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Abstract 

Transcription is the primary regulatory step in gene expression. Divergent 

transcription initiation from promoters and enhancers produces stable RNAs from 

genes and unstable RNAs from enhancers1–5. Nascent RNA capture and 

sequencing assays simultaneously measure gene and enhancer activity in cell 

populations6–9. However, fundamental questions in the temporal regulation of 

transcription and enhancer-gene synchrony remain unanswered primarily due to 

the absence of a single-cell perspective on active transcription. In this study, we 
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present scGRO-seq - a novel single-cell nascent RNA sequencing assay using 

click-chemistry - and unveil the coordinated transcription throughout the genome. 

scGRO-seq demonstrates the episodic nature of transcription, and estimates burst 

size and frequency by directly quantifying transcribing RNA polymerases in 

individual cells. It reveals the co-transcription of functionally related genes and 

leverages the replication-dependent non-polyadenylated histone genes 

transcription to elucidate cell-cycle dynamics. The single-nucleotide spatial and 

temporal resolution of scGRO-seq identifies networks of enhancers and genes and 

indicates that the bursting of transcription at super-enhancers precedes the burst 

from associated genes. By imparting insights into the dynamic nature of 

transcription and the origin and propagation of transcription signals, scGRO-seq 

demonstrates its unique ability to investigate the mechanisms of transcription 

regulation and the role of enhancers in gene expression. 
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Main 

Transcription is a discontinuous process characterized by short bursts and long inter-

burst silent periods10–14. Decoding the origin and circuits of burst signals is critical in 

understanding the mechanisms of transcription regulation during the cell cycle, 

development, and diseases. Core promoter elements, transcription factors, and 

enhancers are implicated in regulating burst kinetics, but their precise role in determining 

the overall transcription output remains unsettled15–18. Whether the widely accepted view 

of stochastic transcription of individual genes conceals synchronous transcription of 

functionally related genes and coordination between enhancer-gene pairs holds broad 

significance in understanding gene regulation. From a clinical perspective, assessing the 

contribution of enhancers in regulating protein-coding genes can unlock a largely 

unexplored genomic landscape for therapeutics. 

 

Active enhancers are occupied by transcription factors and RNA polymerase, similar to 

the gene promoters they regulate, resulting in the synthesis of non-coding, non-

polyadenylated, and unstable RNA3,19,20. They are highly specific to cell types and 

states21, exerting cis-regulatory effects over long genomic distances22. Genome-wide 

association studies further underscore the role of enhancers in gene regulation, showing 

that over 90% of genomic loci associated with traits and diseases are found in non-coding 

regions with many overlapping enhancers23. However, linking enhancers harboring 

causal variants to genes remains challenging. Although low throughput, genome editing 

tools can potentially map enhancer-gene pairs, but the pleiotropic nature17 and weak 

effect of individual enhancers hinder their utility. 
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Existing genomic tools that probe the coding and non-coding genome without perturbation 

by assessing chromatin conformation, histone modifications, and chromatin accessibility 

shed light on the molecular events leading up to the enhancer-mediated gene activation. 

However, these tools do not fully confirm the actual activation24. Despite having similar 

chromatin features, the distinguishing feature of an active enhancer from its inactive 

counterpart is its transcription25. Nascent RNA sequencing assays, such as global run-on 

and sequencing (GRO-seq)8 and precision run-on and sequencing (PRO-seq)9, enable 

the simultaneous quantification of transcription in genes and enhancers. However, these 

bulk cell assays average the discontinuous transcription from individual cells, making it 

challenging to decipher transcription dynamics and assign enhancer-gene relationships. 

 

Here, we present a novel single-cell nascent RNA sequencing (scGRO-seq) method 

using copper-catalyzed azide-alkyne cycloaddition (CuAAC or click-chemistry)26 to 

assess genome-wide nascent transcription in individual cells quantitatively. Our analyses 

of genes and enhancers across 2,635 individual mouse embryonic stem cells (mESCs) 

provide a comprehensive view of the dynamic nature of transcription. We leverage the 

elongating RNA polymerases as built-in clocks and measure the distance traveled from 

the transcription start sites (TSS) to estimate transcriptional burst kinetics. Using a class 

of cell-cycle phase-specific genes undetected by most single-cell methods, we quantify 

the dynamics of transcription during cell-cycle. We used the single-nucleotide temporal 

resolution of genome-wide transcription in individual cells to reveal the co-transcribed 

gene-gene and enhancer-gene networks that are turned on within a few minutes of each 
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other. Using a set of validated enhancer-gene pairs, we show preliminary evidence for 

the transcription initiation at enhancers before the transcription activation at the 

associated genes. Overall, scGRO-seq bridges a critical gap in the study of temporal 

control of transcription and the functional association of enhancers and genes, and these 

insights will shed light on the gene regulatory mechanisms in essential cellular processes 

and disease. 

 

Development of scGRO-seq 

The primary challenge in capturing and sequencing nascent RNA from individual cells is 

attaching unique single-cell tags onto nascent RNA. Existing nascent RNA sequencing 

methods selectively capture tagged-nascent RNA from a cell population, making single-

cell deconvolution impossible. In contrast, single-cell RNA sequencing (scRNA-seq) 

methods capture mRNA by annealing with the polyA tail and attach single-cell barcode 

sequences by reverse transcription. Nascent RNA lacks a terminal polyA tract or other 

consensus sequence and must be selectively labeled and enriched from abundant total 

cellular RNA.  

 

We designed a novel strategy to selectively label nascent RNA by nuclear run-on reaction 

in the presence of modified nucleotide triphosphates (NTPs) compatible with CuAAC 

conjugation. CuAAC is highly efficient, extremely selective, robust under diverse reaction 

conditions, enzyme-free and compatible with automation. First, we developed, optimized, 

and systematically characterized an Assay for Genome-wide Transcriptome using Click-

chemistry (AGTuC) - a cell population-based nascent RNA sequencing method using 3'-

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2023. ; https://doi.org/10.1101/2023.09.15.558015doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.15.558015
http://creativecommons.org/licenses/by-nc-nd/4.0/


(O-Propargyl)-NTPs in mESCs (Extended Data Fig. 1a-f, 2a-d). It takes ~8 hours to 

prepare an AGTuC library. However, the high concentration of ionic detergent in AGTuC 

disrupts nuclear membranes during run-on reaction, making RNA from individual cells 

indistinguishable for single-cell barcoding. We therefore developed an iteration of AGTuC 

where nascent RNAs in individual nuclei are labeled with alkyne via run-on with 3'-(O-

Propargyl)-NTPs but without disrupting the nuclear membrane (inAGTuC) (Extended 

Data Fig. 3a-j, 4a-h). We prepared inAGTuC libraries from ~100K, ~10K, and ~1K nuclei 

(Extended Data Fig. 5a-d) and tested for correlation among itself and with PRO-seq, 

demonstrating the feasibility of profiling nascent RNA with small sample sizes. Based on 

the correlation slope, the inAGTuC library with as low as ~1K nuclei showed similar 

efficiency as PRO-seq in detecting nascent transcriptomes. The higher efficiency, lower 

cost, shorter library preparation time, and lower sample input make AGTuC and inAGTuC 

viable alternatives to existing methods like PRO-seq. By enabling the 

compartmentalization of intact nuclei containing click-compatible nascent RNA and 5’-

azide-single-cell-barcoded (5’-AzScBc) DNA molecules using fewer nuclei, inAGTuC laid 

the ground for single-cell nascent RNA sequencing. 

 

Building on this foundation, we applied our newly developed chemistry to single cells. For 

congruence with the original nascent RNA sequencing method of GRO-seq, we named 

this single-cell version scGRO-seq (Fig. 1a). Intact nuclei containing nascent RNA labeled 

with propargyl, following a nuclear run-on reaction with 3'-(O-Propargyl)-NTPs are sorted 

individually into 96-well plates. Each well contains a small volume of 8 M urea, which 

lyses the nuclear membrane and denatures RNA polymerase, releasing propargyl-
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labeled nascent RNA. Adding CuAAC reagents covalently links propargyl-labeled 

nascent RNA to a unique 5’-AzScBc DNA molecule in each well. After CuAAC, single-

cell-barcoded nascent RNAs from 96 wells are pooled, reverse transcribed in the 

presence of a template switching oligo (TSO), PCR amplified, and sequenced (Extended 

Data Fig. 6). Despite a span of more than three years between the generation of various 

scGRO-seq library replicates, the 36 batches that passed quality control showed strong 

correlation at the 96-well plate level (Extended Data Fig. 7a).  

 

The scGRO-seq recapitulates the inAGTuC and PRO-seq profiles at both genes and 

enhancers (Fig. 1b) and, for the first time, provides a comprehensive map of nascent 

transcription in individual cells. We captured an average of 3,665 reads and 1,503 

features (genes and enhancers) per cell (Fig. 1c), and pseudo-bulk scGRO-seq counts 

from collapsed single cells correlate well with bulk counts from inAGTuC (Fig. 1d). The 

sequencing depth analysis indicated the possibility of more reads and features discovery 

per cell with further development of technology and deeper sequencing (Extended Data 

Fig. 7b). However, scGRO-seq is less efficient in capturing nascent RNA from promoter-

proximal pause sites. We attribute this to the reduced run-on efficiency of paused Pol II 

in the absence of a high concentration of strong detergent27. This difference in promoter-

proximal run-on efficiency is reflected in a lower correlation between scGRO-seq and 

PRO-seq libraries (Extended Data Fig. 7c), as well as in the metagene profiles around 

the TSS of genes and enhancers (Fig. 1e & Extended Data Fig. 7d).  
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After confirming that scGRO-seq recapitulates the bulk nascent RNA sequencing 

methods, we benchmarked scGRO-seq against other RNA-based single-cell assays. The 

closest single-cell method that probes nascent transcription is intron seqFISH - a 

multiplexed single-molecule in situ nascent RNA hybridization and imaging method28. We 

confirm that the correlation between scGRO-seq and intron seqFISH is similar to the 

correlation reported between intron seqFISH and GRO-seq (Fig. 1f). In contrast, scGRO-

seq poorly correlates with scRNA-seq (Fig. 1g, left), likely due to a combination of 

increased mRNA stability and different capture methods29. Nevertheless, as expected, 

scGRO-seq reads are more likely to be intronic or intergenic than scRNA-seq reads (Fig. 

1g, right). Overall, the suite of genomic assays presented here utilizes a novel 

biochemical approach to provide a snapshot of genome-wide transcription at various cell 

resolutions, including individual cells. 

 

Direct measurement of transcription burst kinetics 

Transcriptional kinetic estimates primarily come from low-throughput live-cell imaging or 

fluorescent in situ hybridization in fixed cells30–32. The recently developed Intron seqFISH 

method is limited to predefined gene targets, requires specialized probes, and assumes 

that all intronic RNAs have the same kinetic fate. Next-generation sequencing (NGS) 

based approaches are comprehensive and technically more accessible. However, the 

current methods measure polyadenylated mRNA from single cells33 and fit a simple two-

state mathematical model to infer transcriptional kinetics18. Bridging this gap, scGRO-seq 

combines high-throughput measurement of transcription with NGS, thereby enabling the 
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detection of transcribing RNA polymerases genome-wide at single nucleotide resolution 

(Fig. 2a).  

 

With this new approach, we examined the evidence of bursting de novo without prior 

assumptions by quantifying the incidence of transcribing RNA polymerases. If 

transcription occurs in bursts, we anticipate a higher occurrence of more than one RNA 

polymerase per burst (multiplets) than would be expected by chance. By permuting reads 

among cells while keeping their position unchanged (see Methods), we observed a 

reduction of singlets (n = 1,052, fdr = 0.05) and a concurrent increase in multiplets (n = 

828, fdr = 0) in our data compared to the permuted data, providing evidence for the 

bursting nature of transcription (Fig. 2b). Based on the approximately 10% capture 

efficiency of scGRO-seq estimated from comparison with intron seqFISH and 

measurement of transcriptionally engaged RNA polymerases from mammalian cells34,35 

(see Methods), the probability of detecting two consecutive RNA polymerases on a gene 

is 1%. The statistically significant increase in 2.4% multiplets exceeds the expectation by 

chance. Transcriptional bursting would also result in more closely spaced RNA 

polymerases than what would be observed by random chance15. When examining the 

distance between multiplets, we indeed observed enrichment of closely spaced RNA 

polymerases (p < 0.05, two-sample KS test) (Fig. 2c & Extended Data Fig. 8a), further 

strengthening the evidence of bursting. 

 

With confidence in scGRO-seq’s ability to discern bursting, we directly measured the 

burst kinetics using scGRO-seq counts and their genomic positions. We estimate burst 
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size as the average number of RNA polymerases per burst and burst frequency as the 

number of bursts per allele per unit of time required for RNA polymerase to traverse 

through the burst window (Fig. 2d), corrected for capture efficiency (see Methods). We 

considered genes longer than 11 kb (n = 13,564) and excluded 500 bp regions at either 

end that are known to harbor paused polymerases36, using the remaining 10 kb as the 

burst window. We assigned reads to a single allele based on the evidence of alleles in 

mESCs bursting independently generating monoallelic RNA37,38. With an average RNA 

Polymerase II elongation rate of 2.5 kb/min39, using a 10 kb region limits the burst 

detection window to four minutes. This short burst window is consistent with bursts from 

one allele and aligns with previous reports12,40. We simulated kinetic measurements on 

synthetic data to validate the model's accuracy and observed robust performance 

(Extended Data Fig. 8b). We estimated the kinetic parameters of transcriptional bursts for 

expressed genes (Fig. 2e, Table 1). The mean duration of approximately 2 hours until the 

next burst in scGRO-seq matches the 2 hours of the global nascent transcription 

oscillation cycle reported in intron seqFISH. Burst frequency from scGRO-seq correlated 

well with intron seqFISH (Fig. 2f), and the correlation is more robust for genes with a 

higher burst frequency. However, we observed a poor correlation between burst 

frequencies from scGRO-seq and scRNA-seq data, as well as between intron seqFISH 

and scRNA-seq data (Extended Data Fig. 8c), highlighting potential limitations in the 

kinetic estimates derived from mature transcripts. Using the burst parameters estimated 

from scGRO-seq, we again tested our model by simulation and observed robust 

performance (Extended Data Fig. 8d). Interestingly, no relationship was observed 

between burst size and burst frequency (Extended Data Fig. 8e), and the gene length did 
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not impact kinetic estimates (Extended Data Fig. 8f). Also, the burst frequencies 

calculated from 10 kb and 5 kb burst windows showed strong agreement (Extended Data 

Fig. 8g), confirming the reliability of burst kinetics calculation from scGRO-seq. 

 

Core promoter elements are known to modulate burst parameters 18,41,42. We observed a 

significant variation in core promoter elements with burst kinetics (Fig. 2g). Specifically, 

genes with the TATA element exhibited a larger burst size than genes lacking it, and the 

presence of the Initiator sequence further increased the burst size. The higher burst size 

but lower burst frequency of genes with TATA elements agree with previous findings43. In 

contrast, highly paused genes, which contain an enriched sequence called pause button 

at the promoter-proximal paused sites44, exhibit higher burst frequency than the remaining 

genes. The observed difference in burst kinetics among genes with TATA element or 

promoter-proximal pausing corroborates a previous report of tissue-specific genes 

exploiting the difference in bursting properties for differential expression across tissues41.  

 

Transcription factors are also believed to regulate burst kinetics. Using a curated 

transcription factor binding database45,46, we examined the effect of transcription factors 

in burst parameters. Gene set enrichment analysis indicated that some transcription 

factors regulate burst size, and others regulate burst frequency (Table 2). Myc and Aff4 

are examples of each category. We found that the genes bound by Myc have larger burst 

sizes. In contrast, Aff4 target genes are enriched for higher burst frequencies (Fig. 2h). 

Our observation supports a previous report where Myc increased the burst size by 

increasing the burst duration47, and the association of the Aff4 transcription factor 
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correlated with burst frequency48. Overall, we show that the direct and comprehensive 

observation of transcription using scGRO-seq facilitates the study of transcription kinetics 

at the single-cell level. 

 

Cell-cycle inference from non-polyadenylated replication-dependent histone genes 

Investigating gene programs during cell-cycle stages is essential for understanding 

biology and diseases49. While scRNA-seq relies on mature transcripts of marker genes 

to determine the cell-cycle state, the time required for mRNA processing, export, and 

accumulation introduces a time lag. It also fails to detect the replication-dependent 

histone genes - the best characterized cell-cycle phase-specific genes exclusively 

transcribed during the S phase50 - due to the lack of polyadenylation51. scGRO-seq 

detects active transcription of replication-dependent histone genes in the histone locus 

body (Extended Data Fig. 9a) that can be used to classify cells in the S phase. For G1/S 

and G2/M phase-specific genes, we used a set of transcriptionally characterized genes 

from an RNA velocity and deep learning study of mESCs52. Hierarchical clustering based 

on the expression of these three cell-cycle phase-specific genes revealed three significant 

clusters of individual cells (Fig. 3a). 

 

Mouse embryonic stem cells are known to have a short G1 phase and an extended S 

phase53. De novo classification of mESCs based on the nascent transcription of these 

newly integrated marker genes recapitulates the cell-cycle phase lengths (Fig. 3b). 

Notably, cells in the G1/S and G2/M phases exhibit higher transcription levels compared 

to cells in the S phase (Wilcoxon rank sum test p = 6.3e-07 and p = 1.2e-06, respectively) 
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(Fig. 3c). We observed an approximately 40% decrease in total transcription when cells 

transition from G1/S to S phase, with a subsequent 20% increase upon exiting the S 

phase to G2/M. This observation indicates that transcription continues during DNA 

replication, albeit at a reduced level. The transition from the G2/M phase to the G1 phase 

is marked by an increase in transcription54, which restores the transcription level observed 

during the G1 phase, completing the cycle. Analysis of differentially expressed genes in 

cell-cycle phases also revealed that certain genes restore transcription levels to those 

observed in the G1/S phase as they transition from the S to the G2/M phase, while others 

regain partial transcription (Fig. 3d, Table 3). At the same time, some do not recover their 

transcription until exiting from G2/M to G1/S. By quantifying the active transcription of 

non-polyadenylated histone genes and a small subset of marker genes, scGRO-seq 

reveals a dynamic transcription program throughout the cell-cycle. 

 

Co-transcription of functionally coupled genes 

Co-expression of functionally related genes, as measured by accumulated mRNA, is 

widely reported55. However, assessing whether these genes are transcriptionally 

synchronized in steady-state has been challenging. By utilizing nascent transcription 

within the first 10 kb of the gene body, thereby limiting the co-transcription detection 

window to four minutes, we calculated the pairwise Pearson correlation between 

expressed genes (Fig. 4a). Gene pairs with a correlation coefficient greater than 0.1 and 

a q-value of less than 0.05, and an empirical false-discovery rate of less than 5% from 

1000 permutation were considered co-transcribed (Table 4). These stringent criteria 

controlled for sampling biases and other confounding effects. We identified only 0.1% of 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2023. ; https://doi.org/10.1101/2023.09.15.558015doi: bioRxiv preprint 

https://app.readcube.com/library/45cf7075-03a0-4bef-9e21-67595a4b0427/all?uuid=29234171903858797&item_ids=45cf7075-03a0-4bef-9e21-67595a4b0427:08404619-2ddd-41cd-9081-57083ec92e82
https://app.readcube.com/library/45cf7075-03a0-4bef-9e21-67595a4b0427/all?uuid=4762870676475124&item_ids=45cf7075-03a0-4bef-9e21-67595a4b0427:8654291e-14d5-4d60-b0f1-3ae51630e3bd
https://doi.org/10.1101/2023.09.15.558015
http://creativecommons.org/licenses/by-nc-nd/4.0/


the 112,807,710 candidate gene pairs (n = 137,418) as co-transcribed. We generated a 

graphical network from these statistically significant pairs, identifying 59 modules (genes 

per module > 10) of co-transcribed genes. This gene-gene transcriptional correlation 

could reflect common temporal gene activation by a transcription factor or mechanistic 

coupling of transcription activation by clusters of genes separated across regions of 

chromosomes. 

 

Conducting gene ontology analysis on these co-transcribed modules compared to all 

transcribed genes, we found enrichment of several related molecular functions, including 

cell-cycle regulation, RNA splicing, translational control, DNA repair, and circadian rhythm 

(Fig. 4b, Extended Data Fig. 9b, and Table 5). By scanning the promoters of co-

transcribed genes, we discovered an enrichment of known transcription factor motifs, 

such as Foxo3 enriched in the promoters of co-transcribed genes associated with the 

"Regulation of cell-cycle phase transition" gene ontology term. A previous study has 

shown that Foxo3, in coordination with the DNA replication factor Cdt1, is critical in 

regulating cell cycle progression56. We compared the co-transcription patterns of gene 

pairs obtained from scGRO-seq with those from intron seqFISH, and the results revealed 

concordant co-transcription (Fig. 4c). This high throughput and unique capability of 

scGRO-seq to directly examine transcriptional coordination between any gene pair or 

network of genes provides valuable insights into the functional organization of the 

genome. 

 

Spatiotemporal coordination of enhancer-gene co-transcription 
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Regulation of gene expression by distal regulatory elements is an area of broad interest. 

scGRO-seq captures transcripts from both genes and active enhancers, allowing the 

measurement of co-activation in single cells. We analyzed scGRO-seq reads within the 

first 10 kb of genes and at least 3 kb on each strand transcribing outwards around 

enhancers (see Methods). We excluded 500 bp regions around the TSS of genes and 

enhancers to exclude paused polymerase. We also included clusters of enhancers known 

as super-enhancers (SEs) that do not overlap with gene regions20.  

 

We identified enhancer-gene pairs that exhibit significant pairwise Pearson correlations 

on the same chromosomes. Out of 2,718,382 test pairs, 1.8% (n = 49,143) passed the 

threshold criteria of correlation coefficient, q-value, and empirical false-discovery rate 

from 1000 permutations (Table 6). We observed a significant enrichment (two-sample KS 

test, p-value = 5e-07) of enhancer-gene co-transcription within 100 kb of each other (Fig. 

5a), with SE-gene pairs showing even stronger enrichment (two-sample KS test, p-value 

= 1.7e-09) compared to uncorrelated pairs (Extended Data Fig. 10a). When examining 

functionally related genes clustered together on the same chromosome57, we found 

multiple enhancers correlated with each gene (Extended Data Fig. 10b), suggesting the 

possibility of an increased concentration of transcription machinery locally through 

condensate formation, or a further manifestation of cell-cycle regulation.  

 

We investigated a set of validated enhancers known to regulate pluripotency transcription 

factors58–61. We observed statistically significant correlations between the transcription of 

the Sox2 and Nanog genes and their distal enhancers (Extended Data Fig. 10c). The lack 
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of correlation between the Oct4 and Klf4 enhancer-gene pairs could be due to a time 

delay in the transcription of genes and enhancers. If enhancers and their target genes 

are temporally coupled and co-transcribe, we speculated that the co-transcription of the 

pair could be even more prominent at finer temporal resolution. To test this, we divided 

enhancers and genes into 5 kb bins (representing a 2-minute transcription window) and 

found that at least one enhancer bin correlated significantly with its target gene for all four 

genes (Fig. 5b). Intriguingly, the correlated enhancer bin generally appeared further from 

its TSS than the gene bin, implying that enhancer transcription may initiate prior to 

promoter transcription. 

 

To test the enhancer-gene timing hypothesis, we examined a set of seven non-intronic 

mESC super-enhancers validated by CRISPR perturbation62. The CRISPR knock-out of 

Sall1 SE reduced Sall1 expression by 92%, and we found a correlation between multiple 

enhancer bins and this gene (Fig. 5c). Overall, 4 out of 7 SE-gene pairs showed 

correlations of at least one bin. Interestingly, we observed that in most cases, enhancer 

transcription began earlier or around the same time as the transcription of their target 

genes (Fig. 5d). This temporal pattern could have mechanistic implications for enhancer-

gene regulation. However, any conclusions will require a much deeper data set. 

Nevertheless, our findings offer a glimpse into the possibility of temporal order in 

enhancer-gene transcription. 

 

Discussion 
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We developed scGRO-seq to enable the assessment of co-transcription and prediction 

of enhancer-gene regulatory networks in their native context. By reporting the activity of 

genes and distal regulatory elements - and thus the functional consequences of 

transcriptional signals and networks - scGRO-seq is inherently multimodal for 

understanding transcription regulation at an unprecedented level. We illustrate these 

advantages by determining burst size and frequency for expressed genes, transcription 

levels during cell cycle phases, and genome-wide gene-gene and enhancer-gene co-

transcription detection. We restricted this study to mESCs for comparison with large 

available data sets for validation. 

 

The current scGRO-seq methodology has its limitations. The preservation of nuclear 

integrity, achieved through a low sarkosyl concentration, fails to promote the run-on of 

RNA polymerases in the pause complex, thereby limiting the detection of promoter-

proximal paused polymerases. The read depth and cell numbers limit our analyses of 

burst kinetics and synchrony of gene-gene and enhancer-gene pairs. Improved efficiency 

in future iterations will facilitate a more precise evaluation of these phenomena. 

 

scGRO-seq is also limited by the abundance of nascent RNA per cell at any given time, 

which is considerably lower than that of mature mRNA. Nascent RNA detection requires 

technology not dependent on a polyadenylated terminus, initially raising doubts about the 

feasibility of nascent RNA sequencing in single cells63. However, implementing highly 

efficient CuAAC has overcome this limitation, enabling the capture of approximately 10% 

of nascent RNA with current protocols. To streamline the process and ensure 
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compatibility with future automation, we optimized the biochemical steps by replacing 

multiple rounds of nascent RNA purification and nucleic acid ligation with click-chemistry. 

Further adaptations, including high-throughput droplet encapsulation and enhanced 

capture efficiency, will extend the applicability of our scGRO-seq method in both research 

and clinical settings. 

 

For clinical specimens, especially for challenging tissues like the brain and pancreas that 

contain high levels of RNase, isolation of nuclei is more feasible than obtaining intact 

single cells. Single-cell methods like sNuc-Seq64 profile polyadenylated RNA inside the 

nucleus of such tissues, painting an incomplete view of single-cell gene expression. In 

contrast, the entire scGRO-seq substrate is present inside the nucleus. Furthermore, the 

compatibility of CuAAC-based nascent RNA sequencing methods with bulk, small input 

samples, and single cells makes them desirable methods for clinical investigations. The 

adaptability and efficiency of scGRO-seq introduce new avenues for investigating 

transcriptional dynamics and regulatory mechanisms across diverse biological contexts, 

enriching our understanding of gene expression regulation and its ramifications in 

physiological and pathological conditions. 
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Methods: 

scGRO-seq conceptualization 

Capturing nascent RNA with sufficient efficiency from single cells for meaningful analysis 

was deemed challenging2. However, recognizing the potential insights into transcription 

mechanisms that single-cell nascent RNA sequencing could offer, we set out to develop 

a single-cell version of the GRO-seq method a decade after its use in cell populations3. 

Our efforts were met with two major challenges: selectively capturing a small fraction of 

nascent RNA among various RNA species within a cell and accurately distinguishing 

nascent RNAs from individual cells. 

 

The primary limitation we encountered was capture efficiency. The quantity of nascent 

RNA from transcribing RNA polymerases in an individual cell, mainly due to transcription's 

intermittent nature with short bursts and long latency periods, is significantly lower than 

the mRNA copies that accumulate over time. Traditional nascent RNA capture methods 

yield only a meager number of nascent RNAs from single cells. Miniaturizing GRO-seq 

using strategies derived from scRNA-seq was not feasible since nascent RNA lacks the 

consensus polyadenylation sequence used in RNA-seq. Instead, GRO-seq and related 

methods selectively label nascent RNA in bulk cells using modified nucleotides and 

employ single-stranded RNA-RNA ligation with PCR handles on both ends. This ligation 

process proved unsuitable for scGRO-seq due to its low efficiency and the need for 

nascent RNA purification before ligation, which risks depleting the already scarce nascent 

RNA from single cells. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2023. ; https://doi.org/10.1101/2023.09.15.558015doi: bioRxiv preprint 

https://app.readcube.com/library/45cf7075-03a0-4bef-9e21-67595a4b0427/all?uuid=5887855354365203&item_ids=45cf7075-03a0-4bef-9e21-67595a4b0427:24f3e50e-e9de-418e-9bbb-900c5d072468
https://app.readcube.com/library/45cf7075-03a0-4bef-9e21-67595a4b0427/all?uuid=36366286919535473&item_ids=45cf7075-03a0-4bef-9e21-67595a4b0427:b07bc120-8541-42c9-84d1-d89c2b86b7d4
https://doi.org/10.1101/2023.09.15.558015
http://creativecommons.org/licenses/by-nc-nd/4.0/


To overcome these challenges, we devised a strategy involving a) labeling nascent RNA 

in cells and b) attaching single-cell barcodes to the labeled nascent RNA without requiring 

purification from other cellular RNA. After exploring several approaches without success, 

we turned to click-chemistry, specifically CuAAC (copper(I)-catalyzed azide-alkyne 

cycloaddition). We speculated that by sourcing or synthesizing CuAAC-compatible chain-

terminating nucleotide triphosphate analogs and performing nuclear run-on with the 

modified nucleotides to label nascent RNA selectively, we could label nascent RNA from 

individual cells with 5’-azide-single-cell-barcoded (5’-AzScBc) DNA with a PCR handle. 

Then, we could pool the barcoded nascent RNA from multiple cells for selective reverse 

transcription in the presence of a template switching oligo (TSO) and subsequent PCR 

amplification for sequencing. 

 

To successfully implement this strategy, we identified three critical biochemical hurdles 

to address. First, we needed to demonstrate the ability of native RNA polymerase to 

incorporate 3'O-Propargyl-NTPs during nuclear run-on reactions. Second, preserving the 

intactness of nuclei during the run-on reaction was essential to enable the separation of 

individual nuclei for single-cell barcoding. Finally, we had to confirm the ability of reverse 

transcriptase to traverse the triazole ring junction formed during CuAAC. Successful 

resolution of the first and third hurdles would pave the way for CuAAC-based nascent 

RNA sequencing in cell populations while overcoming the second hurdle would establish 

the foundation for single-cell GRO-seq. 

 

Development of AGTuC 
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To develop a nascent RNA tagging method suitable for capturing a small fraction of RNA 

from single cells, we initiated our approach by focusing on a cell-population-based 

strategy. Our aim was to develop an enhanced nascent RNA tagging method that 

optimally integrates selective labeling and single-cell barcode tagging, bypassing the 

need for RNA purification. Among the tested methods, we identified click-chemistry as 

the most suitable option due to its high selectivity, efficiency, robustness in diverse 

experimental conditions, cost-effectiveness, and speed. Our goal was to selectively label 

nascent RNA through a nuclear run-on reaction, conjugate a single-stranded DNA PCR 

handle (that can accommodate a single-cell barcode for future use in single-cell analysis), 

reverse transcribe the RNA-DNA conjugate, and prepare a next-generation sequencing 

(NGS) library. 

 

To achieve single-nucleotide resolution of transcribing polymerases and efficient reverse 

transcription, we identified two click-chemistry compatible, chain-terminating nucleotides 

with relatively small functional group - 3'-(O-Propargyl)-ATP and 3'-Azido-3’-dATP 

(Extended Data Fig. 1a). Nascent RNA labeled with 3'-(O-Propargyl)-NTPs forms a 1,4-

disubstituted 1,2,3-triazole junction with azide-labeled DNA through copper-catalyzed 

azide-alkyne cycloaddition (CuAAC), whereas nascent RNA labeled with 3'-Azido-3’-

dNTPs forms a slightly bulkier junction with dibenzocyclooctyne (DBCO) labeled DNA via 

Strain-Promoted Alkyne-Azide Cycloadditions (SPAAC) (Extended Data Fig. 1b). Nuclear 

run-on with 3'-(O-Propargyl)-ATP and CuAAC showed superior efficiency compared to 3'-

Azido-3’-dATP and SPAAC (Extended Data Fig. 1c). 
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To convert the clicked RNA-DNA conjugate to cDNA, we tested eight different reverse 

transcriptase enzymes, varied the temperature and duration of reverse transcription, and 

evaluated three template-switching oligos (Extended Data Fig. 1d-f, some results not 

shown). Our optimized method, which we named the Assay for Genome-wide 

Transcriptome using Click-chemistry (AGTuC), was then performed in 5 million mESCs 

nuclei. AGTuC nascent RNA profiles closely resembled PRO-seq profiles (Extended Data 

Fig. 2a) and exhibited strong correlations at both gene and enhancer levels (Extended 

Data Fig. 2b-c). Notably, the AGTuC library protocol involved significantly fewer steps 

than PRO-seq and could be completed in a single day (Extended Data Fig. 2d). AGTuC 

is a simpler, faster, and cheaper alternative to GRO-seq and PRO-seq for nascent RNA 

sequencing from cell populations. 

 

Development of inAGTuC 

To adapt CuAAC-mediated nascent RNA sequencing to single cells, we explored the 

feasibility of performing AGTuC in single cells. Implementing AGTuC at the single-cell 

level presented challenges, as the nuclear run-on reaction with 0.5% sarkosyl disrupts 

the nuclear membrane before cell barcodes could be attached during the post-run-on 

CuAAC step, leading to unintended mixing of nascent RNA from different cells. One 

potential solution was to perform AGTuC in single tubes, which would prevent nascent 

RNA mixing. However, this approach requires RNA purification after the run-on reaction, 

but purification results in further depletion of exceedingly low amounts of nascent RNA in 

single cells. Alternatively, omitting RNA purification would lead to an abundance of 3'-(O-
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Propargyl)-NTPs supplied in huge excess during the run-on reaction, which could 

outcompete 5’-AzScBc DNA during CuAAC. 

 

To address this challenge, we developed intact-nuclei AGTuC (inAGTuC) - a novel 

strategy that enables labeling nascent RNA with 3'-(O-Propargyl)-NTPs while preserving 

nuclear integrity. This approach overcomes the issues associated with nascent RNA 

mixing prior to single-cell barcoding. We hypothesized that performing the run-on reaction 

without disrupting the nuclear membrane would facilitate the easy removal of excess 

nucleotides through a few centrifugation and resuspension steps while retaining 

propargyl-labeled nascent RNA within the nuclei. This approach would yield clean nuclei 

with labeled nascent RNA, free from excess reactive nucleotides, which could be 

compartmentalized with 5’-AzScBc DNA for CuAAC. We could minimize further RNA loss 

by pooling and processing the single-cell-barcoded nascent RNA from multiple cells. 

 

To achieve an efficient run-on reaction, PRO-seq and AGTuC disrupt the polymerase 

complex with 0.5% sarkosyl detergent, of which nuclear membrane lysis is collateral 

damage. We sought to identify the lowest sarkosyl concentration that maintains nuclear 

membrane integrity while maximizing run-on efficiency and found that a 20x reduction in 

sarkosyl concentration preserved nuclear intactness, with only a 20% reduction in run-on 

efficiency (Extended Data Fig. 3a-b). To maximize the nascent RNA capture efficiency, 

we optimized the molecular crowding effect of PEG 8000 and the ratio of Cu(I) to CuAAC 

accelerating ligand BTTAA (Extended Data Fig. 3c). Although a low sarkosyl 

concentration preserves nuclear integrity, it also retains the RNA polymerase complex 
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intact, thereby shielding the propargyl-labeled 3' end of nascent RNA from reacting with 

5'-AzScBc DNA. We investigated nascent RNA release from the RNA polymerase 

complex using common denaturants and found 6 M urea and Trizol to be efficient 

(Extended Data Fig. 3d). However, the denaturant in Trizol hindered CuAAC reaction 

(Extended Data Fig. 3e). Remarkably, urea also offered the added benefit of retaining the 

RNA-DNA conjugate in the aqueous phase during Trizol clean-up to remove PEG 8000 

from the CuAAC reaction (Extended Data Fig. 3f). For reaction clean-up, we assessed 

various methods, finding cellulose membrane to be effective in removing CuAAC 

reagents (Extended Data Fig. 3g), while silica matrix columns performed well in retaining 

RNA and ssDNA (Extended Data Fig. 3h). Subsequently, we evaluated DNA polymerase 

for library preparation and DNA size-selection methods (Extended Data Fig. 3i-j). 

 

Considering the goal of working with single cells, we performed inAGTuC with cell 

numbers between 5 million used in AGTuC and one cell planned for scGRO-seq. 

Specifically, we placed 100 to 1000 intact nuclei in each well of a 96-well plate containing 

Urea. Nascent RNA in each well was barcoded with a unique 5'-AzScBc DNA by CuAAC 

and pooled from the 96 wells, and a sequencing library was prepared as in AGTuC. The 

inAGTuC libraries exhibited similar profiles in gene bodies compared to PRO-seq and 

AGTuC. However, they could not capture the paused peaks at the 5' end of genes and 

enhancers (Extended Data Fig. 4a-c). This observation is consistent with the need for a 

higher sarkosyl concentration for efficient run-on of paused Polymerase complexes4. The 

four inAGTuC libraries correlated well with each other (Extended Data Fig. 4d), with the 

potential to discover more insights with deeper sequencing (Extended Data Fig. 4e-f). 
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Despite only partially capturing nascent RNA from a paused complex, the inAGTuC 

libraries correlated well with AGTuC and PRO-seq (Extended Data Fig. 4g).  

 

To systematically characterize the compatibility of inAGTuC with even fewer cells, we 

prepared four inAGTuC libraries in a 96-well plate, with 12 cells per well (cpw), 120 cpw, 

and 1200 cpw. We also included a 1200 cpw plate, omitting Cu(I) as a negative control. 

Despite lower coverage, the inAGTuC library with 12 cpw (total ~1,000 cells) successfully 

captured the overall nascent RNA profile. It exhibited a good correlation with 120 cpw 

(total ~10,000 cells) and 1200 cpw (total ~100,000 cells) (Extended Data Fig. 5a-c).  

 

3’-(O-Propargyl)-Nucleotide synthesis 

For this study, several CuAAC-compatible nucleotide analogs modified with azide or 

alkyne functionalities were evaluated. Ultimately, 3'-(O-Propargyl)-NTPs were selected 

for three main reasons: 

a) These analogs lack 3’ hydroxyl groups, making them chain-terminating and 

enabling single-nucleotide resolution of the 3’-end of nascent RNA. 

b) The CuAAC reaction produces a compact junction due to the presence of a 

single carbon bond between the sugar group of the nucleotide and the propargyl 

group at the 3’-end position. 

c) They are relatively cost-effective compared to biotin-modified nucleotides 

commonly used in PRO-seq. 
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3'-(O-Propargyl)-ATP (NU-945) was offered by Jena Biosciences. To complete the set, 

custom synthesis requests were made for 3'-(O-Propargyl)-CTP (NU-947), 3'-(O-

Propargyl)-GTP (NU-946), and 3'-(O-Propargyl)-UTP (NU-948), all of which are now 

available for purchase from Jena Biosciences. 

 

Single-cell barcoded DNA adaptors 

Over the course of scGRO-seq development, we synthesized three sets of 96 5’-AzScBc 

DNA from GeneLink. Each design had four components: 5’ azide at the 5’ end, single-cell 

barcode sequence, unique molecular index (UMI), and PCR handle. The 5’ azide 

modification was obtained as described before5. Briefly, an oligonucleotide with 5’ Iodo-

dT was synthesized on solid support by phosphoramidite oligo synthesis, and the Iodo 

group was replaced with azide by reacting with sodium azide at 60°C for 1 hour.  

 

During scGRO-seq development, three sets of 96 5’-AzScBc DNA were synthesized by 

GeneLink. Each design encompassed four components: a 5’ azide positioned at the 5’ 

terminus, a 10-12 nucleotide sequence for the single-cell barcode, a 4-6 nucleotide 

sequence for unique molecular index (UMI), and a PCR handle. The 5’ azide modification 

was obtained following a previously described method5. Specifically, an oligonucleotide 

containing 5’ Iodo-dT was synthesized via solid-support phosphoramidite oligo synthesis, 

and subsequent replacement of the Iodo group with an azide group was achieved through 

a reaction with sodium azide at 60°C for 1 hour. The sequences of three different 5’-

AzScBc DNA are listed below: 
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 Sequence Len

gth 

Cell 

Barcode 

UMI 

1 5’-[azide-

T]JJJJJJJJJJNNNNNNGATCGTCGGACTGTAGAACTCT

GAAC-3’ 

43 nt 10 nt 6 nt 

2 5’-[azide-

T]NNNNJJJJJJJJJJJJGATCGTCGGACTGTAGAACTCTG

CGGCCGTGCTCGTTTTCGAGCACGGCCGCAGAGTTC

TACAGTCCGA-3’ 

86 nt 12 nt 4 nt 

3 5’-[azide-

T]ACAGGNNNNNJJJJJJJJJJAGATCGGAAGAGCGTCG

TGTAG[SpC3]-3’ 

43 nt 10 nt 5 nt 

 

Js represent unique cell barcodes, Ns represent Unique molecular index, and SpC3 

denotes a three-carbon spacer.  

The hairpin structure of the 86-nucleotide 5’-AzScBc DNA is formed through self-folding. 

The reverse transcription process is initiated using the 3’ end of the oligo, which serves 

as a built-in primer. 
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The design ensures a 1:1 stoichiometry between the PCR handle and RT primer, 

minimizing mispriming and non-specific amplification during reverse transcription. The 

folded hairpin structure also generates a restriction site for the Eag I enzyme, which is 

digested before PCR amplification. 

 

Undesired extension by reverse transcriptase is effectively prevented by a three-carbon 

spacer at the 3’ end of the 43-nucleotide 5’-AzScBc DNA6. This spacer harbors a 5-nt 

ACAGG sequence after the azide-dT at its 5’ end. During RT, the extension of primers 

annealing to unclicked 5’-AzScBc, the addition of non-templated CCC, and template 

switching oligo (TSO) incorporation results in undesired cDNA that are preferred 

substrates for PCR amplification. If unaddressed, these amplicons can overwhelm the 

sequencing library. The ACAGG sequence plays a critical role in depleting these PCR 

amplicons. 

 

 

 

A previously described method named DASH uses recombinant Cas9 protein and gRNA 

complex to digest and deplete undesired dsDNA7. The ACAGG sequence is necessary 

to generate a guide RNA target sequence in the undesired PCR amplicons (underlined 

sequence). In PCR amplicons formed between nascent RNA and 5’-AzScBc DNA, the 

complementation of gRNA is interrupted by the presence of a nascent RNA sequence, 

making the desired products incompatible with DASH. AGG serves as the protospacer 
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adjacent motif (PAM). 

 

Cell line 

V6.5 mouse embryonic stem cells (mESCs) used in this study were established by 

Jaenisch laboratory (Whitehead Institute, Massachusetts Institute of Technology) from 

the inner cell mass (ICM) of a 3.5-day old mouse embryo from a C57BL/6(F) X 129/sv(M) 

cross.  

 

Cell Culture 

mESCs were cultured in Dulbecco’s Modified Eagle Medium (Gibco, 11995), plus 10% 

fetal bovine serum (HyClone, SH30070.03), supplemented with 1x penicillin/streptomycin 

(Gibco, 15140), 1x non-essential amino acids (Gibco, 1140), 1x L-Glutamine (Gibco, 

25030), 1x β-mercaptoethanol (Sigma, M6250), and 1000 U/ml leukemia inhibitory factor 

(Sigma, ESG1107) on tissue culture-treated 10 cm plates (Corning, CLS430167) pre-

coated with 0.2% gelatin (Sigma, G1890) prepared in phosphate-buffered saline (Fisher, 

MT21031CV). Cells were grown at 37°C and 5% CO2 and passed with Hepes buffered 

saline solution (Lonza, CC-5024) and 0.25% Trypsin-EDTA (Gibco, 25200) when 70% 

confluency was reached (every two days). 

 

Sample preparation 

Tissue culture cells were prepared for nuclear run-on reaction by either nuclei isolation or 

cell permeabilization as described before2. All centrifugation steps were performed at 

1000 g for 5 min. Cells were harvested by dumping the tissue culture media, rinsing with 
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PBS, and placing the plates on ice. Cells were scraped while still on ice. The harvest was 

collected into a 15 ml conical tube and centrifuged at 1000 g for 5 min. 

 

For nuclei isolation, the pellet was resuspended in ice-cold douncing buffer (10 mM Tris-

Cl pH 7.4, 300 mM Sucrose, 3 mM CaCl2, 2 mM MgCl2, 0.1 % Triton X-100, 0.5 mM DTT, 

0.1x Halt Protease inhibitor, and 0.02 U/ul RNase inhibitor) and transferred to a 7 ml 

dounce homogenizer (Wheaton, 357542). After incubation on ice for 5 minutes, the cells 

were dounced 25 times with a tight pestle, transferred back to the 15 ml conical tube, and 

centrifuged to pellet the nuclei. The pellet was washed twice in douncing buffer.  

 

For cell permeabilization, the pellet was resuspended in ice-cold permeabilization buffer 

(10 mM Tris-Cl pH 7.4, 300 mM Sucrose, 10 mM KCl, 5 mM MgCl2, 1 mM EGTA, 0.05 % 

Tween-20, 0.1% NP-40, 0.5 mM DTT, 0.1x Halt Protease inhibitor, and 0.02 U/ul RNase 

inhibitor). After incubation on ice for 5 minutes, the cells were centrifuged to pellet the 

nuclei. The pellet was washed twice in the permeabilization buffer. 

 

The washed pellet was resuspended in storage buffer (10 mM Tris-Cl pH 8.0,  5% 

Glycerol, 5 mM MgCl2, 0.1 mM EDTA, 5 mM DTT, 1x Halt Protease inhibitor, 0.2 U/ul 

RNase inhibitor) at a concentration of 5x106 nuclei per 50 ul of storage buffer, flash-frozen 

in liquid nitrogen and stored at -80°C. The nuclei and permeabilized cells in the storage 

buffer can be stored for up to 5 years at -80°C, making them readily available for nuclear 

run-on experiments. 
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Nuclear Run-on with 3’-O-Propargyl Nucleotides 

50 ul of 2X nuclear run-on buffer (20 mM Tris-Cl pH 8.0, 10 mM MgCl2, 400 mM KCl, 50 

uM 3'-(O-Propargyl)-ATP, 50 uM 3'-(O-Propargyl)-CTP, 50 uM 3'-(O-Propargyl)-GTP, and 

50 uM 3'-(O-Propargyl)-UTP, 0.05% Sarkosyl, 1 mM DTT, 2X Halt Protease inhibitor, and 

0.4 U/ul RNase inhibitor) was prepared per sample and heated to 37°C. Once thawed 

from -80°C, permeabilized cells or nuclei were added to the heated tube containing 

nuclear run-on buffer and incubated for 5 min at 37°C with gentle tapping at the incubation 

midpoint. Permeabilized cells or nuclei were centrifuged at 500 g for 2 min at 4°C, and 

the supernatant was aspirated off. The pellet was washed three times in 150 ul 

Resuspension buffer (5 mM Tris-Cl pH 8.0, 2.5 % Glycerol, 2.5 mM MgAc2, 0.05 mM 

EDTA, 1.25 mM MgCl2, 60 mM KCl, 3 mM DTT, 0.2X Halt Protease inhibitor, and 0.2 U/ul 

RNase inhibitor). After the final wash, the permeabilized cells or nuclei were resuspended 

in a 2 ml Resuspension buffer and passed through a 35 µm nylon mesh (Falcon, 352235). 

 

Single-cell/nuclei sorting 

96-well plates with 2.5 ul 8 M Urea are prepared for single-cell/nuclei sorting using a multi-

channel or 96-well pipettor (Avidien MicroPro 300, 30835029). Single cells/nuclei 

populations characterized by the forward and side scattering are sorted into the 96-well 

plate containing Urea by fluorescent activated cell sorter (FACS). The sorted plates can 

be used in CuAAC directly or sealed with aluminum foil or a plastic seal and stored at -

80°C. 

 

CuAAC 
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A 96-well plate containing 5’-AzScBc DNA with a unique cell barcode in each well 

previously synthesized and aliquoted is thawed from -80°C. Sodium Ascorbate, PEG 

8000, CuSO4, and accelerating ligand BTTAA were prepared and dispensed into each 

well of the 96-well plate containing 5’-AzScBc DNA. The CuAAC reaction mix was 

dispensed into individual wells containing single cells in Urea using a multi-channel or 96-

well pipette. The final concentration of CuAAC reaction in each well is 30 nM 5’-AzScBc 

DNA, 800 mM Sodium Ascorbate, 15% PEG 8000, 1 mM CuSO4, and 5 mM BTTAA, and 

2.66 M Urea in a 7.5 ul volume. The 96-well plates are sealed, vortexed for 10 seconds 

in an orbital vortexer, and centrifuged for 1 min at 500 g before incubation for 2 hours at 

50°C. 

 

After incubation, the CuAAC reaction was quenched with 5 mM EDTA and pooled from 

96 wells into a 1.5 ml Eppendorf tube. PEG 8000 was removed with Trizol. The remaining 

CuAAC reagents (Sodium Ascorbate, CuSO4, and mM BTTAA) were removed with a 

centrifugal filter with 3 kDa cellulose membrane (Amicon, 2020-04). The purified RNA 

was fragmented with 10 mM ZnCl2 for 5 min at 65°C. 

 

Reverse transcription through the triazole link and pre-amplification 

Reverse transcription of the clicked RNA-DNA conjugate was performed with highly 

processive Moloney Murine Leukemia Virus (M-MuLV) Reverse Transcriptase lacking 

RNase H activity but capable of RNA-dependent and DNA-dependent polymerase 

activity, non-templated addition and template switching (Thermo Fisher, EP0751). RT 

reaction (1x RT buffer, 0.5 mM dNTPs, 0.8 U/ul RNase inhibitor, 16% PEG 8000, 1 uM 
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RT primer (except for hairpin forming 5’-AzScBc DNA), and 1 um TSO) was incubated 

with RNA-DNA conjugate for 2 hours at 50°C. The cDNA was size-selected in 10% 

denaturing polyacrylamide gel electrophoresis (PAGE) away from the unclicked 5’-

AzScBc DNA and empty cDNA formed between the 5’-AzScBc DNA and TSO.  

 

The purified cDNA was PCR amplified for 6 cycles to generate dsDNA with NEBNext 

Ultra II Q5 High-Fidelity 2X Master Mix (NEB, M0544) and 0.5 uM PCR primers with 

unique dual index using the following PCR cycles: 

  

  Steps Denature 

(98°C) 

Anneal 

(60°C) 

Extension 

(72°C) 

Storage 

(4°C) 

  Initial 

denaturation 

30 sec - - - 

  

6 cycles 

Denaturation 10 sec - - - 

Anneal   20 sec - - 

Extension     30 sec   

  Final extension - - 2 min - 

  Storage - - - ∞ 

 

Removal of empty adaptors using DASH 

The dsDNA from the pre-amplification of cDNA was subjected to DASH to remove the 

undesired amplicons formed by RT of unclicked 5’-AzScBc DNA and TSO, as described 
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before. Cas9-gRNA complex (6.6 uM S. pyogenes Cas9 Nuclease (NEB, M0386T), 20 

uM gRNA, 1x NEBuffer r3.1, and Nuclease-Free Duplex Buffer (IDT, 11-05-01-04)) was 

prepared by incubation for 15 min at 25°C. The incubated complex was added to the 

cleaned PCR reaction and incubated for 1 hour at 37°C. 

 

PCR amplification and NGS 

The DASHed library was PCR amplified with NEBNext Ultra II Q5 High-Fidelity 2X Master 

Mix (NEB, M0544) and 0.5 uM PCR primers with unique dual index using the two-step 

PCR cycles: 

  

  Steps Denature 

(98°C) 

Anneal 

(60°C) 

Extension 

(72°C) 

Storage 

(4°C) 

  Initial 

denaturation 

30 sec - - - 

  

6 cycles 

Denaturation 10 sec - - - 

Anneal   20 sec - - 

Extension     30 sec   

  Final extension - - 2 min - 

  Storage - - - Forever 

 

The NGS library was sequenced on Illumina NovaSeq SP100 flow-cell with 64 

nucleotides Forward Read, 43 nucleotides Reverse Read, 8 nucleotides Index 1, and 8 

nucleotides Index 2. 
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Alignment & pre-processing 

Adaptor sequences were removed from paired-end fastq files using Cutadapt8. Precisely, 

the Read 1 sequence CCCCTGTCTCTTATACACAT and the Read 2 sequence 

AGATCGGAAGAGCGTCGTGT were trimmed with a maximum error rate of 0.15, 

requiring a minimum overlap of 12 nucleotides between the read and adapter. The 

resulting adapter-trimmed reads demultiplexed using Flexbar9. Cell barcodes and Unique 

Molecular Identifiers (UMIs) were extracted from the 5’ end of Read 1, applying a barcode 

error rate of 0.15 and retaining reads of at least 14 nucleotides in length. The adapter-

clipped and demultiplexed reads were first mapped to the mouse ribosomal genome using 

bowtie210 in --very-sensitive mode. The reads unmapped to the ribosomal genome were 

mapped to the mouse genome (mm10 build) in --very-sensitive mode. After mapping, 

duplicate reads were identified and removed utilizing UMI and mapping coordinates with 

UMI-tools11. 

 

Estimation of capture efficiency 

The average capture efficiency of scGRO-seq was estimated to be approximately 10% 

by two methods. First, we used data in the intron seqFISH study12, which quantified the 

abundance of 34 introns by single-molecule fluorescent in-situ hybridization (smFISH). 

Based on the slope of the line of best fit between data from smFISH and intron seqFISH, 

the detection efficiency of intron seqFISH was estimated to be 44%. When scGRO-seq 

was compared with intron seqFISH, the detection efficiency of scGRO-seq was 23% of 
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intron seqFISH. Based on these two detection efficiencies, the estimated capture 

efficiency of scGRO-seq is ~10% (23% of 44% is approximately 10%). 

 

For a second independent estimate, we used a set of studies that quantified the number 

of actively transcribing RNA polymerases13,14. In these experiments, cells trapped in 

agarose were permeabilized, RNA was digested, and the RNA polymerases were allowed 

to incorporate 32P uridine triphosphate. The quantification of total 32P uridine incorporation 

and the determination of the average length of extended transcripts indicated that the 

average number of RNA polymerase II in Hela (human cervical cancer) cells is ~65,000. 

We found that 20% of the transcriptionally engaged RNA polymerase II are present in a 

paused state around the promoter-proximal and polyadenylation sites, which are 

undetected by nuclear run-on reaction in the absence of a high concentration of ionic 

detergent4, such as scGRO-seq. Excluding the paused regions, scGRO-seq captured 

1,735 transcripts on average per cell in the gene-bodies. Further accounting for the 14% 

bigger human genome and, more importantly, a mean 2.2-fold increase in transcription in 

cancer cells15, the estimated number of discoverable transcribing RNA polymerase II 

molecules in gene bodies of a mouse cell is in the range of ~20,000. 1,735 transcripts per 

cell results in ~10% capture efficiency. 

 

Enhancer annotation 

Active transcription regulatory elements (TREs) in mESCs were identified with PRO-seq 

data using dREG16. Further filtering of the dREG carried out to eliminate TREs within or 

proximal to 1500 bp of the RefSeq annotated genes (n = 23,980) identified 68,299 high-
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confidence TREs. The remaining TREs within 500 bp of each other were combined, 

resulting in the final list of 12,542 enhancers. In order to capture nascent RNA derived 

from elongating RNA polymerases at these enhancers, the TREs were extended at least 

1500 bp from the transcription start site (TSS) in both directions. The overlapping 

enhancers after extension were stitched together. 

 

Evidence of bursting 

Transcriptional bursting was examined de novo using scGRO-seq data by measuring two 

parameters - the multiplicity of RNA polymerases and the distance between the RNA 

polymerases. The bursting model suggests that transcription occurs in short bursts 

punctuated by long silent periods, resulting in "on" and "off" states. The alternative model 

is the relatively uniform transcription initiation by primarily solitary RNA polymerase. We 

expected two observations under the bursting model. 

 

First, we expected a higher incidence of more than one RNA polymerase per burst and a 

concurrent depletion of single RNA polymerases. To test the evidence of bursting, we 

selected genes longer than 11  kb (n = 13,564) and trimmed 0.5 kb regions from the 

gene's 5’ and 3’ ends that are known to harbor paused polymerases. With an average 

transcription rate of 2.5 kb/min, the remaining 10 kb region resulted in an observation 

window of four minutes. Based on the evidence of monoallelic transcription described in 

the main text and a short observation window of four minutes, we assigned all signals for 

a gene in individual cells to one allele. We quantified the observed incidence of zero, one 

(singlets), and more than one RNA polymerase (multiplets) per allele. The vast majority 
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of alleles had zero polymerase. To calculate the expected incidences of RNA 

Polymerases under the non-bursting model, we permuted the cell identity of scGRO-seq 

reads 200 times without changing the read positions. The permutation breaks the 

bursting-mediated association between RNA polymerases and mimics the RNA 

polymerases distribution under the non-bursting model. We quantified the permuted 

incidences of zero, singlets, and multiplets. 

Second, if more than one RNA polymerase is observed in the burst window, either due to 

transcriptional bursting or random chance, we expected the transcription bursting model 

would result in more closely spaced molecules than expected by the random chance. We 

took all multiplets in observed or permuted data and calculated the distance between 

RNA polymerase molecules within each pair. We binned the distances in 50 bp bins and 

calculated the ratio of RNA polymerase pairs between the observed and permuted data. 

 

Burst kinetics 

Genes over 11 kb (n = 13,564) were selected for studying transcriptional bursting kinetics, 

and 500 nt regions at both ends known to harbor paused polymerases were truncated. In 

cases where genes exceeded 10 kb after trimming, they were shortened to 10 kb starting 

from the gene's initiation site. With an average transcription rate of 2.5 kb/min, this 10 kb 

burst window served an average burst duration of 4 minutes. The calculation of burst size 

and burst frequency proceeded as follows: 

Burst Size: For each gene, the number of cells with at least one read within the 10 kb 

burst window (number of bursts) was identified, and then the average reads per burst was 

computed. If a consistent single read per burst was observed, that gene's burst size was 
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set to 1. However, if the average burst size was 1.2, the residual burst above 1 indicated 

a higher burst size. Accounting for the 10% capture efficiency, where the likelihood of 

capturing paired reads within a burst window is 1%, the residual burst was proportionally 

adjusted by the capture efficiency.  

 

 

Burst Frequency: For each gene, burst frequency was determined as the number of 

bursts per allele (two alleles in autosomal and one in sex chromosomes) per transcription 

time. The transcription time was calculated as the duration needed to traverse the 10 kb 

burst window with a uniform transcription rate of 2.5 kb/min, translating to four minutes. 

The calculated burst frequency was normalized by capture efficiency, taking the burst 

size into account. While burst events with a larger burst size like ten would be consistently 

detected even with 10% capture efficiency, normalization was applied for cases where a 

burst size like four would result in a 60% false negative rate, indicating a non-existent 

burst despite active bursting. Thus, burst frequency normalization was scaled by burst 

size to ensure accurate quantification. 

 

 

Genes with core promoter elements like TATA and Initiator sequences were retrieved 

from http://epd.vital-it.ch17. Genes containing a pause button, a sequence associated with 

promoter-proximal paused RNA polymerase, were recovered from the CoPRO dataset18. 

 

Simulation of idealized burst kinetics 

Burst size   =  𝟏 +  
𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒓𝒆𝒂𝒅𝒔 𝒑𝒆𝒓 𝒃𝒖𝒓𝒔𝒕 − 𝟏

𝑪𝒂𝒑𝒕𝒖𝒓𝒆 𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚
 

Burst frequency   =  
𝑵𝒃𝒖𝒓𝒔𝒕𝒔 / 𝑵𝒂𝒍𝒍𝒆𝒍𝒆𝒔 / 𝒕𝒓𝒂𝒏𝒔𝒄𝒓𝒊𝒑𝒕𝒊𝒐𝒏 𝒕𝒊𝒎𝒆

𝒎𝒊𝒏𝒊𝒎𝒖𝒎(𝒃𝒖𝒓𝒔𝒕 𝒔𝒊𝒛𝒆 ∗ 𝒄𝒂𝒑𝒕𝒖𝒓𝒆 𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚,   𝟏)
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We simulated read counts for populations of single cells to evaluate the performance of 

our estimators for burst rate and size. In the first simulation, we randomly generated the 

true burst size (Tsize) for all human genes from a normal distribution (mean = 2, standard 

deviation = 3). Similarly, we generated true burst rates (Trate) for all human genes from a 

normal distribution (mean = 1, standard deviation = 1). Tsize less than 1 was corrected to 

1, and Trate less than 0.1 burst/hour was corrected to 0.1. These parameters were used 

to simulate reads per gene per cell as follows: 

1. For each cell and each gene, sample from a Poisson distribution with rate 

parameter λ = Trate. 

2. Scale the sampled burst by Tsize and round to the nearest integer. 

3. After generating molecule counts for all genes and all cells, randomly subsample 

to a specified level (e.g., 10% sampling efficiency) without replacement. 

In the second simulation, Tsize and Trate were taken from our genome-wide estimates 

described in Fig. 2, and reads per gene per cell were generated similarly. Simulations 

were performed ten times to ensure consistent results. 

 

Cell-cycle analysis 

Three sets of transcriptionally characterized genes were used to characterize the cell-

cycle phase in individual cells. Transcription of 68 replication-dependent histone genes19 

on chr3, chr6, chr11, and chr13 were used to determine the S phase collectively. 

Transcription of four genes (Orc1, Ccne1, Ccne2, and Mcm6) were used to assign G1/S 

phase and six genes (Wee1, Cdk1, Ccnf, Nusap1, Aurka, Ccna2) were used to assign 

G2/M phase20. Cells with more than a read in one of the genes or reads in more than one 
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gene were hierarchically clustered, which revealed three major clusters of the cell-cycle 

phase-specific transcription pattern. The other three smaller clusters without distinct 

transcription patterns were not considered for downstream analyses. 

 

Gene-Gene co-transcription 

The co-transcription of genes was determined by two criteria: correlation and permutation. 

scGRO-seq reads were collected from up to the first 10 kb of genes after 500 bp regions 

at both ends were trimmed (n = 15,666). The genes by cells expression matrix was 

binarized. For the correlation approach, pairwise correlation was performed for all gene 

pairs, and the p-value was adjusted for multiple hypothesis correction using the 

Benjamini-Hochberg (BH) method.  

 

Permutation was performed by shuffling the cell IDs of reads while maintaining their gene 

assignments. The permutation method accounts for several unknown and known biases, 

such as read depth per cell. The observed and permuted co-transcription frequencies of 

gene pairs were calculated. The empirical p-value for a gene pair was determined by 

counting the incidence of equal or higher co-transcription frequency in 1000 permutations 

compared to the observed co-transcription frequency.  

 

Gene pairs with correlation coefficients of greater than 0.1 and adjusted p-values of less 

than 0.05 from the correlation approach, and an empirical p-value of less than 0.05 from 

the permutation method were considered co-transcribed. A network of pairwise co-
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transcribed genes was created using the Leiden algorithm, and the modules were 

selected for gene-ontology analyses using the clusterProfiler R package. 

 

Enhancer-Gene co-transcription 

Enhancer-gene co-transcription was determined following the logic of gene-gene co-

transcription, substituting genes on one arm with enhancers. scGRO-seq reads were 

collected from up to the first 10 kb of genes after 500 bp regions at both ends were 

trimmed, and from at least a 3 kb region around enhancers (1,500 bp sense and 1,500 

bp anti-sense) after a 500 bp region around the TSS was removed to avoid paused 

polymerases. Strand-specific reads on either side of the enhancer TSS were combined 

to determine enhancer expression. The features (genes + enhancers) by cell expression 

matrix was binarized, and the co-transcribed enhancer-gene pairs were determined using 

the correlation and permutation methods, similar to the approach used in the gene-gene 

co-transcription calculation. Enhancer-gene pairs only from the same chromosomes were 

retained for downstream analyses. We also included non-overlapping super-enhancers 

identified in mESCs21.  

 

Enhancers of pluripotency factors  

Validated enhancers associated with pluripotency transcription factors Oct4 (Pou5f1), 

Sox2, Nanog, and Klf4 were collected from numerous studies22–26. To define time bins 

within genes, genes were divided into 5 kb bins (two minutes bins calculated using the 

2.5 kb/min constant transcription rate of elongating RNA polymerases) in the sense and 

antisense direction until the end of the transcription wave called by groHMM27, or they 
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overlapped bins from other genes. For enhancers, TSS was first determined based on 

the strongest Oct4, Sox2, and Nanog chromatin immunoprecipitation and sequencing 

(ChIP-seq) peaks. The precise position was determined by evaluating the divergent 

transcription around them. The reads from corresponding bins in sense and antisense 

directions were combined. 

 

CRISPR-validates SEs 

A set of validated SEs and their target genes were used from a previously published 

study28. SEs in gene introns or associated with miRNA were excluded due to the 

ambiguity in assigning reads and short gene length, respectively. For the time bin 

analyses, genes and SEs were divided into four 5 kb bins (two minutes with the 2.5 kb/min 

constant transcription rate of elongating polymerases) in the sense and antisense 

direction, limiting the analyses to the first 20 kb. Using a 20 kb region in this analysis 

yields four 5 kb bins. TSS was first determined based on the strongest Oct4, Sox2, and 

Nanog chromatin immunoprecipitation and sequencing peaks, and precise position was 

determined by evaluating the divergent transcription around them. The reads from 

corresponding bins in sense and antisense directions were combined. The scrambled 

random pairs in SE-gene time bin analysis represent the co-transcribed bins between 

SEs and genes that are not the verified pairs. 

 

External data 

Various data types were analyzed, compared, and benchmarked against this study. PRO-

seq libraries from (GEO: GSE169044) were prepared with the same cells used for 
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scGRO-seq under identical conditions29. Intron seqFISH data on mESCs was 

downloaded from Table S1 of a published study12. The genes by cells matrix was 

binarized, and burst frequency was calculated assuming the signal in each gene comes 

from a burst equivalent to the 10 kb region used in scGRO-seq, given the probes were 

designed against the introns at the 5′ regions of genes. mESCs scRNA-seq was used 

from a previous study30 and the burst kinetics was downloaded from 

41586_2018_836_MOESM5_ESM.xlsx file associated with this study.  

 

Data availability 

Sequencing files for scGRO-seq, inAGTuC, and AGTuC experiments are deposited in 

NCBI’s Gene Expression Omnibus and are accessible through GEO Series accession 

number GEO: GSE242176.  

 

Code availability 

The codes used in this study are available at https://github.com/jaymahat/scGROseq. 
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Tables 

Table 1. Burst sizes and frequencies of transcribed genes using 5 kb or 10 kb burst 

windows. 

Table 2. Gene Set Enrichment Analysis of burst size and burst frequency. 

Table 3. Differentially expressed genes among G1/S, S, and G2/M phases of the cell-

cycle were identified by the “FindAllFeatures” function of Seurat1 (single-cell analysis 

package). 

Table 4. Correlated gene-gene pairs. 

Table 5. Non-redundant Gene Ontology terms and the co-transcribed genes that 

contribute to the GO terms' enrichment. 

Table 6. Correlated enhancer-gene pairs. 
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Fig. 1 | Single-cell nascent RNA sequencing depicts genome-wide nascent transcription. 
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Fig. 1 | Single-cell nascent RNA sequencing depicts genome-wide nascent 

transcription. a, A summary of scGRO-seq workflow. b, Representative genome-

browser screenshots showing scGRO-seq reads at a single-cell resolution, the aggregate 

scGRO-seq level, inAGTuC, PRO-seq, and chromatin marks around a gene (left) and an 

enhancer (right). c, Distribution of scGRO-seq reads per cell (left) and features per cell 

(right). d, Correlation between aggregate scGRO-seq and inAGTuC reads per million 

sequences in the body of genes (left, n = 19,961) and enhancers (right, n = 12,542). e, 

Metagene profiles of scGRO-seq compared with inAGTuC reads per million per 10 base 

pair bins around the TSS of genes (left, n = 19,961) and enhancers (right, n = 12,542). 

The line represents the mean, and the shaded region represents the 95% confidence 

interval. f, Correlation between scGRO-seq and intron seqFISH reads per cell in the body 

of genes used in intron seqFISH (n = 9,666). g, Correlation between scGRO-seq and 

scRNA-seq reads per cell in the body of genes (left, n = 19,961) and the distribution of 

reads in various genomic regions (right).  
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Fig. 2 | Inference of transcription kinetics using scGRO-seq.
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Fig. 2 | Inference of transcription kinetics using scGRO-seq. a, Single-cell view of 

multiplet RNA Polymerase (blue dots) in Npm1 gene. A yellow line connects RNA 

polymerases within the same cell. Randomly sampled 75 single cells containing more 

than one RNA Polymerase are shown on top, followed by the aggregate scGRO-seq, 

PRO-seq, chromatin marks, and transcription-associated factors profiles. b, Ratio of 

observed or permuted burst sizes compared against the average burst sizes from 200 

permutations. c, Ratio of the observed distance between consecutive RNA polymerases 

in the first 10 kb of gene-bodies in individual cells against the permuted data. Distances 

up to 2.5 kb are shown in 50 bp bins. d, Illustration of the model for direct inference of 

burst kinetics from scGRO-seq data. e, Histogram of burst size (left), burst frequency 

(middle), and duration until the next burst (1/burst frequency) (right) for genes that are at 

least 10 kb long (n = 13,142). f, Correlation of burst frequency of genes between scGRO-

seq and intron seqFISH. g, Effect of promoter elements in burst size greater than 1 (left) 

and burst frequency (right). Inr is Initiator, and PB is pause button sequences. h, Role of 

transcription factors in determining burst frequency and burst size. 

 

  



Fig. 3 | Cell-cycle inference by non-polyadenylated replication-dependent histone genes expression.
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Fig. 3 | Cell-cycle inference by non-polyadenylated replication-dependent histone 

genes expression. a, Heatmap of hierarchical clustering of single cells representing 

transcription of G1/S, S, and G2/M specific genes. The dendrogram colors represent cell 

clusters with cell-cycle phase-specific gene transcription. b, Fraction of cells in the three 

primary clusters distinguished by transcription of G1/S, S, and G2/M specific genes. c, 

Distribution of scGRO-seq reads per cell in the three clusters of cells defined by cell-cycle 

phase-specific gene transcription. d, Differentially expressed genes among the three 

clusters of cells defined by transcription of G1/S, S, and G2/M specific genes. The genes 

used to classify cells are denoted in bold and colored. Histones (RD) represent aggregate 

reads from replication-dependent histone genes. 

 

  



Fig. 4 | Coordinated transcription of functionally related genes.
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Fig. 4 | Coordinated transcription of functionally related genes. a, A pair of co-

transcribed genes (top). Reads within the first 10 kb of the gene pair (blue circle) 

expressed in the same cells are connected by a yellow line. Reads beyond the first 10 kb 

(gray circles and lines) are not used in gene-gene correlation. Pair-wise Pearson 

correlation was calculated from a binarized genes by cells matrix. The relationship 

between the Pearson correlation coefficient, uncorrected p-value, and the false discovery 

rate corrected p-value for pairwise gene-gene correlation is shown (bottom). b, Gene 

ontology terms enriched in co-transcribed gene modules. The transcription factor motif 

enriched in the promoters of the genes associated with the GO term and the co-

transcribed genes that contributed to the enrichment of the GO term is shown as an 

example on the right (red line indicating rho > 0.15). A complete list of GO terms and the 

co-transcribed genes contributing to the enrichment of the GO terms is provided in Table 

5. c, Correlation of co-transcription of significantly co-transcribed gene pairs (n = 164,380) 

between scGRO-seq and intron seqFISH. Axes represent the fraction of cells in which a 

gene pair is co-transcribed. 

 

  



Fig. 5 | Spatial and temporal coordination between genes and enhancers.
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Fig. 5 | Spatial and temporal coordination between genes and enhancers. a, 

Distance between correlated and non-correlated enhancer-gene pairs within 2.5 Mb of 

each other. b, Co-transcription between pluripotency genes (filled blue arrows indicate 

sense gene bins, empty blue arrows indicate antisense gene bins) and their enhancers 

(represented by green arrows, and the arrow directions indicate sense and antisense 

directions). Correlated full-length enhancer-gene pairs (Sox2 and Nanog) are shown with 

purple distance bars. For finer time resolution correlation, features are extended up to the 

end of the transcription signal and divided into 5 kb bins. Correlated bins are represented 

by a red arch, except for Sox2 and its distal enhancer bins, which are shown in different 

colors for visual aid. c, Co-transcription between the Sall1 gene and its CRISPR-verified 

SE. Correlated SE-gene bins are denoted by arches, d, Summary of correlated bin 

positions in CRISPR-verified SE-gene pairs. Scrambled random pairs serve as a control. 
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Extended Data Fig. 1 | click-chemistry mediated nascent RNA conjugation to single-stranded DNA and optimization of reverse 
transcription. 
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Extended Data Fig. 1 | click-chemistry mediated nascent RNA conjugation to 

single-stranded DNA and optimization of reverse transcription. a, Click-chemistry 

compatible nucleotides tested in AGTuC development. A few nucleotide triphosphates 

were custom synthesized or sourced with few properties in mind - smaller size, chain 

termination ability, and the possibility of incorporation by native RNA polymerases. b, 

Structure of the triazole linkage formed by CuAAC between the nascent-RNA terminally 

labeled with 3’-(O-Propargyl)-NTPs and the azide-labeled DNA (top left), the linkage 

formed by SPAAC between the nascent-RNA terminally labeled with 3’-Azido-3’-dNTPs 

and DBCO DNA (right). The phosphodiester linkage in a native oligonucleotide is shown 

for comparison (bottom left). c, Incorporation efficiency of 3’-(O-Propargyl)-ATP or 3’-

Azido-3’-dATP by native RNA polymerase in nuclear run-on reaction. The propargyl or 

azide labeled nascent RNA is clicked with Cy5 via CuAAC (Azide-Cy5 or Alkyne-Cy5) or 

SPAAC (DBCO-Cy5), resolved in a denaturing polyacrylamide gel electrophoresis 

(PAGE), and quantified by measuring the Cy5 fluorescent from the gel image. The blue 

dotted line represents the gel region that was quantified. d, Relative quantification of 

reverse transcription (RT) efficiency of two commercial enzymes traversing through the 

triazole link formed between the alkyne-labeled RNA and azide-labeled DNA by CuAAC. 

RT was performed in the presence of either native dCTP or radioisotope a-32P dCTP, and 

the RT reaction was resolved in denaturing PAGE and imaged sequentially for nucleic 

acid signal (top gel) and radioisotope signal (bottom gel). e, Quantification of aborted 

intermediate and completed desired products (RT through triazole and TSO used) formed 

during the one hour or three hours of RT using TSO with terminal Locked-Nucleic-Acid-

Guanosine (LG) or 2’-Fluoro-Guanosine (FG). f, Confirmation and relative quantification 



of CuAAC, RT, and PCR of clicked product formed between the alkyne-labeled RNA and 

azide-labeled DNA by three commercial Reverse transcriptase enzymes. Note: The blue 

bar, line, or border represents the “winner” condition. 

 

  



a

e

db

Extended Data Fig. 2 | Comparison between AGTuC and PRO-seq.
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Extended Data Fig. 2 | Comparison between AGTuC and PRO-seq. a, Representative 

genome-browser screenshots with two replicates of AGTuC and PRO-seq showing a 

region in chromosome 15 (left) and a region in chromosome 3 containing the Sox2 gene 

and its distal enhancer (right) of the mouse genome (mm10). b, Correlation between 

AGTuC and PRO-seq reads per million sequences in gene bodies (left, n = 19,961) and 

enhancers (right, n = 12,542). c, Metagene profiles of AGTuC and PRO-seq reads per 

million per 10 base pair bins around the TSS of genes (left, n = 19,961) and enhancers 

(right, n = 12,542). The line represents the mean, and the shaded region represents 95% 

confidence interval. d, Major steps with the approximate time required in AGTuC library 

preparation.  
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Extended Data Fig. 3 | Optimization of intact nuclei run-on reaction and NGS library preparation steps.



Extended Data Fig. 3 | Optimization of intact nuclei run-on reaction and NGS library 

preparation steps. a, Physical appearance of Trypan Blue stained nuclei under 

microscope treated with various sarkosyl concentrations. b, Relative quantification of 

nuclear run-on efficiency with various sarkosyl concentrations. Nascent RNA collected 

after nuclear run-on reaction with either native CTP or click-compatible 3’O-Propargyl-

CTP was clicked with Cy5-azide, resolved in denaturing PAGE, and images for Cy5 

fluorescence. c, Effect of different ratios of CuAAC accelerating ligand BTTAA in CuAAC 

efficiency. RNA-propargyl was clicked with azide-DNA containing Cy5 in the presence of 

various ratios of BTTAA:CuSO4, resolved in denaturing PAGE, and images for Cy5 

fluorescence. d, Relative quantification of denaturing efficiency of commonly used 

denaturing agents to release the nascent RNA from RNA polymerase complex. Intact 

nuclei after run-on with 3’O-Propargyl-NTPs were treated with denaturing agents in the 

presence of azide-labeled beads and CuAAC reagents, allowing nascent RNA to click 

with the beads. Beads were stained with RNA-binding dye and measured for fluorescence 

by FACS. e, Effect of denaturing agent’s presence in CuAAC efficiency. The blue outline 

in the image of denaturing PAGE denotes the click product between the RNA-alkyne and 

azide-DNA. f, Role of urea in the residence of clicked RNA-DNA conjugate in either 

supernatant or interphase of Trizol during the clean-up of CuAAC reaction, as quantified 

by the scintillation count of 32P radioisotope. g, Desalting (removal of CuSO4, BTTAA, 

and sodium ascorbate from CuAAC reaction) efficiency of polymerized dextran and 

cellulose membrane. Fluorescence from Cy5-labeled RNA-DNA conjugate was 

measured in elution fractions from columns packed with polymerized dextran and elution 

from different pore-size cellulose membrane centrifugation tubes with or without PEG 



8000. h, Relative recovery of ssDNA or RNA from phenol:chloroform or silica-based 

matrix column purification. Clicked RNA-DNA conjugate was radioisotope labeled using 

Polynucleotide kinase and γ-32P ATP, and the cleaned reaction was quantified using a 

scintillation counter. i, PCR amplification efficiency of clicked RNA-DNA conjugate using 

different commercial PCR amplification kits. The PCR reaction was resolved in native 

PAGE, stained with SYBR Gold, and quantified using ImageJ software. j, Relative 

recovery of size-selected dsDNA. A mock NGS library (purified PCR product) was 

selected for the desired size using various size-selection methods, and the recovered 

dsDNA was quantified using a dsDNA-specific fluorescence kit (Qubit). Note: The blue 

bar, line, or border represents the “winner” condition. 
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Extended Data Fig. 4 | Benchmarking inAGTuc against AGTuC and PRO-seq.
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Extended Data Fig. 4 | Benchmarking inAGTuc against AGTuC and PRO-seq. a, 

Representative genome-browser screenshots with two replicates of inAGTuC, AGTuC, 

and PRO-seq showing a region in chromosome 8 (left) and a region in chromosome 4 of 

the mouse genome (mm10). b, c, Comparison of inAGTuC metagene profiles with PRO-

seq and AGTuC using reads per million per 10 base pair bins around (b) the TSS of genes 

(n = 19,961) and (c) enhancers (n = 12,542). The line represents the mean, and the 

shaded region represents 95% confidence interval. d, Correlations of inAGTuC reads per 

million sequences in gene bodies (n = 19,961) between the four replicates. e, Distribution 

of reads per well (left) and features per well (right) in four replicates of 96-well plate 

inAGTuC libraries. Each well contains 100 nuclei. f, Relationship between the reads per 

well and the number of features detected per well in four replicates of 96-well plate 

inAGTuC libraries. g, h, Correlation between inAGTuC and AGTuC (two left panels) or 

PRO-seq (two right panels) reads per million sequences in (g) the body of genes (n = 

19,961) and  (h) enhancers (n = 12,542).  
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Extended Data Fig. 5 | Feasibility demonstration of inAGTuC with fewer cells.
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Extended Data Fig. 5 | Feasibility demonstration of inAGTuC with fewer cells. a, 

Representative genome-browser screenshots of inAGTuC library from one 96-well plate 

with each well containing either 12, 120, or 1200 cells per well (cpw) showing two regions 

in chromosome 17 of the mouse genome (mm10). inAGTuC library with 1200 cpw but 

without Cu(I) in the CuAAC reaction (fourth track) and the PRO-seq library (fifth track) 

serve as the negative and positive control, respectively. b, Correlations among 12 cpw, 

120 cpw, and 1200 cpw inAGTuC libraries in the body of genes (n = 19,961). c, 

Distribution of reads per well (top) and genes per well (bottom) in 12 cpw, 120 cpw, and 

1200 cpw inAGTuC libraries. d, Correlations between PRO-seq and 12 cpw, 120 cpw, 

and 1200 cpw inAGTuC libraries in the body of genes (n = 19,961). 

 

  



Extended Data Fig. 6 | scGRO-seq library preparation.

scGRO-seq protocol:

Nuclei isolation
dounce homogenization or lysis of cell membrane

Starting material: 
tissue culture, organs, biopsies (fresh or flash frozen, but not crosslinked) 

Intact nuclear run-on with 3’-(O-Propargyl)-NTPs
Removal of excess 3’-(O-Propargyl)-NTPs

Single nuclei deposition in multi-well plates containing Urea
Cell dispenser, cell sorter, or limiting dilution

CuAAC with single-cell-barcoded-DNA
Automated or manual dispense

Clean- up and Isolation of single-cell barcoded nascent RNA
Enzymatic degradation of non-nascent RNA and excess single-cell-barcoded-DNA (optional)

Fragmentation of RNA
Zinc-chloride or base-hydrolysis

Reverse transcription with template switching oligo

Selection of cDNA
Size-selection or enzymatic degradation

Incorporation of NGS adaptors by PCR pre-amplification

Removal of empty amplicon  by CRISPR
Formed by reverse transcription of excess single-cell-barcoded-DNA incorporating TSO

Final PCR amplification and size-selection 

Paired-end short-read sequencing and data analysis



Extended Data Fig. 6 | scGRO-seq library preparation. Major steps involved in 

scGRO-seq library preparation.  

 

  



Extended Data Fig. 7 | Benchmarking scGRO-seq.
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Extended Data Fig. 7 | Benchmarking scGRO-seq. a, Coefficient of determination (r2) 

between each 96-well plate from scGRO-seq batches that passed the quality-control 

threshold. r2 was calculated from average reads per 96 cells in all genes and enhancers. 

b, Relationship between the number of features detected per cell and the scGRO-seq 

reads per cell (left), or scGRO-seq reads in features per cell (right). c, Correlation between 

scGRO-seq and PRO-seq reads per million sequences in gene bodies (top, n = 19,961) 

and enhancers (bottom, n = 12,542). d, Comparison of metagene profiles between 

scGRO-seq and PRO-seq reads per million per 10 base pair bins around the TSS of 

genes (left, n = 19,961) and enhancers (right, n = 12,542). 
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Extended Data Fig. 8 | Effect of transcription level, gene length and burst duration in transcription burst kinetics.
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Extended Data Fig. 8 | Effect of transcription level, gene length, and burst duration 

in transcription burst kinetics. a, Distribution of distances between consecutive RNA 

polymerases in the first 10 kb of the gene body in single cells compared with distances 

from permuted data (randomized cell ID but unchanged read position, left) or uniform data 

(randomized read position along the gene but unchanged cell ID, right). Distances up to 

2.5 kb are shown. b, Test of our burst kinetics model by simulating burst size and burst 

frequency. c, Correlation between the burst frequency from scGO-seq (left) and intron 

seqFISH (right) with the burst frequency from scRNA-seq. d, Test of our burst kinetics 

model by simulation using inferred burst size and burst frequency. e, Correlation between 

the burst size greater than one and the burst frequency of genes. f, The effect of gene 

length (from 100 bp to 10 kb after trimming 500 bp on either end of the genes) on burst 

size and frequency. g, Correlation between burst frequencies calculated from the burst 

window of either the first 5 kb or the first 10 kb gene bodies. 
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Extended Data Fig. 9 | Co-transcription of genes with shared promoter.
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Extended Data Fig. 9 | Co-transcription of genes with shared promoters. a, Genome-

browser screenshot of the histone locus body in mouse chromosome 13 showing 

transcription of replication-dependent histone genes. b, Network of enriched gene 

ontology terms in co-transcribed genes. A connecting gray line represents at least a 10% 

overlap of genes between the GO terms. The color of the dots represents the p-value, 

and the dot size represents the number of contributing genes in the GO term. 
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Extended Data Fig. 10 | Organization of enhancer-gene co-transcription network.
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Extended Data Fig. 10 | Organization of enhancer-gene co-transcription networks. 

a, Distance between correlated and non-correlated SE-gene pairs within 2.5 Mb of each 

other. b, Co-transcription network of functionally related genes clustered together on the 

same chromosome shown as examples. Red edges between the enhancer-gene pairs 

indicate rho > 0.15, and rho > 0.1 and < 0.15 are shown in gray. c, Co-transcription 

between the Sox2 gene and its distal enhancer (left), and the Nanog gene and its three 

enhancers (right). Green bars represent the annotated SE regions, and the 5 kb bins in 

sense and antisense strands are represented in magenta and yellow-green bars. 
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