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Abstract

Processing latency is a critical issue for active noise control (ANC) due to the causality constraint 

of ANC systems. This paper addresses low-latency ANC in the context of deep learning (i.e. 

deep ANC). A time-domain method using an attentive recurrent network (ARN) is employed to 

perform deep ANC with smaller frame sizes, thus reducing algorithmic latency of deep ANC. In 

addition, we introduce a delay-compensated training to perform ANC using predicted noise for 

several milliseconds. Moreover, a revised overlap-add method is utilized during signal resynthesis 

to avoid the latency introduced due to overlaps between neighboring time frames. Experimental 

results show the effectiveness of the proposed strategies for achieving low-latency deep ANC. 

Combining the proposed strategies is capable of yielding zero, even negative, algorithmic latency 

without affecting ANC performance much, thus alleviating the causality constraint in ANC design.

Index Terms—

Active noise control; deep ANC; algorithmic latency; ARN; low-latency

I. Introduction

Noise is an auditory annoyance that has negative effects on human listeners and is 

recognized as a type of pollution. Two different strategies exist for controlling noise: 

passive and active noise control. Passive noise control is the traditional way to reduce 

noise, and it achieves noise attenuation using passive methods like insulation and silencers. 

Active noise control (ANC) is a noise cancellation technology based on the principle of 

destructive superposition of acoustic signals. It works by generating an anti-noise with the 

equal amplitude and opposite phase of the primary (unwanted) noise, hence resulting in 
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the cancellation of both when they are superposed at an error microphone [1]. ANC has 

attracted increasing attention in research over the past few decades and has been used in 

automobiles [2], headphones [3], airplanes [4], and so on [5], [6].

Conventionally, ANC is accomplished by optimizing controller weights using adaptive 

filters so that the error signal is minimized [7]. Filtered-x least mean square (FxLMS) 

and its extensions are the most widely used ANC algorithms. They work by estimating 

a secondary path beforehand and then filtering the reference noise with the estimated 

secondary path before feeding it to the controller [8]. However, nonlinear distortions are 

inevitably introduced due to the use of electronic devices like loudspeakers [9], [10]. The 

adaptive filter approach is fundamentally linear and does not perform satisfactorily in the 

presence of nonlinear distortions [11].

Recently, deep learning has been utilized for fixed-parameter ANC [12] considering the 

capacity of deep neural networks in modeling complex nonlinear relationships [13]–[18]. In 

a previous study, we formulated ANC as a supervised learning problem for the first time 

and proposed a deep learning approach, called deep ANC, to address the nonlinear ANC 

problem [13], [14]. Subsequently, a deep learning based selective fixed-filter ANC method 

that employs a convolutional neural network for noise type classification and control filter 

selection was introduced in [16]. Later, Chen et al. proposed a secondary path-decoupled 

ANC method (SPD-ANC) using two pre-trained convolutional recurrent networks to address 

the nonlinearity of the secondary path [17]. More recently, we expanded the single-channel 

deep ANC to the multi-channel domain and developed a deep learning approach for active 

noise control at multiple spatial points and within a spatial zone [15]. All these deep learning 

based methods can be viewed as fixed-parameter ANC and they achieve active noise control 

by training a deep neural network (DNN) offline. Compared to traditional fixed-parameter 

ANC methods, deep ANC is capable of nonlinear active noise reduction for a variety of 

noises through large-scale multi-condition training.

A unique constraint of ANC is that it targets noise in physical space unlike, say, noise 

reduction in mobile communication. Specifically, the error microphone of an ANC system 

adds primary noise and anti-noise signals arriving at its location acoustically. This leads 

to the causality constraint of ANC systems; that is, the sum of controller processing time 

and the secondary path acoustic delay must be no greater than the primary path acoustic 

delay (the time for noise to propagate along the primary path) [19], [20]. Many studies 

have demonstrated the effects of causality on the performance of ANC systems. Burdisso 

et al. investigated system causality and developed a formulation to carry out causality 

analysis of feedforward ANC systems subjected to broadband excitations [21]. Kong and 

Kuo studied the efficiency of ANC systems for ducts under non-causal conditions [19]. 

Zhang and Qiu presented a causality study on a typical feedforward ANC headset and 

systematically analyzed the performance of ANC headsets in terms of delays [20]. Kurczyk 

and Pawelczyk addressed the latency problem of ANC systems by using soft computing 

algorithms, including fuzzy inference. [22]–[24]. Effects of primary source locations and 

microphone locations on causal configuration and ANC performance are studied in [25], 

[26].
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The causality constraint is a dominant factor in the design of ANC systems, and it must be 

satisfied to perform noise attenuation. However, block-based algorithms such as frequency-

domain FxLMS and deep ANC, possess an algorithmic delay determined by the frame 

size since they are implemented in a frame-by-frame manner [27], [28]. This delay could 

violate the causality constraint and is considered a major limitation for block-based ANC 

algorithms. The connection between time-domain and frequency-domain effort weighting in 

ANC design was introduced in [29]. Yang et al. studied the delays introduced by frequency-

domain ANC methods and presented different schemes for addressing these delays [30]. 

Shi et al. utilized a virtual-sensing technique for frequency-domain multi-channel ANC to 

satisfy the causality constraint between the locations of the physical and virtual microphones 

[31]. A training strategy using predicted anti-noise to compensate for the delay of the 

frequency-domain ANC method was proposed in [14]. Although many studies have 

been proposed for latency reduction, the latency problem remains for block-based ANC 

algorithms.

Time-domain methods have been recently proposed for supervised speech separation. 

Compared to frequency-domain methods that use time-frequency representations for 

extracting input features and training targets, time-domain methods directly predict target 

signal samples from input signal samples, and can enhance magnitude and phase jointly in 

the process [32], [33]. In addition, frequency-domain methods usually require a relatively 

longer frame size to ensure an adequate frequency resolution, leading to longer algorithmic 

latencies. There is no such limitation for time-domain methods and they can be implemented 

using smaller frame sizes. Fu et al. proposed a time-domain network to optimize the 

short-term objective intelligibility metric [34]. A fully convolutional time-domain audio 

separation network was introduced in [35] for end-to-end time-domain speaker separation, 

and the frame size can be set as small as 2 ms. A convolutional neural network with a 

frequency-domain loss was proposed in [36] to address speech enhancement in the time 

domain. Very recently, Pandey and Wang proposed an attentive recurrent network (ARN) for 

time-domain speech enhancement [37]. Time-domain methods are potentially more suitable 

for achieving low-latency deep ANC.

Building on deep ANC, this paper aims at achieving low latencies by reducing the 

algorithmic latency of deep ANC. The contributions of this paper are summarized below. 

First, we introduce time-domain deep ANC utilizing an attentive recurrent network [37], 

which enables the implementation of deep ANC with smaller frame sizes. Second, to 

counter algorithmic latency, a delay-compensated training strategy is proposed to perform 

ANC using noise predicted ahead of time. Third, a revised overlap-add (OLA) method 

is utilized during signal resynthesis to avoid the latency introduced by overlaps between 

neighboring frames. Finally, we combine the proposed strategies to achieve deep ANC with 

zero or even negative algorithmic latency. The proposed approach represents a big stride 

towards alleviating the causality constraint of ANC and expanding the scope of ANC design.

A preliminary version of this study has recently been accepted for conference presentation 

[38]. Compared to the conference version, this paper conducts more extensive evaluations, 

investigates different strategies, and provides insights into combining the proposed strategies 

for low-latency deep ANC.
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The remainder of this paper is organized as follows. Section II introduces the signal 

model and deep ANC method. Section III describes the proposed low-latency deep ANC 

techniques. The experimental setup is given in Section IV. Section V provides the evaluation 

results and comparisons. Section VI concludes the paper.

II. Active noise control

A. Signal model

A typical feedforward ANC system consists of a reference microphone, a canceling 

loudspeaker, and an error microphone, as shown in Fig. 1(a). The primary noise picked 

up by the error microphone, d(n), is generated by convolving the reference noise with the 

primary path. The reference signal x(n) sensed by a reference microphone is fed to the active 

noise controller to generate a canceling signal y(n). The canceling signal is then played by 

a canceling loudspeaker and propagated through the secondary path to get an anti-noise, 

a(n), which then cancels or attenuates the primary noise d(n). The corresponding error signal 

received at the error microphone is obtained as

e(n) = d(n) − a(n)
= p(n) * x(n) − s(n) * fLS y(n) (1)

where n is the time index, p(n) and s(n) denote the primary and secondary path, respectively, 

fLS{·} denotes the function of a loudspeaker, and symbol * denotes convolution. Note that 

the anti-noise is subtracted in (1) to achieve noise cancellation.

B. Causality constraint of a feedforward ANC system

To achieve noise attenuation, the anti-noise has to reach the error microphone no later than 

the primary noise. In other words, the total delay of the controller and the secondary path 

should not be larger than that of the primary path. This is the so-called causality constraint, 

and it must be satisfied or the primary noise cannot be reduced by the system.

The causality constraint can be expressed as

T p ≥ TANC + T s   or   TANC ≤ T p − T s (2)

where Tp and Ts denote the acoustic delays introduced by the primary and secondary paths, 

respectively, which are proportional to the lengths of the corresponding paths. TANC denotes 

the latency introduced by the controller, which equals the sum of the ANC processing 

latency and the total system delay (including those of A/D and D/A converters, and 

loudspeaker) [19].

The causality constraint given in (2) is obtained from the fundamental wave propagation 

point of view. The practical constraint of an ANC system also depends on noise type and 

prediction. For example, a tonal noise is easy to predict, and causality would not be an issue 

in this case. The system causality is also affected by the ANC configuration as well as the 

processing latency of ANC algorithms. Positions of loudspeaker and microphones determine 

the maximum latency allowed for TANC, and they need to be chosen carefully in the design 
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of an ANC system. With a given ANC configuration, the algorithmic delay of ANC should 

be controlled to be as low as possible to guarantee the system causality.

C. Deep ANC

Unlike traditional ANC methods, which require estimating the secondary path and the 

adaptive filter individually, deep ANC trains a DNN using large-scale multi-condition 

training to directly approximate an optimal controller that minimizes the error signal in 

a variety of noisy environments [14]. A diagram of the deep ANC approach is given in Fig. 

1(b). The overall goal is to estimate a canceling signal from the reference signal so that the 

corresponding anti-noise cancels the primary noise. Deep ANC takes as input a reference 

signal and sets the ideal anti-noise as the training target. The ideal anti-noise is the same as 

the primary noise to accomplish complete noise cancellation. During training, the output of 

deep ANC is treated as an “intermediate product”, and the anti-noise is produced by passing 

the output through the loudspeaker and secondary path. The loss function calculated from 

the error signal is then used to guide model training.

III. Low-latency deep ANC

A. Algorithmic latency of deep ANC

Deep ANC is block-based, where signals are processed in a frame-by-frame manner. 

Specifically, an input signal is first chunked into short overlapping blocks of waveform 

samples and the blocks are then transformed into a sequence of frames. Taking a frequency 

domain method for example, each block in the input sequence is multiplied by an analysis 

window and then converted to the frequency domain using discrete Fourier transform 

(DFT). Resynthesis of a time-domain signal is achieved by taking the inverse DFT of 

the transformed frames, multiplying the obtained samples with a synthesis window, and 

combining neighboring frames using the OLA method [39]. These steps incur an algorithmic 

delay determined by the frame length and frame shift.

An illustration of OLA is given in Fig. 2(a), where a signal with M samples is chunked into 

T frames with a frame size of L and frame shift of J. Due to overlaps between neighboring 

frames, to fully synthesize a single sample, all frames that contain this sample need to be 

processed. For example, we have to wait till the end of the current frame to generate its 

initial J – 1 samples, which results in a delay in the range of (L – J,L] samples. In this paper, 

we define the algorithmic latency as the maximum delay, L, for simplicity.

B. ARN based time-domain ANC

The most straightforward way of reducing algorithmic latency of deep ANC is to shorten 

the frame size. For frequency-domain methods, using a smaller frame size results in a lower 

frequency resolution and may degrade system performance [40]. We propose to realize deep 

ANC using ARN in the time domain, which can be easily implemented with smaller frame 

sizes. Further, we find ARN to be highly effective for the deep ANC task even with smaller 

frame sizes.
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ARN is recently proposed in [41] for effectively incorporating an attention mechanism [42] 

into recurrent neural networks (RNNs). The processing flow of ARN based time-domain 

deep ANC is shown in Fig. 3(a). A reference noise x(n) with M samples is first divided into 

T overlapping frames with a frame size of L and frame shift of J. Subsequently, a linear layer 

is used to project these frames to a representation of size N, which is then processed by a 

four-layered ARN. The output of the ARN is projected back to size L using another linear 

layer. Finally, OLA is utilized to obtain the waveform of canceling signal y(n).

The architecture of an ARN layer used in this study is shown in Fig. 3(b). It comprises 

a recurrent neural network (RNN) with long short-term memory (LSTM), a self-attention 

block, and a feedforward block. The input to ARN is firstly layer normalized [43] and fed to 

an RNN. The output of the RNN is then normalized using two parallel layer normalizations, 

where the first layer normalized output is used as query (Q), and the second one is used as 

key (K) and value (V) for the following attention block. The output of the attention block 

is added to Q to form a residual connection. Afterwards, the final output is normalized 

using two separate layer normalizations, in which one of the outputs is processed using the 

feedforward block and the other one is added to the output of the feedforward block in a 

residual way.

The attention block in ARN, shown in Fig. 4, takes Q, K, V ∈ ℝT × N as inputs and 

comprises three trainable vectors Q′, K′, V′ ∈ ℝ1 × N. A gating mechanism is utilized to 

refine the inputs as

Kr = K ⊗ σ K′
Qr = Lin(Q) ⊗ σ Q′
Vr = V ⊗ σ Lin V′ ⊗ Tanh Lin V′

(3)

where σ is sigmoidal nonlinearity, Lin() is a linear layer, and ⊗ denotes element-wise 

multiplication. Note that σ(Lin(V′))⊗ Tanh(Lin(V′)) represents a constant vector computed 

from V, and this operation is used during training for better optimization of V. Once the 

model is trained, its value from the best model is used during evaluation.

The output of the attention block is obtained as

A = Softmax QrAr
T

N Vr (4)

The feedforward block in ARN is a fully connected network with one hidden layer of size 

4N, Gaussian error linear unit (GELU) nonlinearity [44], and dropout. A diagram of the 

block is shown in Fig. 5. A detailed description of the ARN can be found in [37].

C. Delay-compensated training

Another strategy for reducing latency is to perform ANC using predicted noise, and the 

resulting strategy is called delay-compensated training [14]. The main idea is to train a deep 

ANC model to predict the canceling signal a few samples ahead of time, thus compensating 

for the overall delay. During model training, instead of correctly aligning input and training 
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target, we train the model to predict the target signal K samples in advance, as shown 

in Fig. 6. By prediction, the proposed strategy can cancel primary noise with K/fs ms 

in advance, where fs denotes the sampling frequency. The delay-compensated training 

technique proposed in this paper extends the one introduced in [14], which predicts noise at 

the frame level (not the sample level in the present study).

A predicted noise is an estimate of the actual noise, and ANC using the predicted noise will 

lead to reduced performance compared to using the actual noise. However, the controller 

may be required to predict the primary noise if the causality constraint is violated. Such a 

strategy is useful for ANC tasks since it can intrinsically alleviate the causality constraint of 

ANC systems.

D. Revised overlap-add for signal resynthesis

Part of the algorithmic latency of block-based methods originates from the overlap-add 

procedure. Having overlaps between neighboring frames benefits from the averaging/

pooling of multiple frames and results in a smoother estimate. We propose to revise the 

OLA method by setting a part of or the entire overlapping samples to zero during signal 

resynthesis, in order to reduce the latency introduced by overlaps between neighboring 

frames. The revised OLA with all the overlapping samples set to zero, as shown in Fig. 

2(b), reduces the algorithmic latency from frame size L to frame shift J. Considering the 

power of deep learning in prediction and that noise signals are relatively stationary and 

hence predictable, deep ANC with revised OLA has the potential to achieve low algorithmic 

latency without sacrificing ANC performance by much.

IV. Experimental setup

A. Experimental setting

Deep ANC is trained utilizing large-scale multi-condition training, exposing the ANC 

model to a large variety of noisy environments. To achieve a noise-independent model, 

we create a training set using 10000 non-speech environmental sounds from a sound-effect 

library (http://www.sound-ideas.com) [45]. Babble noise, engine noise, speech-shaped noise 

(denoted as SSN), and factory noise from NOISEX-92 dataset [46] are used for testing. The 

test noises are unseen during training, and hence can evaluate the generalization ability of 

the proposed method.

Many studies evaluate ANC systems for noise canceling in an enclosure [47], [48]. We 

follow the setup given in [14] and simulate a rectangular room of size 3 m × 4 m × 2 m 

(width × length × height) to carry out experiments. The primary and secondary paths are 

simulated as room impulse responses (RIRs) using the image method [49]. The reference 

microphone is located at the position (1.5, 1, 1) m, the canceling loudspeaker at (1.5, 2.5, 

1) m, and the error microphone at (1.5, 3, 1) m. This experimental setup is illustrated in 

Fig. 7. Five reverberation times (T60s) 0.15 s, 0.175 s, 0.2 s, 0.225 s, 0.25 s are used for 

generating training RIRs. The RIRs with reverberation time 0.2 s are used for testing. Their 

corresponding frequency responses are plotted in Fig. 8.
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Nonlinear saturation effects are a common type of loudspeaker nonlinearity, and they can be 

simulated using the scaled error function (SEF) [10], [50]

fSEF(y) = ∫
0

y

e− z2
2η2dz, (5)

where y is the input to the loudspeaker, and η2 defines the strength of nonlinearity. The 

SEF becomes linear as η2 tends to infinity, and a hard limiter as it tends to zero. In our 

experiments, the loudspeaker function fLS{·} in (1) is implemented using fSEF(y). Our model 

is trained using four loudspeaker functions: η2 = 0.1 (severe nonlinearity), η2 = 1 (moderate 

nonlinearity), η2 = 10 (soft nonlinearity), and η2 = ∞ (linear). During training, we randomly 

select a loudspeaker function for each input signal, and generate the loudspeaker signal by 

passing a canceling signal through the loudspeaker function. For testing, both trained and 

untrained (η2 = 0.5) loudspeaker functions are used.

We create 20000 training signals and 100 test signals for each test noise. Each training 

noise is created by randomly cutting a 3-second segment from the concatenated signal of 

the 10000 non-speech sounds. The test noises are generated similarly from the 4 test noises. 

The primary noise at the error microphone is generated by convolving a source noise with a 

randomly selected RIR for the primary path. An estimated anti-noise is generated by passing 

the canceling signal successively through a loudspeaker function and the secondary path (see 

Fig. 1(b)). All the signals are resampled to 16 kHz.

Parameter N in ARN is set to 512, and a dropout rate of 5% is used in the feedforward 

block. Utterance level mean-squared error loss in the time domain is used for model training. 

The ARN model is trained using the Adam optimizer [51] with a learning rate of 0.0001 for 

30 epochs.

B. Comparison methods

We compare the proposed time-domain deep ANC method with FxLMS, tangential 

hyperbolic function based FxLMS (THF-FxLMS), [50], an optimal FxLMS solution [52], 

SPD-ANC [17], and a convolutional recurrent network (CRN) based frequency-domain 

method [14] in both linear and nonlinear situations.

FxLMS works by estimating a secondary path first and then applying it to the reference 

signal to compensate for the effect of the secondary path. It is a popular ANC algorithm 

due to its robust performance and ease of implementation. However, it fails to identify 

the secondary path accurately in the presence of nonlinear distortions and consequently 

degrades the overall ANC performance. THF-FxLMS uses the tangent hyperbolic function 

(THF) to model the saturation effect of loudspeaker and then design the nonlinear ANC 

controller utilizing the predicted degree of nonlinearity [50]. It has been shown by Ghasemi 

et al. [50] that THF-FxLMS outperforms FxLMS for noise attenuation in situations with 

nonlinear distortions. In the optimal FxLMS solution [52], the ground-truth secondary path 

(including the distortions introduced by a canceling loudspeaker with nonlinearity) is used in 

ANC controller update and the steady-state results are presented for comparison.
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The step sizes of FxLMS related methods in our experiments are chosen carefully for 

different noises according to the criteria given in [53] and [54] to ensure stable updating and 

good noise attenuation. Specifically, the step size used for updating FxLMS for babble noise, 

engine noise, SSN, and factory noise is set to 0.3, 0.05, 0.4, 0.4, respectively. The step size 

for updating THF-FxLMS is set to 0.3, 0.05, 0.4, 0.4, and for obtaining the optimal FxLMS 

solution is set to 0.25, 0.05, 0.2, 0.4 for the four noises, respectively. The algorithmic delay 

of all the adaptive ANC methods in the time domain is one signal sample.

The recently proposed SPD-ANC [17] is a hybrid ANC method where controller weights 

are updated using a least mean square (LMS) algorithm, and the secondary path and its 

reverse are modeled using two pre-trained time-domain CRNs. It is essentially an LMS 

based adaptive ANC method with the nonlinear distortions in the secondary path modeled 

by deep learning.

The CRN based frequency-domain method employs a CRN for complex spectral mapping 

and works by estimating the real and imaginary spectrograms of a canceling signal from 

the real and imaginary spectrograms of the reference signal [14]. The CRN has an encoder-

decoder architecture with a two-layer grouped LSTM between them. The model sizes (the 

number of trainable parameters within a model) of the CRN and ARN based deep ANC 

methods are around 8.8 million and 15.9 million, respectively. Their multiply-accumulate 

(MAC) operations are 1.82 G and 5.24 G, respectively, for processing a 3-second noise.

C. Performance metric

Normalized mean square error (NMSE) is used to evaluate the noise attenuation 

performance of the proposed method. NMSE is a widely used metric for ANC evaluations 

and it is defined as

NMSE = 10 log10 ∑n = 1

M e2(n)/∑n = 1

M d2(n) (6)

where M is the total number of samples in a time-domain signal. NMSE values are typically 

below zero, and a lower value indicates better noise attenuation. The results shown in this 

paper are the average NMSE of 100 test signals.

V. Evaluation results and comparisons

A. Deep ANC with shorter frame sizes

We first evaluate the performance of the proposed deep ANC model using different frame 

sizes. All ANC methods are tested with untrained noises in both linear (η2 = ∞) and 

nonlinear (η2 = 0.5 and η2 = 0.1) situations and the comparison results are provided in Table 

I. Frame length and frame shift are connected by a dash, and the latter is set to half of the 

former. The corresponding algorithmic latency is shown inside the parentheses.

It can be seen that the performance of FxLMS degrades in the presence of nonlinear 

distortions. THF-FxLMS and the hybrid SPD-ANC yield better noise attenuation for 

nonlinear ANC. As expected, the optimal FxLMS solution with ground-truth secondary 

path and nonlinear distortion obtains the best noise attenuation among the adaptive ANC 
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methods. Deep learning based methods are effective for noise attenuation in both linear 

and nonlinear situations and generalize well to untrained noises. Using shorter frame sizes 

results in lower algorithmic latencies. As mentioned previously, a longer frame size is 

usually used in frequency-domain methods to ensure acceptable frequency resolution. For 

CRN based deep ANC, which is a frequency-domain method, shortening frame size leads 

to worse ANC performance, e.g., noise attenuation level drops by more than 1 dB when 

the frame size is reduced from 20 ms to 4 ms. ARN based time-domain ANC consistently 

outperforms all the comparison methods, and it is even more advantageous for low-latency 

ANC as reducing frame size does not affect the performance.

We provide spectrograms of the outputs obtained using ARN based method with 4 ms frame 

size under different untrained noises in Fig. 9 to illustrate its noise attenuation performance. 

The first row of each panel shows the spectrogram of a primary noise, and the second row 

shows the residual noise (error signal) obtained after ANC. It is observed that the proposed 

method is capable of achieving wideband noise attenuation and its performance generalizes 

well to untrained noises.

B. Deep ANC with delay-compensated training

This subsection investigates the performance of deep ANC with delay-compensated training. 

We start by comparing the performance of ARN and CRN based methods for noise 

attenuation with predicted noise. We use 20 ms frame size and 10 ms frame shift and 

train the deep ANC models to predict canceling signal for 5 ms, 10 ms, 15 ms, and 20 

ms ahead. The results are given in Table II, and the corresponding algorithmic latencies 

are provided inside parentheses. Not surprisingly, the noise attenuation performance drops 

with the increase of prediction length. The table shows that ARN based time-domain deep 

ANC is more efficient at predicting noise; for example its noise attenuation performance 

drops only by 0.95 dB when predicting babble noise 15 ms ahead while the corresponding 

performance drop is 2.61 dB for the CRN based method. In the most challenging case of no 

algorithmic latency, the ARN based model exhibits a significant performance drop compared 

to the case of 5 ms latency, although it still yields higher noise attenuation than the CRN 

based model.

There is a tradeoff between prediction length and ANC performance. To examine the ability 

of the proposed method for noise prediction, we gradually increase the prediction length 

and train multiple ARN models for active noise control. The frame size and frame shift 

of ARN are set to 4 ms and 2 ms, respectively. We vary the value of K and train the 

ARN based model to cancel primary noise with different time advances. The prediction 

results are shown in Fig. 10 with the algorithmic latency of each model provided inside the 

parentheses. It can be observed that the noise attenuation performance drops gradually with 

the increase of prediction length. Predicting 6 ms in advance, which reduces the algorithmic 

latency to −2 ms, still achieves good NMSE values. Predicting more than 6 ms ahead results 

in considerable performance drop compared to no prediction. We can conclude that, the 

proposed delay-compensated training strategy effectively reduces the algorithmic latency of 

deep ANC with acceptable levels of ANC performance degradation.
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C. Deep ANC with revised overlap-add

Deep ANC with revised OLA is evaluated in this part. First, we investigate the effects of 

revised OLA on ANC performances and provide the results using the original OLA method 

and two variations of it in Table III. The frame size and frame shift are set to 20 ms and 5 

ms, respectively. We revise the OLA method by setting a portion (5 ms) of or the entire (15 

ms) overlapping part to zero, with the corresponding algorithmic latencies of 15 ms and 5 

ms, respectively. For both CRN and ARN based methods, using revised OLA leads to lower 

algorithmic latencies with small performance drops, and the ARN based method consistently 

outperforms the CRN based method. Having more overlapping samples is beneficial for 

signal resynthesis and results in better noise attenuation. It is observed that the revised OLA 

method with fewer overlapping samples has slightly worse performance but lower latency. 

Compared to the original OLA method, setting the first 15 ms of each frame to zeros results 

in a 1.22 dB less noise attenuation for CRN based deep ANC, and 0.86 dB less attenuation 

for ARN based deep ANC.

We will use the revised OLA with no overlapping samples as the default setting in the 

following experiments.

Second, we compare the effectiveness of delay-compensated training and revised OLA for 

reducing algorithmic latency. The results of deep ANC models with the same algorithmic 

latency but using different strategies are provided in Table IV. Using revised OLA achieves a 

little better performance than noise prediction for reducing algorithmic latency by the same 

amount, especially for the CRN based method. Where using revised OLA produces more 

than 1 dB noise attenuation than using delay-compensated training with 10 ms algorithmic 

latency. However, this does not indicate that revised OLA is superior to delay-compensated 

training since the former can at most reduce the algorithmic latency to the length of frame 

shift J while there is no restriction for delay-compensated training. However, revised OLA 

and delay-compensated training can be combined to further reduce algorithmic latency.

D. Low-latency deep ANC

We now evaluate deep ANC using different frame sizes, frame shifts, and combine different 

training strategies to achieve low-latency ANC. Table V shows the results with zero and 

even negative algorithmic latency. The first five rows give the results of the CRN based 

model and the last 6 rows provide the results of the ARN based model. We know from 

Table I that without considering algorithmic latency, using longer frame sizes results in 

better ANC performance for the CRN based method. However, for pure prediction cases (the 

first and the fourth rows of Table V), using smaller frame sizes is preferred to achieve zero 

algorithmic latency since the total samples that need to be predicted are substantially fewer. 

A similar trend is observed in the results of the ARN based model. From the first two rows 

of CRN and ARN, we observe that combining revised OLA and delay-compensated training 

is more efficient for reaching zero algorithmic latency than relying on noise prediction 

only. Given the same frame length, we find that a shorter frame shift is desirable for 

achieving zero latency. This is because the algorithmic latency is reduced to the length 

of frame shift with the help of revised OLA, and using smaller frame shifts requires 

predicting fewer samples, a relatively easier task than using larger shifts. Moreover, smaller 
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frame shifts result in more overlaps between input frames, which is helpful for estimation. 

Using the ARN based model with 4 ms frame size, 2 ms frame shift, revised OLA, and 

delay-compensated training (predicting 2 ms) achieves the best ANC performance among 

all these models with 0 ms algorithmic latency. The average NMSE is −11.20 dB in this 

case, and there is only 0.47 dB performance drop compared to the average NMSE of the 

ARN based model with the same frame size and frame shift but without using revised OLA 

and delay-compensated training (the last row of Table I). A clear way to measure progress 

is by comparing to the model in our previous study [14] (i.e. row 1 of Table II), and the 

algorithmic latency is reduced from 20 ms to 0 ms with no performance degradation.

Finally, non-stationary noises from the DEMAND corpus [55] are used to test the 

performance of deep ANC in realistic conditions. The DEMAND dataset has six categories 

of noises, and we choose one noise from each category to represent distinct environments:

• NRIVER noise: from the “Nature” category, recorded besides a creek of running 

water.

• OMEETING noise, from the “Office” category, recorded in a meeting room.

• DLIVING noise: from the “Domestic” category, recorded inside a living room.

• PRESTO noise: from the “Public” category, recorded in a university restaurant at 

lunchtime.

• SPSQUARE noise: from the “Street” category, recorded in a public town square 

with many tourists.

• TMETRO noise: from the “Transportation” category, recorded in a subway.

Table VI gives the average NMSE results, which show that the proposed deep ANC works 

well for recorded noises in different realistic environments.

In general, ARN based time-domain ANC is effective for low-latency deep ANC. 

Combining ARN with the proposed strategies leads to zero or even negative algorithmic 

latency without significantly affecting ANC performance. Zero or negative algorithmic 

latency would be impossible for traditional ANC methods, and goes a long way to 

alleviating the causality constraint, facilitating the design of ANC systems, and expanding 

the scope of ANC applications.

VI. Conclusion

This study focuses on low-latency deep ANC. We have proposed a time-domain deep 

ANC method based on attentive recurrent networks with smaller frame sizes to reduce 

algorithmic latency. Augmented with delay-compensated training and revised OLA, the 

algorithmic latency of deep ANC is substantially reduced, which largely alleviates the 

causality constraint of ANC systems and facilitates ANC design. The performance of 

low-latency deep ANC using different strategies has been evaluated, and the combination 

of these strategies leads to zero and even negative algorithmic latency. Future research 

will investigate practical issues of device implementation. For example, DNN model 

compression has been shown to be effective for reducing model sizes dramatically without 
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significant performance degradation [56]. We also plan to evaluate the proposed system 

using measured acoustic paths. In addition, we will extend the proposed low-latency 

strategies to other audio processing tasks such as speech enhancement and speaker 

separation.
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Fig. 1. 
Diagrams of (a) feedforward ANC system, and (b) deep ANC approach.

Zhang et al. Page 16

IEEE/ACM Trans Audio Speech Lang Process. Author manuscript; available in PMC 2024 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Illustrations of (a) OLA, and (b) revised OLA. The corresponding algorithmic latency are L 
and J, respectively.
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Fig. 3. 
Diagrams of (a) ARN based time-domain ANC, and (b) ARN architecture.
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Fig. 4. 
Attention block in ARN.
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Fig. 5. 
Feedforward block in ARN.
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Fig. 6. 
Illustration of using deep ANC to predict K samples in advance.
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Fig. 7. 
Illustration of the ANC experimental setup.
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Fig. 8. 
Room frequency response with T60 = 0.2 s for (a) primary path, and (b) secondary path.
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Fig. 9. 
Spectrograms and power spectra of test results for four noises. The first and second rows of 

each panel show the spectrograms of primary noise and output of deep ANC, respectively, 

and third row their power spectra. ARN-based ANC is implemented with frame size and 

frame shift set to 4 ms and 2 ms, respectively.
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Fig. 10. 
Average NMSE (dB) for ARN based deep ANC with delay-compensated training to predict 

different noise lengths. The value inside the parentheses provides algorithmic latency (in ms) 

of the corresponding model.
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TABLE II

Average NMSE (dB) of deep ANC models with delay-compensated training to predict different noise lengths. 

The value inside the parentheses provides algorithmic latency (in ms) of the corresponding model

Noise Babble Engine SSN Factory

CRN

No prediction (20 ms) −10.58 −12.87 −11.36 −10.66

Predicting 5 ms (15 ms) −9.40 −10.89 −9.85 −9.35

Predicting 10 ms (10 ms) −8.76 −9.69 −9.10 −8.57

Predicting 15 ms (5 ms) −7.97 −9.41 −8.34 −7.39

Predicting 20 ms (0 ms) −7.18 −7.90 −7.81 −7.06

ARN

No prediction (20 ms) −11.32 −12.67 −11.74 −11.24

Predicting 5 ms (15 ms) −10.80 −11.91 −11.51 −10.81

Predicting 10 ms (10 ms) −10.57 −12.14 −11.56 −10.81

Predicting 15 ms (5 ms) −10.37 −11.35 −10.68 −10.58

Predicting 20 ms (0 ms) −7.62 −8.44 −8.51 −7.88
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TABLE III

Average NMSE (dB) of deep ANC models using revised OLA with different algorithmic latencies. the value 

inside The parentheses provides algorithmic latency (in ms) of the corresponding model

Noise Babble Engine SSN Factory

CRN

Original OLA (20 ms) −11.00 −12.10 −11.46 −10.92

Setting first 5 ms to 0 (15 ms) −10.38 −11.78 −10.69 −10.18

Setting first 15 ms to 0 (5 ms) −10.07 10.36 −10.41 −9.76

ARN

Original OLA (20 ms) −11.88 −13.20 −12.41 −12.27

Setting first 5 ms to 0 (15 ms) −11.20 −11.98 −11.89 −11.52

Setting first 15 ms to 0 (5 ms) −11.03 −12.09 −11.73 −11.46
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TABLE IV

Average NMSE (dB) of deep ANC models using revised OLA with no overlap. The NMSE results of models 

with the same algorithmic latency but using predicting are provided.

Noise Babble Engine SSN Factory

CRN
20 ms - 10 ms

No prediction (20 ms) −10.58 −12.87 −11.36 −10.66

Predicting 10 ms (10 ms) −8.76 −9.69 −9.10 −8.57

Revised OLA (10 ms) −9.85 −11.13 −10.37 −9.86

ARN
20 ms - 10 ms

No prediction (20 ms) −11.32 −12.67 −11.74 −11.24

Predicting 10 ms (10 ms) −10.57 −12.14 −11.56 −10.81

Revised OLA (10 ms) −10.91 −12.15 −11.62 −10.98

ARN
4 ms - 2 ms

No prediction (4 ms) −11.57 −11.96 −11.68 −11.49

Predicting 2 ms (2 ms) −10.89 −11.18 −11.46 −11.12

Revised OLA (2 ms) −10.91 −11.30 −11.62 −11.22
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TABLE V

Average NMSE (dB) of deep ANC models trained using different strategies to achieve zero or negative 

algorithmic latencies.

Noise Babble Engine SSN Factory

CRN

20 ms – 10 ms 
predicting 20 ms (0 ms) −7.18 −7.90 −7.81 −7.06

20 ms – 10 ms
revised OLA + predicting 10 ms (0 ms) −7.68 −8.27 −8.33 −7.64

20 ms – 5 ms
revised OLA + predicting 5 ms (0 ms) −9.06 −9.93 −9.57 −9.13

4 ms – 2 ms 
predicting 4 ms (0 ms) −9.09 −8.94 −9.38 −8.46

4 ms – 2 ms
revised OLA + predicting 2 ms (0 ms) −9.70 −9.48 −9.98 −9.83

ARN

20 ms – 10 ms 
predicting 20 ms (0 ms) −7.62 −8.44 −8.51 −7.88

20 ms – 10 ms
revised OLA + predicting 10 ms (0 ms) −7.75 −8.46 −8.52 −7.98

20 ms – 5 ms
revised OLA + predicting 5 ms (0 ms) −10.04 −10.30 −10.85 −10.28

4 ms – 2 ms 
predicting 4 ms (0 ms) −10.80 −11.12 −11.23 −11.00

4 ms – 2 ms
revised OLA + predicting 2 ms (0 ms) −10.85 −11.23 −11.58 −11.16

4 ms – 2 ms
revised OLA + predicting 4 ms (−2 ms) −10.62 −11.05 −11.28 −10.93

IEEE/ACM Trans Audio Speech Lang Process. Author manuscript; available in PMC 2024 February 13.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 31

TABLE VI

Average NMSE (dB) of ARN based low-latency deep ANC tested on recorded noises.

ARN (0 ms) ARN (−2 ms)

NRIVER −9.44 −9.31

OMEETING −10.20 −10.15

DLIVING −10.52 −10.20

PRESTO −10.04 −10.16

SPSQUARE −10.78 −10.41

TMETRO −10.27 −9.69
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