (TR/TE = 2000/30ms,

voxel size = 1.72× 1.72× 4mm3, FOV = 220× 220mm2, and 444 volumes) (Qi et al., 2022).

A.2.2 Preprocessing steps

All sMRI datasets were preprocessed using SPM12, following the steps described in Qi et al., 2022.

Specifically, the data were normalized to the MNI template using unified segmentation, resampled to

3× 3× 3mm3, and segmented into GM, WM, and CSF using modulated normalization, leading to GM

volume maps. These GM volume maps were then smoothed using a 6mm FWHM Gaussian kernel.

To ensure proper segmentation for all subjects, outlier detection was performed using spatial Pearson

correlation with the template image.

All fMRI datasets underwent the preprocessing steps as outlined in Qi et al., 2022: removal of the initial

five scans to eliminate T1 equilibration effects, slice timing correction, realignment, normalization to the

EPI template with 3 × 3 × 3mm3 resolution, spatial smoothing using a 6mm FWHM Gaussian kernel,

regression of nuisance covariates (including six head motion parameters, CSF, WM) and global signal

from the voxelwise time course using a general linear model, and computation of the mALFF maps.
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B Voxelwise brain-age delta analysis on UK Biobank data

We performed a voxelwise brain-age delta analysis using the estimated sources Ŝ from MSIVA subspace

structure S2 in the UK Biobank dataset. We describe the steps to construct imaging-derived predictors

as follows.

1. Reconstruction. We first reconstructed modality- and subspace-specific imaging feature X̂
[m]
k =

Â
[m]
k Ŝ

[m]
k for each of five multimodal subspaces (Â

[m]
k ∈ RV×2, Ŝ

[m]
k ∈ R2×N , k ∈ {1, ..., 5}) and

each of four unimodal subspaces (Â
[m]
k ∈ RV×1, Ŝ

[m]
k ∈ R1×N , k ∈ {6, ..., 9}), where k is the

subspace index. Here, subspaces 6 and 7 are used exclusively for sMRI and subspaces 8 and 9 are

used exclusively for fMRI.

2. Singular value decomposition. For each voxel i in the reconstructed imaging data X̂
[m]
k[i,:] ∈ RN from

each of five cross-modal subspaces, we concatenated the two modalities X̂k[i,:] =
[
X̂

[1]
k[i,:], X̂

[2]
k[i,:]

]
,

X̂k[i,:] ∈ RN×2, normalized X̂k[i,:] along the rows
6, and then performed singular value decomposition

(SVD) on X̂k[i,:], i.e. X̂k[i,:] = UΣV⊤. Next, we multiplied X̂k[i,:] by the first left singular vector

V[:,1] ∈ R2×1 corresponding to the largest singular value λmax, leading to X̂SVD
k[i,:] = X̂k[i,:]V[:,1],

X̂SVD
k[i,:] ∈ RN×1. We then normalized X̂SVD

k[i,:] to obtain the normalized X̂SVD′

k[i,:] .

3. Partialization and normalization. We next partialized and normalized X̂SVD′

k[i,:] and X̂
[m]
k[i,:] (all five

cross-modal subspaces in sMRI and the four unimodal subspaces in both modalities) to remove

SVD-related confounds from X̂
[m]
k[i,:], leading to X̂

[m]′

k[i,:].

4. Concatenation. We concatenated the SVD results from Step 2 (without partialization or ex-

tra normalization) X̂SVD′

k[i,:] from five cross-modal subspaces, and modality-specific partialized and

normalized X̂
[m]′

k[i,:] from five cross-modal subspaces and four unimodal subspaces, resulting in 14

predictors in total, X̂i =
[
X̂SVD′

1[i,:] , . . . , X̂
SVD′

5[i,:] , X̂
[1]′

1[i,:], . . . , X̂
[1]′

7[i,:], X̂
[2]′

8[i,:], X̂
[2]′

9[i,:]

]
, X̂i ∈ RN×14.

For each voxel i, we performed a two-stage brain age prediction where the first stage estimates the initial

delta and the second stage further removes age dependence and other confound factors from the delta

(Smith et al., 2019, 2020):

δ1 = X̂iβ1 − y, (12)

δ2 = δ1 −Yβ2, (13)

where y ∈ RN is the chronological age after removing the mean age across subjects. Y ∈ RN×10

includes the confound variables:

6We removed mean and divided by standard deviation along the rows (subject dimension) of X̂k[i,:].
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42 B VOXELWISE BRAIN-AGE DELTA ANALYSIS ON UK BIOBANK DATA

1. the demeaned linear age term,

2. the demeaned quadratic age term after regressing out the linear age effects and normalizing to

have the same standard deviation as the linear age term,

3. the demeaned cubic age term after regressing out the linear and quadratic age effects and normal-

izing to have the same standard deviation as the linear age term,

4. sex,

5. the interaction between sex and each of the three age terms,

6. the framewise displacement variable, and

7. the spatial normalization variables from sMRI and fMRI.

Finally, we partialized δ2 to remove residual associations, obtaining the partialized brain-age delta, δ2p.
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Figure 13: Spatial maps of β1 in voxelwise brain-age delta analysis. Voxel intensity is mapped to
both color hue and opacity. SVD 5 shows the strongest age association among all predictors.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 22, 2024. ; https://doi.org/10.1101/2023.09.17.558092doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.17.558092
http://creativecommons.org/licenses/by/4.0/
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C UK Biobank phenotype variables

We used 25 phenotype variables, including lifestyle measures and cognitive test scores, to investigate

their associations with brain-age delta. We describe the process of selecting the phenotype variables as

follows.

We first excluded variables with extreme values from original 64 non-imaging variables using a two-step

approach:

1. We calculated the sum of squared absolute median deviations (d) for each variable.

2. We excluded any variable where max(d) > 100 × mean(d), as these extreme outliers could skew

statistical analysis.

This initial screening resulted in 54 variables, including age, sex, fluid intelligence, physical activity

measures, alcohol intake frequency, cognitive test scores, time spent watching TV, and sleep duration.

We further reduced or excluded phenotype variables from these 54 variables as described below:

1. We applied PCA to decompose 28 physical exercise variables into 8 principal components.

2. We removed five age-related variables due to high correlation with other age variables. These

variables were “age when attended assessment center”, “age when first sexual intercourse”, “age

started wearing glasses”, “years since first sexual intercourse”, and “years since started wearing

glasses”.

3. We excluded two variables related to a cognitive test (“time to answer” and “log time to answer”)

due to distinct population distributions resulting from two different cognitive tests used during data

collection.

4. Finally, we removed the sex variable and another log variable (“log pm score”).

This selection process ultimately yielded 25 variables in total for our analysis, as listed in Table 4.
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Table 4: 54 UK Biobank phenotype variables. Variables for physical exercises in blue were reduced
to 8 principal components by PCA. Variables in red were excluded in brain-age delta analysis. Variables
without IDs were created by R.F.S. based on the original variables and not included in the original UK
Biobank dataset.

Variable ID Variable Name

f399 2 2 number of incorrect matches in round
f400 2 2 time to complete round
f699 2 0 length of time at current address
f864 2 0 number of daysweek walked 10 minutes
f874 2 0 duration of walks
f884 2 0 number of daysweek of moderate physical activity 10 minutes
f894 2 0 duration of moderate activity
f904 2 0 number of daysweek of vigorous physical activity 10 minutes
f914 2 0 duration of vigorous activity
f943 2 0 frequency of stair climbing in last 4 weeks
f971 2 0 frequency of walking for pleasure in last 4 weeks
f981 2 0 duration walking for pleasure
f991 2 0 frequency of strenuous sports in last 4 weeks
f1001 2 0 duration of strenuous sports
f1011 2 0 frequency of light diy in last 4 weeks
f1021 2 0 duration of light diy
f1050 2 0 time spend outdoors in summer
f1060 2 0 time spent outdoors in winter
f1070 2 0 time spent watching television tv
f1080 2 0 time spent using computer
f1160 2 0 sleep duration
f1438 2 0 bread intake
f1488 2 0 tea intake
f1498 2 0 coffee intake
f1558 2 0 alcohol intake frequency
f2139 2 0 age first had sexual intercourse
f2217 2 0 age started wearing glasses or contact lenses
f2624 2 0 frequency of heavy diy in last 4 weeks
f2634 2 0 duration of heavy diy
f3637 2 0 frequency of other exercises in last 4 weeks
f3647 2 0 duration of other exercises
f4288 2 0 time to answer
f4609 2 0 longest period of depression
f20016 2 0 fluid intelligence score
f20023 2 0 mean time to correctly identify matches
f20128 2 0 number of fluid intelligence questions attempted within time limit
f21003 2 0 age when attended assessment centre
f31 0 0 sex

total hours walked 10 minutes
total hours moderate physical activity 10 minutes
total hours vigorous physical activity 10 minutes
total hours of walking for pleasure in last 4 weeks
total hours of strenuous sports in last 4 weeks
total hours of other exercises in last 4 weeks

total hours of light diy in last 4 weeks
total hours of heavy diy in last 4 weeks

number of physical activities wrt walking for pleasure
years since first sexual intercourse
years since started wearing glasses

log time to answer
inverse log duration screen displayed

inverse log number of attempts
log pm score

fluid intelligence interaction
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46 D NONLINEAR SOURCE DEPENDENCE IN NEUROIMAGING DATA

D Nonlinear source dependence in neuroimaging data

Apart from Pearson correlation, we calculated the randomized correlation coefficents (RDCs) (Lopez-Paz

et al., 2013) to measure nonlinear source dependence in neuroimaging data. The RDC results (Figures

14, 15) are largely consistent with those measured by Pearson correlation (Figures 5, 6). The low RDC

values outside the block subspace structure indicate very weak residual dependence between subspaces,

suggesting that different subspaces are nearly independent.
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Figure 14: UKB neuroimaging data: Within-modal RDCs (rows I-II and IV-V) and cross-modal
RDCs (rows III and VI) of the recovered sources before applying post-hoc CCA. Cross-modal
subspaces are highlighted in blue while unimodal subspaces are highlighted in green. Within-modal
self-correlation patterns show very weak residual dependence between subspaces (rows I-II and IV-V).
MSIVA exhibits stronger cross-modal correlations than the unimodal baseline for all predefined subspace
structures (row VI vs row III).
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48 D NONLINEAR SOURCE DEPENDENCE IN NEUROIMAGING DATA
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Figure 15: Patient neuroimaging data: Within-modal RDCs (rows I-II and IV-V) and cross-
modal RDCs (rows III and VI) of the recovered sources before applying post-hoc CCA. Cross-
modal subspaces are highlighted in blue while unimodal subspaces are highlighted in green. Within-modal
self-correlation patterns show weak residual dependence between subspaces (rows I-II and IV-V). MSIVA
shows stronger cross-modal correlations than the unimodal baseline for all predefined subspace structures
(row VI vs row III).
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E MSIVA S2 reconstructed neuroimaging data

Figure 16 shows spatial maps of group-specific reconstructed data from each of five MSIVA S2 linked

subspaces in the UKB dataset. Similarly, Figure 17 shows results related to the age and SZ interaction

effects in the patient dataset. In each panel, axial slices show the geometric median of the reconstructed

subspace data (X̂
[m]
k ) for each modality and each group. Voxel intensity is mapped to both color hue and

opacity. The contours highlight the brain areas where voxelwise cross-modal correlations are significant

for each group (P < 0.01, Bonferroni correction for 44318 voxels). Scatter plots show post-CCA sources

color-coded by age, sex, or diagnosis label. The reported R2 indicates the proportion of variance captured

by the subspace in each modality.

Figure 18 illustrates the number of voxels that show significant cross-modal correlations for age and

sex groups in the UKB dataset (rows I and II), and for age and diagnosis groups in the patient dataset

(rows III and IV). We find that the number of voxels for older patients diagnosed with SZ is consistently

less than that for their age-matched control subjects in four of five subspaces, implying reduced brain

structure-function coupling in the older patient group.
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50 E MSIVA S2 RECONSTRUCTED NEUROIMAGING DATA
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Figure 16: UKB neuroimaging data: Spatial maps of group-specific reconstructed data from
MSIVA S2 sources related to age and sex effects. Axial slices show the geometric median of the
reconstructed data (X̂

[m]
k ) for each modality (sMRI or fMRI) and each group (younger: 46 − 63 years,

older: 63 − 79 years; male or female). Voxel intensity is mapped to both color hue and opacity. The
contours highlight the brain areas where voxelwise cross-modal correlations are significant for each group
(P < 0.01, Bonferroni correction for 44318 voxels). Scatter plots show post-CCA sources color-coded
by age or sex. The reported R2 indicates the proportion of variance captured by the subspace in each
modality.
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Figure 17: Patient neuroimaging data: Spatial maps of group-specific reconstructed data from
MSIVA S2 sources related to age and SZ interaction effects. Axial slices show the geometric
median of the reconstructed data (X̂

[m]
k ) for each modality (sMRI or fMRI) and each group (younger:

15− 39 years, older: 39− 65 years; control or patient). Voxel intensity is mapped to both color hue and
opacity. The contours highlight the brain areas where voxelwise cross-modal correlations are significant
for each group (P < 0.01, Bonferroni correction for 44318 voxels). Scatter plots show post-CCA sources
color-coded by age or diagnosis label. The reported R2 indicates the proportion of variance captured by
the subspace in each modality.
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54 E MSIVA S2 RECONSTRUCTED NEUROIMAGING DATA
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Figure 18: Number of voxels that show significant cross-modal correlations for age and sex
groups in the UKB dataset (rows I and II), and for age and diagnosis groups in the patient
dataset (rows III and IV). Rows I and III display the number of voxels with both positive and negative
correlations (+/−), while rows II and IV display the number of voxels with only positive correlations
(+). The number of voxels for older patients diagnosed with SZ is consistently less than that for their
age-matched controls in four of five subspaces, implying reduced brain structure-function coupling in
older patients.
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F Comparison between MSIVA S2 and MMIVA sources

MSIVA can be viewed as an extension of MMIVA with two main differences. First, MSIVA uses a flexible

block diagonal subspace structure while MMIVA uses a rigid identity matrix as the subspace structure.

Second, MSIVA uses MGPCA and separate ICAs initialization while MMIVA uses MGPCA and group ICA

initialization. To further investigate similarities and differences of the recovered sources from MSIVA and

MMIVA, we compared MSIVA with the subspace structure S2 and MMIVA with the subspace structure

S5 through the following experiments:

1. We performed multiple linear regression (MLR) for each modality using MSIVA S2 post-CCA

sources from each cross-modal subspace X
[m]
i to predict each MMIVA source y

[m]
j :

y
[m]
j = X

[m]
i β, (14)

where i ∈ {1, . . . , 5} is the cross-modal subspace index in MSIVA S2, and j ∈ {1, . . . , 12} is the
subspace index in MMIVA.

2. We performed multivariate analysis of variance (MANOVA) for each modality using a pair of

matched MMIVA sources
[
y
[m]
j ,y

[m]
k

]
from Step 1 to predict MSIVA S2 post-CCA sources from

each cross-modal subspace X
[m]
i :

X
[m]
i =

[
y
[m]
j ,y

[m]
k

]
β. (15)

Here, (j, k) are a pair of matched subspace indices in MMIVA, and i is the cross-modal subspace

index in MSIVA S2.

We measured the adjusted R2 (R2
adj) from MLR as shown below:

R2 = 1−
∑N

i=1(yi − ŷi)
2∑N

i=1(yi − ȳ)2
, ȳ =

1

N

N∑
i=1

yi, (16)

R2
adj = 1− (1−R2)

N − 1

N −NP − 1
, (17)

where N is the number of samples (here subjects) and NP is the number of predictors.

Figures 19 and 21 show the adjusted R2 when using pairs of MSIVA S2 sources from each cross-modal

subspace to predict each of the 12 MMIVA sources for the UKB dataset and the patient dataset,
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56 F COMPARISON BETWEEN MSIVA S2 AND MMIVA SOURCES

respectively. We reordered MMIVA sources to identify the most likely correspondence between MSIVA

S2 sources and MMIVA sources. We notice that there exists some correspondence between MSIVA S2

sources and MMIVA sources. For example, for UKB sMRI data, MSIVA S2 subspace 3 sources match

MMIVA source 3 (R2
adj = 0.96), MSIVA S2 subspace 5 sources match MMIVA source 5 (R2

adj = 0.87),

and MSIVA S2 subspace 4 sources match MMIVA source 2 (R2
adj = 0.73). We also observe that there

are more than two columns showing high R2
adj (> 0.2) for each row, indicating that every two MSIVA

S2 sources from each subspace can predict variability for more than two MMIVA sources. Note that the

prediction results for fMRI are very consistent with those for sMRI.

We then performed MANOVA using every two matched MMIVA sources to predict the pair of MSIVA S2

sources from each cross-modal subspace. We show the Pillai’s trace divided by the number of modalities

(M = 2) in Figures 20 and 22. Note that the maximum possible diagonal Pillai’s trace value is 2

for two modalities, and dividing the Pillai’s trace by 2 shows the variance explained for each modality.

We observe large off-diagonal values per column, indicating that every pair of matched MMIVA sources

predicts variability of more than two MSIVA S2 sources. Note that the prediction results for fMRI are

very consistent with those for sMRI.

Therefore, we conclude that MSIVA and MMIVA apportion variability to their sources in different ways.

There is no perfect one-to-one mapping between MSIVA S2 sources and MMIVA sources. We also note

that the mismatch appears to be more pronounced in the patient dataset than in the UKB dataset, which

may be related to inherent characteristics of the patient data, such as higher population heterogeneity

and smaller sample size.
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Figure 19: UKB neuroimaging data: Adjusted R2 using MSIVA sources to predict MMIVA
sources.
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Figure 20: UKB neuroimaging data: Pillai’s trace value using matched MMIVA sources to
predict MSIVA sources.
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Figure 21: Patient neuroimaging data: Adjusted R2 using MSIVA sources to predict MMIVA
sources.
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Figure 22: Patient neuroimaging data: Pillai’s trace value using matched MMIVA sources to
predict MSIVA sources.
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