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Summary Paragraph

Air pollution contributes to the global burden of disease, with ambient exposure to fine particulate 

matter with diameter smaller than 2.5 micrometres (PM2.5) identified as the fifth-ranking risk factor 

of mortality globally [1]. Racial/ethnic minorities and lower income groups in the USA are at 

a higher risk of death from exposure to PM2.5 [2–5]. Disparities in air pollution exposure among 

population and income groups are known to exist [6–17]. We develop a data platform that links 

demographic data (from US Census bureau and American Community Survey) and PM2.5 data 

[18] across the USA. We analyse the data at the US zip code tabulation area level (N≈32000) 

between 2000 and 2016. We show that areas with higher than average white and Native American 

populations have been consistently exposed to average PM2.5 levels lower than areas with higher 

than average Black, Asian and Hispanic or Latino populations. Areas with low-income groups 

have been consistently exposed to higher average PM2.5 levels than areas with high-income groups 

for the years 2004–2016. Further, disparities in exposure relative to safety standards set by the 

US Environmental Protection Agency [19] and the World Health Organization [20] have been 

increasing over time. This suggests that more targeted PM2.5 reductions are necessary to provide all 

people with similar degree of protection from environmental hazards. Our study is observational 

and cannot provide insight into the drivers of the identified disparities.
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Several studies have reported evidence of statistically significant associations between 

exposure to PM2.5 (fine particles with a mass median aerodynamic diameter of less than 

2.5 μm) and adverse health outcomes [21–34], and it is well documented that racial-ethnic 

minorities and people of low socioeconomic status in the US are at a higher risk of 

death from being exposed to PM2.5 [2–5]. Disparities in air pollution exposure among racial/

ethnic and socioeconomic groups in the US are also known to exist [6–15]. Disparities 

may be represented as either relative or absolute comparisons, where absolute disparities 

are assessed as absolute differences between groups, while relative disparities are scale 

invariant [16]. A recent study showed that absolute disparities in PM2.5 between more and 

less polluted areas in the US have declined substantially between 1981 and 2001 but that 

relative disparities persist [17].

In this paper, we advance this line of work by studying relative disparities across income 

groups (namely income deciles) and racial/ethnic groups for the years 2000 to 2016. Here, 

ethnic groups are defined as those with shared cultural characteristics and racial groups as 

those with physical differences that they consider to be socially significant [35]. The ethnic 

group included in this study is the Hispanic or Latino group, and the racial groups are white, 

Black, Asian and Native American; for ease of reference, the racial groups are referred to 

as white, Black, Asian and Native American throughout the text. Further, we stress that the 

present study is descriptive and is not designed to investigate causal aspects related to race. 

Further novelty of our study includes the investigation of relative disparities relative to safety 

standards (National Ambient Air Quality standard (NAAQS) set by the US Environmental 

Protection Agency (EPA) at 12 μg/m3 [19], and the guideline set by the World Health 

Organization (WHO) at 10 μg/m3 [20]) and their trends over the study period.

Our study’s findings on relative disparities indicate the importance of strong targeted air-

pollution reduction strategies to not only reduce overall air pollution levels but also to 

move closer towards EPA’s aim to provide all people the same degree of protection from 

environmental hazards. Nonetheless, the presented evidence should be interpreted in the 

context of the limitations of the data at hand. Mainly, the PM2.5 concentrations used in 

this study rely on aerosol optical depth (AOD) data (see Methods section). AOD-based 

particulate estimates tend to underestimate pollution at higher levels and overestimate it at 

very low levels. In addition, US Census data is used and is not available for every year 

of the study period (see Methods section), so we have used interpolation techniques for 

parts of the study period and hence our results are subject to the assumptions made in the 

interpolation. Finally, average PM2.5 concentrations across ZCTAs are used, which can mask 

the relationship between income and pollution levels of neighborhoods within large ZCTAs, 

and are subject to more error in cases where substantial within-ZCTA variation in pollution 

occurs.

Disparities among racial/ethnic groups

The US EPA is required to reexamine the NAAQS every five years. In 2012, the EPA set 

the NAAQS for PM2.5 to 12 μg/m3 [19, 36]. On average across the US, we found that PM2.5

concentration levels decreased from 2000 to 2016, where the population-weighted average 
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of PM2.5 has decreased by 40% from the year 2000 (12.6 μg/m3) to 2016 (7.5 μg/m3). 

(video 1 in supplementary material; and Extended Data figure A.1a). We also found that the 

percentage of the population exposed to PM2.5 levels higher than 12 μg/m3 decreased from 

57.3% in 2000 to 4.5% in 2016.

Next, we visualize and examine disparities in air pollution exposure among racial/ethnic 

groups. For each racial/ethnic group (white, Black, Asian, Native American and Hispanic 

or Latino), we construct a map that shows zip code tabulation areas (ZCTAs) where the 

race/ethnicity is overrepresented. In the case of the white population for example, we use the 

white population fraction of the ZCTA population to compute the average white population 

fraction across all ZCTAs (≈ 84.2%). We then set the margin at 84% and only show on 

the map ZCTAs with a white population fraction exceeding this margin. The margins for 

the remaining racial/ethnics groups were computed similarly and are shown in Extended 

Data Figure A.3. For ease of exposition, we present findings for only two groups in the 

main text (white and Black groups in figure 1) and include the other racial/ethnic groups in 

Extended Data Figure A.3 and videos 2 and 3. Figures 1a and 1b show the PM2.5 distributions 

in ZCTAs where the Black and white populations are overrepresented for the years 2000 

and 2016, respectively. We found that ZCTAs where the Black population is overrepresented 

(left map) are dominated by high PM2.5 concentrations relative to those ZCTAs with white 

overrepresentation (right map) in both 2000 and 2016. Furthermore, we see a steeper decline 

in PM2.5 among the latter.

We also compute the population-weighted average PM2.5 concentration for every racial/ethnic 

population (please see Methods) (Extended Data figure A.1b). For all years, we found that 

the Black, Asian and Hispanic or Latino populations experience somewhat similar levels of 

PM2.5 that are higher than those experienced by the white population. In 2016 for example, 

the average PM2.5 concentration for the Black population was 13.7% higher than that of 

the white population and 36.3% higher than that of the Native American population. The 

Native American population was consistently exposed to the lowest levels of PM2.5. Further, 

we illustrate for the year 2016 how the population-weighted PM2.5 average concentration 

changes as ZCTAs become more populated by a certain race/ethnicity (Extended Data figure 

A.1c). We found that as the Black population increases in a ZCTA, the PM2.5 concentration 

consistently increases with a steep incline seen for ZCTAs with more than 85% of their 

population as Black. The trend for the Hispanic or Latino population is similar to that of 

the Black population. The opposite is seen for the white population; PM2.5 concentration 

decreases as density of the white population increases in ZCTAs; a steeper decrease is 

shown for ZCTAs with a white population fraction exceeding 70%. Further, in ZCTAs where 

the population of Native Americans is at least 20%, the average PM2.5 concentration drops 

to below 4 μg/m3. For the Asian population, a very low number of ZCTAs has a population 

density above 60%, so data beyond this point is not representative and not shown.

Disparities among income groups

We next visualize and summarize disparities among income groups. We assign all ZCTAs 

percentile ranks from 1 to 100 based on median household income and categorize them 
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into ten income groups. We designate the lowest and highest three income groups as 

low-income and high-income respectively and then split the US map into two maps – 

ZCTAs defined as low- and high-income (please see Methods). We visualize the PM2.5

concentration distribution on the two maps for 2000 to 2016 (video 4 in supplementary 

material). The map with low-income ZCTAs appears visually to be dominated by an overall 

higher concentration of PM2.5 as compared to the map with high-income ZCTAs especially 

in recent years. We include snapshots of 2000 and 2016 (figure 2). We summarize the 

contents of the maps by computing the population-weighted mean of PM2.5 concentration 

in ZCTAs with the low- and high-income groups (Extended Data figure A.1d); ZCTAs 

with the low-income group are exposed to only slightly higher PM2.5 concentrations for the 

majority of the study period (2004–2016); for example only 4% higher in 2016. Further, we 

isolate the effects of income on the disparities among the racial/ethnic groups in Extended 

Data figures A.1e and A.1f. For the low and high income groups, the PM2.5 concentration 

differences across racial/ethnic groups are similar to those of Extended Data figure A.1b.

Disparities relative to policy standards

We investigate relative disparities in PM2.5 exposure in the context of the current NAAQS 

(12 μg/m3), the guideline set by the WHO (10 μg/m3), and a lower one that may potentially 

be considered in the future (8 μg/m3). To do so, we estimate across the study period the 

proportion of every racial/ethnic group that is exposed to PM2.5 levels higher than one of the 

listed safety standards. A state of equality (or lack of relative disparities) among various 

populations is defined as a state of equal proportions above the chosen safety standard across 

groups.

First, we rank the US ZCTAs from the least to the most dense with respect to every 

racial/ethnic group for each year. For the Black population for example, we use the Black 

population fraction in every ZCTA to split ZCTAs into 100 quantiles (Extended Data figure 

A.4a). The dark blue region on the map representing the ZCTA ranking for the Black 

population contains the ZCTAs with the highest ratio of Black population to total ZCTA 

population, and the light yellow region contains the ZCTAs with the lowest ratio of Black 

population to total ZCTA population. Similarly for the remaining populations, the dark blue 

and light yellow regions on their corresponding maps respectively signify high and low 

proportions of that racial/ethnic group. In figure 3a, we again focus on two groups for ease 

of exposition (Black and white groups are chosen for consistency). We show in the figure 

the ZCTAs with a PM2.5 concentration higher than a threshold of 8 μg/m3 for the year 2000. 

This figure reveals that almost half of the ZCTAs with PM2.5 concentrations above 8 μg/m3 

are where the Black population is concentrated (southern part of the map as indicated by the 

dark blue region on the Black population US map), and the other half is where the white 

population is concentrated (northern part of the map as indicated by the dark blue region 

on the white population US map). We reproduce the same scenario for 2016 (figure 3b) 

and we find that the majority of ZCTAs still above 8 μg/m3 are those with concentrated 

Black population (majority of 2016 map representing the Black population (left) is dark 

blue and the majority of that representing the white population map (right) is light yellow). 

This visualization shows that PM2.5 reductions between 2000 and 2016 have not benefited all 
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areas of the US equally and consequently resulted in an increase in relative disparities to 

air pollution exposure as will be numerically shown later. Additionally, we extend figure 3 

to include the Asian, Native American and Hispanic or Latino populations and present the 

results in Extended Data figures A.4. Here, we used a threshold of 8 μg/m3 for a clearer 

visualization of the disparities. A lower number of ZCTAs is exposed to PM2.5 concentrations 

above 10 and 12 μg/m3, so visualizations at these thresholds are not as clear. Nevertheless, 

the same visualization is repeated for multiple thresholds including 10 and 12 μg/m3 in 

videos 5–8 in Supplementary Material.

Second, we provide numerical summaries of disparities in the proportions of racial/ethnics 

groups exposed to PM2.5 levels above the chosen standard by using the coefficient of 

variation CoV (please see Methods) and present our findings in figure 4. Figure 4 shows 

that 89% of the population was exposed to PM2.5 levels higher than 8 μg/m3 in 2000, 

whereas only 41% in 2016 respectively (solid blue line). However, figure 4 also reveals 

that relative disparities in exposure to PM2.5 levels higher than 8 μg/m3 among racial/ethnic 

groups (solid blue bars) have increased from 2000 to 2016. Such result is in agreement with 

the relative reductions shown in figure 3. Figure 4 also shows the analysis for the thresholds 

T = 10 μg/m3 and T = 12 μg/m3. A consistent trend in disparities over time is seen across 

the different thresholds. Additionally, as expected from our definition of relative disparities, 

as the set threshold increases, relative differences across racial/ethnic groups become more 

pertinent for a given year. In addition to using the easily interpretable CoV, we repeated the 

disparities analysis of figure 4 using the Atkinson and Gini indices, alternative metrics used 

in the literature [7, 37, 38]. These findings are located in Extended Data figure A.5 and are 

similar to those of figure 4.

Discussion

We built a dataset that includes around 32 thousand US ZCTAs with detailed information 

on demographic and pollution data for the period 2000 to 2016. Our study provides a 

transparent and reproducible data science perspective and unique visualizations of the 

exposure to PM2.5 in the US and the associated disparities among racial/ethnic and income 

groups. Our study is descriptive in nature and is not meant to investigate causal aspects 

of PM2.5 reductions and disparities in the US. When possible, we have applied sensitivity 

analyses to confirm our findings. For example, our results were consistent across both urban 

and rural areas of the US (Extended Data figure A.7). In addition, we applied our analyses 

to two independent datasets of predicted PM2.5 levels for the US, and our findings were 

consistent (Extended Data Figure A.8). Nonetheless, our study could be strengthened by 

addressing some caveats.

First, average PM2.5 concentrations across ZCTAs were used. This is an important limitation 

because there could be substantial within-ZCTA variation in pollution. A smaller unit of 

analysis such as a Census block group may have further strengthened our findings, but at 

the cost of higher uncertainty in the estimated levels of PM2.5 for this smaller spatial scale. 

Also, PM2.5 concentrations rely on AOD estimates and are therefore subject to error. The 

authors [18] evaluated the performance of their approach and reported that the estimated 
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PM2.5 were generally consistent with direct ground-based PM2.5. Still, it is important to 

interpret these values with caution. Second, the US Census data used in this study spans 

the years 2000 to 2016 where changes in the US population structure may have occurred. 

In addition to changes in pollution levels, demographic changes may have contributed to 

the findings presented in this paper. To mitigate this challenge, we have recalculated the 

distributions of the populations across the US for every year before computing population 

pollution exposure values but we do not perform tests related to demographic changes 

such as residential sorting. Third, because US Census data is not available for every year 

(see Methods section), we have used interpolation techniques for parts of the study period 

and hence inequalities between years (especially in the earlier years) are subject to the 

assumptions made in the interpolation. Fourth, the coefficient of variation has been used 

frequently in economic applications but the authors are not aware of its application to 

pollution studies. Although the CoV captures our definition of disparities, caution should 

be applied before applying the CoV to other measures of disparities. Researchers widely 

use the Atkinson index but it is a measure that suffers from low interpretability and user 

subjectivity due to its dependence on an inequality aversion parameter set by the user [7, 

37–39]. We have computed the Atkinson index for a full range of values for the inequality 

aversion parameter (Extended Data figure A.6) and the Gini index and compared the results 

to those obtained by the CoV. The implications of using the Atkinson and Gini indices 

on a small set such that of the exposure data (n = 5 for racial/ethnics groups) are not well 

documented in the literature. Nonetheless, similar trends in disparities were seen across the 

three metrics. Finally, determining whether disparities in air pollution have been increasing 

or decreasing is a cumbersome task due to the various units of analysis one can investigate. 

For example, the population-weighted PM2.5 mean is a possible unit of analysis [40], but 

here, our interest in the implications of our findings on pollution-related regulations in 

the US led us to set the unit of analysis as the exposure of populations to PM2.5 levels 

above pollution thresholds in relation to the EPA standard and WHO guideline for PM2.5. 

Additionally, disparities may be defined as an absolute or relative concept [16] and each 

scenario may lead to different interpretations. For example, other studies have reported 

that the pollution decrease tends to be targeted around the dirtiest monitor in counties in 

nonattainment with NAAQS [41] and a related study found that these areas are regions 

within a nonattainment county that are poorer and have a higher share of non-white residents 

[42].

Our findings suggest that future research could explore the underlying drivers of the 

observed disparities and how future national air quality standards could encourage more 

environmental justice friendly attainment. This can help in informing air pollution reduction 

strategies that the EPA must act to simultaneously decrease nationwide PM2.5 concentration 

levels and relative disparities to better address environmental injustice.

Methods

Our dataset includes US zip code tabulation areas (ZCTAs) for 2000 to 2016 (N≈32000). 

For each ZCTA, we obtained demographic and socioeconomic variables from the US Census 

Bureau when available and used interpolation techniques (moving average) to determine 
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those of the missing years. More specifically, for the years 2000 and 2010, we used ZCTA 

estimates from the decennial census. For the period 2001 to 2009, we interpolated the data 

using moving averages for each census variable and for each ZCTA using the ‘ImputeTS’ 

R package. For the period 2011 to 2016, we used the 5 year data from the American 

Community Survey (ACS5). Documentation of all calculations and source data used is 

available in the following github repository: https://github.com/NSAPH/National-Causal-

Analysis/tree/master/Confounders/census. Variables of interest comprised median household 

income, proportions of Native Americans, Asian, white, Black, and Hispanic or Latino 

residents, and population density. For each year, we assigned all ZCTAs percentile ranks 

from 1 to 100 based on median household income and categorized them into ten income 

groups. Throughout the paper we use low-income and high-income to label the lowest three 

and highest three income groups respectively.

We also used a publicly available dataset containing predicted PM2.5 concentration levels 

in the US [18]. The authors [18] estimate ground-level PM2.5 total over North America by 

combining Aerosol Optical Depth (AOD) retrievals from the NASA MODIS, MISR, and 

SeaWIFS instruments with the GEOS-Chem chemical transport model, and subsequently 

calibrated to regional ground-based observations of total mass using Geographically 

Weighted Regression (GWR). The authors evaluated the performance of their approach 

and reported that the estimated PM2.5 concentrations were generally consistent with 

direct ground-based PM2.5 measurements (R2 varying between 0.6 to 0.8). The collocated 

comparison of the trends of population-weighted annual average PM2.5 from their estimates 

and ground-based measurements was highly consistent. They also reported that the accuracy 

of the PM2.5 prediction models was similar for low and high levels of exposure implying 

no large differences in performance between urban and rural areas. For each ZCTA, annual 

averages of PM2.5 were computed. We built one dataset by combining the demographic and 

PM2.5 variables across all US ZCTAs for 2000 to 2016. Our dataset analysis reveals time 

patterns in air pollution across the US and disparities in exposure to air pollution among 

racial/ethnic and income groups. Dynamic videos are used to communicate our findings 

along with plots that summarize and clarify the information embedded in our visualizations.

We first defined a group population-weighted PM2.5 concentration, where a group can be an 

income group such as the first decile, or an ethnic group such as the Hispanic or Latino 

population. In the case of racial/ethnic groups, the population-weighted PM2.5 concentration 

in racial/ethnic group k is given by:

PM2.5k = ∑jPM2.5jpk, j

∑j pk, j
, (1)

where summation occurs over all ZCTAs. pk, j is the number of people in racial group k living 

in the ZCTA j, and PM2.5j is the PM2.5 level in the ZCTA j. In the case of income groups, the 

population-weighted PM2.5 concentration of income group i is:

PM2.5i = ∑j ∈ iPM2.5jpj

∑j ∈ i pj
, (2)
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where summation occurs only over ZCTAs j belonging to the income group i . pj is the total 

population of ZCTA j, and PM2.5j is the PM2.5 level in ZCTA j.

We also compute relative disparities in exposure to PM2.5 among different populations. We 

define a state of equality (or lack of relative disparities) among various populations as a state 

where equal proportions of the various populations are exposed to pollution levels higher 

than a threshold of interest chosen in relation to the EPA standard and WHO guideline for 

PM2.5. To estimate such disparities, we first define an additional PM2.5-related variable q
and use it to quantify the level of disparities in exposure to PM2.5 concentrations among the 

different racial/ethnic groups. The variable q is defined as the percentage of a population 

exposed to PM2.5 levels above a certain threshold T . We can calculate q for specific 

population subgroups. For example, we can compute the percentage of the population in the 

highest income group that is exposed at PM2.5 levels above T = 12 μg/m3, or the percentage of 

a racial/ethnic group, such as Native Americans, exposed to PM2.5 levels above T = 8 μg/m3.

To measure the degree of disparities across racial/ethnic groups in exposure to PM2.5

concentrations above T  for a specific year, we first compute q for every racial/ethnic group. 

We then compute the coefficient of variation (CoV ), defined as also referred to as the 

between group variance:

CoV = V ar q
μ q , (3)

where V ar is the variance of q and μ is the mean of q . CoV  measures the variability of a 

series of numbers independent of the data magnitude, so it captures the variation in q among 

racial/ethnic (or income) groups in a given year relative to the mean exposure levels to 

pollution during that year. The choice of CoV  is supported by its multiple attributes such as 

its independence on ordered social groups nor an inequality aversion parameter [16]. It is 

also easily interpretable and sensitive to large differences from the average.

For example, consider three years Y 1, Y 2 and Y 3, where the percentages of five racial/ethnic 

groups being exposed to PM2.5 levels above a threshold T  are, respectively:

q1 = 11%, 13%, 14%, 15%, 17% q2 = 10%, 12%, 14%, 16%, 18% q3 = 1%, 1.2%, 1.4%, 1.6%, 1.8%

From Y 1 to Y 2, the coefficient of variation increases from CoV 1 = 0.160 to CoV 2 = 0.226, 

which indicates that the variation in exposure to air pollution relative to the mean, and 

equivalently relative disparities among the racial/ethnic groups, increased by a factor of 

1.41. On the other hand, although the pollution levels decreased drastically between Y 2

and Y 3 as can be seen by the different orders of magnitude of q2 and q3, the coefficient 

of variation is unchanged CoV 3 = 0.226  indicating that the relative disparities in exposure 

to air pollution among the racial/ethnic groups is the same between Y 2 and Y 3. These 

examples highlight the power of using CoV  to capture relative variation in the data 

independently of its magnitude. This is very important for our application because the 

level of pollution changes considerably over the years. Further, a state of total equality 

Jbaily et al. Page 8

Nature. Author manuscript; available in PMC 2023 September 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



or absence of disparities would exist when the exposure across all groups is identical; 

for example q4 = 1%, 1%, 1%, 1%, 1% . Because of the preexisting disparities q3 , targeted 

pollution reduction strategies that affect the various groups differently may be required to 

achieve a state of total equality with no disparities.

The outlined procedure of quantifying disparities through CoV  can be applied for any PM2.5

threshold T  and can be repeated for all years to track the evolution of disparities in exposure 

to air pollution among the different racial/ethnic (or income) groups. The computation of 

relative disparities using the CoV  is also supplemented by the use of the Atkinson and Gini 

indices.
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Extended Data

Extended Data Figure A.1. Summary PM2 . 5 metrics across racial/ethnic and income groups:

a, Population-weighted average of PM2.5 decreased by 40% from the year 2000 to 

2016. b, Population-weighted PM2.5 average concentration across the different racial/ethnic 

communities for 2000 to 2016. The PM2.5 concentration across the racial/ethnic communities 

demonstrates that Black and Native American populations live in the most and least polluted 

areas respectively.c, Population-weighted PM2.5 average concentration across racial/ethnic 
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communities as a function of ZCTA racial/ethnic population (%) for 2016. When the 

racial/ethnic population % is equal to 0.2, the red curve includes every ZCTA where the 

Black population is 20% or more, and the blue curve includes every ZCTA where the 

white population is 20% or more. As ZCTA’s Black and Hispanic or Latino populations 

increase, the PM2.5 concentration levels increase. The opposite effect is seen for the white and 

Native American communities. d, Population-weighted PM2.5 average concentration across 

the income groups reveals that the low-income group is exposed to only slightly higher PM2.5

levels than the high-income groups since 2004. e, The population-weighted PM2.5 average 

concentration across the different racial/ethnic communities for 2000 to 2016 that are in 

the low-income group. f, The population-weighted PM2.5 average concentration across the 

different racial/ethnic communities for 2000 to 2016 that are in the high-income group. 

Panels e and f show similar differences in PM2.5 average concentrations across the racial/

ethnic groups as those of panel b.
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Extended Data Figure A.2. Average PM2.5 concentration across the US:

a, Distribution of PM2.5 in 2000. b, Distribution of PM2.5 in 2016. We also include a video 

that shows the change in the distribution of PM2.5 concentration levels in the US from 2000 to 

2016. (video 1).
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Extended Data Figure A.3. Average PM2.5 concentration across ZCTAs where different racial/
ethnic groups are overrepresented:
a, Distribution of PM2.5 across five different maps each showing the ZCTAs where one 

race/ethnicity group is overrepresented for 2000. b, Distribution of PM2.5 across five different 

maps each showing the ZCTAs where one race/ethnicity group is overrepresented for 2016. 

We also include an video that shows the change in the distribution of PM2.5 concentration 

levels across the five maps from 2000 to 2016 (videos 2 and 3).
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Extended Data Figure A.4. Distribution of racial/ethnic populations above a PM2.5 threshold of 
8 μg/m3 for 2000 and 2016:
a, US ZCTAs for each race/ethnicity are ranked based on the ratio of the race/ethnicity 

population to the total ZCTA population. Dark blue indicates fractions close to 1 (ZCTAs 

where the corresponding race/ethnicity most lives), and light yellow indicates fractions close 

to 0 (ZCTAs where the corresponding race/ethnicity least lives). b, US ZCTAs above 8 

μg/m3 in 2000. c, US ZCTAs above 8 μg/m3 in 2016. We also show the distribution of the 
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different racial/ethnic groups across multiple ranges of PM2.5 concentrations for 2000 and 

2016 (videos 5–8).

Extended Data Figure A.5. Supplementary measures of relative disparities in exposure to PM2.5
concentrations from 2000 to 2016 among racial/ethnic groups:
a, The Atkinson index is computed to measure relative disparities among the racial/ethnic 

groups (Black, white, Asian, Native American and Hispanic or Latino). b, The Gini index 

is computed to measure relative disparities among the racial/ethnic groups (Black, white, 

Asian, Native American and Hispanic or Latino). The trends in both the Atkinson and Gini 

indices are similar to the one measured by CoV in figure 4: disparities in air pollution 

exposure among racial/ethnic groups relative to pollution levels at or below the EPA 

standard are increasing. The Atkinson and Gini indices were computed using the inequality 

package “ineq” in the R software. The input is the proportion of the racial/ethnic (or income) 

groups living above the set PM2.5 threshold. We set the Atkinson aversion parameter = 0.75 

[7], and the sensitivity of the index to different values of is shown in Extended Data Figure 

A.6.
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Extended Data Figure A.6. Sensitivity of the Atkinson index to the inequality aversion 
parameter:
a, Sensitivity of the Atkinson index relative to a PM2.5 threshold of 8 μg/m3. b, Sensitivity of 

the Atkinson index relative to a PM2.5 threshold of 10 μg/m3. c, Sensitivity of the Atkinson 

index relative to a PM2.5 threshold of 12 μg/m3. A consistent trend is shown across the 

parameter values.
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Extended Data Figure A.7. Replication of main findings across urban and rural areas:
ZCTA’s population density is used as a metric to control for urbanicity in our study. We 

classify urban and rural areas based on the percentage of urban population in each ZCTA. 

Such percentages are available by the census bureau for the year 2010 and are used for the 

rural/urban classification. ZCTAs with more than 50% urban population are classified in the 

urban group while those with less than 50% are classified in the rural group. For nationwide, 

urban and rural US, we reproduce the main results of the manuscript, namely, the average 

PM2.5 concentrations for the total population (a-c), for racial/ethnic groups (d-f), for income 
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groups (g-i), and disparities across racial/ethnic groups (j-l). Similarities in the results across 

the national, urban and rural US are apparent and findings are consistent regardless of the 

urbanicity of ZCTAs. Note that in the case of rural US (l), we only compute disparities for 

the years where the proportion of the population exposed to PM2.5 concentrations above the 

thresholds of interest is non-zero. For example, the proportion of population in rural US 

exposed to PM2.5 concentrations above T = 12 μg/m3 reaches near zero levels in 2009, and 

hence disparities after such year are not computed.

Extended Data Figure A.8. Sensitivity of main findings to estimates of PM2.5:

We replicated our analysis with an independent pollution dataset [43, 44] and we show here 

the sensitivity of our findings to the new PM2.5 estimates. a, Replication of Extended Data 

figure A.1b with the alternative pollution dataset. b, Replication of Extended Data figure 

A.1d with alternative pollution dataset. c, Replication of figure 4 with alternative pollution 

dataset. As can be seen, the main findings of the manuscript are robust and consistent across 

the two pollution datasets. Minor differences due to the different pollution estimates can be 

spotted as expected.

Jbaily et al. Page 18

Nature. Author manuscript; available in PMC 2023 September 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Average PM2.5 concentration in 2000 and 2016 across ZCTAs where Black and white 
populations are overrepresented:
We use the white population fraction of the ZCTA population to compute the average white 

population fraction (aWpf) across all ZCTAs (≈ 84%). Similarly, we compute the average 

Black population fraction (aBpf) (≈ 7%). The maps in panel (a) show PM2.5 levels for the 

year 2000 in ZCTAs with a Black population fraction above aBpf (left) and in ZCTAs with 

a white population fraction above aWpf (right). High PM2.5 concentrations exist in almost 

all ZCTAs with a Black population above aBpf, while a wide range of low and high PM2.5

concentrations exist in ZCTAs with a white population above aWpf in 2000. Panel (b) shows 

the same information for the year 2016. Similar maps for the other racial/ethnic groups 

for 2000 and 2016 are shown in Extended Data figures 1.a and 1.b and videos 2 and 3 in 

supplementary material.
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Figure 2. Average PM2.5 concentration in 2000 and 2016 across low- and high-income ZCTAs:

We assign all ZCTAs percentile ranks from 1 to 100 based on median household income and 

categorize them into ten income groups. We designate the lowest and highest three income 

groups as low-income and high-income respectively. The maps in panel (a) show PM2.5 levels 

for the year 2000 in low-income (left) and high-income (right) ZCTAs. Panel (b) shows the 

same information for the year 2016. Disparities in exposure to PM2.5 among the two groups 

are apparent and it can be visually seen that in both 2000 and 2016, low-income ZCTAs 

are exposed to higher PM2.5 concentrations as compared to high-income ZCTAs (video 4 in 

supplementary material).
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Figure 3. US ZCTAs with average PM2.5 concentration above 8 μg/m3 for the Black and white 
populations in 2000 and 2016:
The maps only show US ZCTAs with PM2.5 levels above 8 μg/m3 in (a) 2000 and (b) 2016. 

The maps on the left are color-coded based on the fraction of the Black population in 

ZCTAs, while the maps on the right are color-coded based on the white population fraction. 

For example on the left map in panel (a), the dark-blue and light-yellow colors correspond 

to ZCTAs with the largest and smallest Black population percentages of the total ZCTA 

population respectively in 2000, or equivalently where the Black population is over- and 

under-represented respectively in 2000. The left map of (a) reveals that almost half of 

the ZCTAs with PM2.5 levels above 8 μg/m3 in 2000 correspond to those where the Black 

population most lives (almost half of the map is dark-blue). However in 2016, ZCTAs that 

remained above 8 μg/m3 are only those that are dominated by the Black population (left 

map in panel b). In contrast, ZCTAs that still had PM2.5 above 8 μg/m3 in 2016 are mainly 

those where the white population is under-represented (right map in panel b). Videos 5–8 

show the distribution of the different racial/ethnic groups across multiple ranges of PM2.5

concentrations in 2000 and 2016 respectively.
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Figure 4. Relative disparities in exposure to PM2.5 among racial/ethnic groups (Black, white, 
Asian, Native American and Hispanic or Latino) from 2000 to 2016:
Disparities in exposure (as measured by CoV) to PM2.5 concentrations above thresholds of 8, 

10 and 12 μg/m3 for 2000 to 2016 among racial/ethnic groups (Black, white, Asian, Native 

American and Hispanic or Latino). The percentage of the US population living above the 

thresholds of 8, 10 and 12 μg/m3 is also shown. The trend reveals that the decrease in air 

pollution across the years has been accompanied by an increase in the relative disparities in 

exposure to air pollution among communities.
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