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Abstract

Integrating single-cell multi-omics data is a challenging task that has led to new insights into complex cellular systems. Various
computational methods have been proposed to effectively integrate these rapidly accumulating datasets, including deep learning.
However, despite the proven success of deep learning in integrating multi-omics data and its better performance over classical
computational methods, there has been no systematic study of its application to single-cell multi-omics data integration. To fill this gap,
we conducted a literature review to explore the use of multimodal deep learning techniques in single-cell multi-omics data integration,
taking into account recent studies from multiple perspectives. Specifically, we first summarized different modalities found in single-cell
multi-omics data. We then reviewed current deep learning techniques for processing multimodal data and categorized deep learning-
based integration methods for single-cell multi-omics data according to data modality, deep learning architecture, fusion strategy, key
tasks and downstream analysis. Finally, we provided insights into using these deep learning models to integrate multi-omics data and
better understand single-cell biological mechanisms.
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INTRODUCTION
Single-cell technologies have revolutionized how biologists study
cellular systems, enabling biologists to examine the molecular
characteristics of individual cells within a population [1]. Single-
cell omics data generated by single-cell technologies have numer-
ous applications, such as novel cell type discovery and regula-
tory network identification. Recent biotechnology advancements
have generated various types of omics data, including genomics,
transcriptomics, epigenomics and proteomics. Integrating these
multi-omics datasets can enhance our biological understanding,
which would have been unachievable using omics data of a single
modality [2, 3].

Recently, there has been a surge in the development of
multimodal deep learning (MDL) approaches for integrating
single-cell multi-omics data. They have demonstrated impressive
predictive power [4] and offered several advantages over existing
computational methods [5, 6]. For example, MDL techniques can
uncover complex patterns and provide a more comprehensive
understanding of the molecular characteristics of individual
cells [7]. Unlike existing computational methods like matrix
factorization [8, 9] and correlation-based approaches [5, 6] that
require manually extracted features for each modality, MDL

can automatically learn a hierarchical representation for each
modality by extracting meaningful features through a multilayer
neural network model. MDL can better manage high-dimensional
data by mapping features from different modalities into a smaller,
unified subspace [10]. This is especially true when non-linear
feature relationships are expected [11] because each model layer
involves non-linear feature mapping [12].

While MDL approaches for single-cell data integration hold
great potential, several challenges need to be addressed. For
example, overfitting can be a problem during MDL model training,
especially for high-dimensional, imbalanced single-cell multi-
omics data [12]. In addition, the sparsity of the data can also be
an issue, as single-cell multi-omics data often contain numerous
missing values [13]. Furthermore, there is a lack of consensus
on the best methods for integrating single-cell multi-omics
data using MDL techniques, making comparing results across
different studies challenging. Nonetheless, MDL is an active area
of research, and ongoing efforts are to improve these methods
and make them more accessible to researchers.

There is a lack of systematic investigation into the application
of MDL approaches for single-cell multi-omics data integration.
There are reviews on computational strategies for single-cell
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Table 1. Single-cell multi-omics data modalities

Single-cell omics type Data modality Example

Genomics scDNA-seq DOP-PCR, MDA, MALBAC
Transcriptomics scRNA-seq Full-length transcript: scNaUmi-seq, MATQ-seq,

Smart-seq, Smart-seq2 3′ transcript: 10x Chromium,
CEL-seq2, Drop-seq, InDrop, MARS-seq 5′ transcript:
STRT-seq

Epigenomics DNA methylation scBS-seq
Histone modification ChIP-seq
Chromatin accessibility ATAC-seq, DNase-seq
Chromosome conformation Hi-C

Proteomics Protein expression CyTOF, FACS
Multi-omics DNA methylation data and transcriptomic data scM&T-seq, scMT-seq, scTrio-seq, and snmCT-seq

Transcriptome and chromatin accessibility Paired-seq and SNARE-seq

multi-omics integration [10, 14]. However, these reviews focused
on computational methods other than MDL approaches and did
not include more recently published works on MDL. Considering
the advancement of deep learning methods and the develop-
ment of next-generation sequencing data, this study aims to
review various modalities of single-cell multi-omics data and the
current state-of-the-art MDL models for their integration. We
categorize the published work based on MDL model architecture,
fusion strategy, key integration tasks and downstream biological
analysis.

The paper is structured as follows: Overview of Single-Cell
Multi-omics Data Modalities section provides an overview of the
different modalities of single-cell omics data. Overview of MDL
Techniques section describes the deep learning techniques com-
monly used for multimodal data analysis. MDL Models for Single-
Cell Data Integration section discusses the current state-of-the-
art MDL models for single-cell data integration. Finally, Discussion
and Conclusion section focuses on the limitations of the current
approaches, future research directions and conclusions.

OVERVIEW OF SINGLE-CELL MULTI-OMICS
DATA MODALITIES
Single-cell technologies aim to comprehensively measure biolog-
ical molecules like RNAs, proteins and chromatin structures at a
single-cell resolution [15]. The major data modalities for single-
cell multi-omics data are summarized in Table 1.

(i) Single-cell genomics data
Single-cell DNA sequencing (scDNA-seq) has proven effec-
tive in identifying copy number aberrations [16], somatic
mutations [17] and tracking cell lineage [18]. It has found
extensive use in cancer research, where it helps track the
growth of different cell clones and understand tumor devel-
opment [19–21]. It also enables the identification of rare
cell types that may be missed in conventional bulk analysis
methods [22]. Various scDNA-seq whole genome amplifica-
tion techniques exist, such as degenerate oligonucleotide-
primed polymerase chain reaction (DOP-PCR), multiple dis-
placement amplification (MDA), and multiple annealing and
looping–based amplification cycles (MALBAC) [23].

(ii) Single-cell transcriptomics data
scRNA-seq, also known as single-cell transcriptomics or
gene expression data, is a powerful method for measuring
the expression levels of genes in individual cells, enabling
scientists to characterize cellular diversity and heterogeneity

at a high resolution [24]. Various scRNA-seq protocols are
available that differ in the extent of transcript analysis.
While some analyze the entire transcript, others examine
only the 3′ or 5′ end [25]. Examples of such protocols include
10x Chromium, CEL-seq2 and MARS-seq, among others.
Full-length transcript methods can detect allele-specific
expression, low expressive genes and alternative splicing
occurrences. In contrast, partial-length methods can analyze
a bulk amount of single cells, but cannot detect allele-
specified expression [26, 27].

(iii) Single-cell epigenomics data
Epigenomics measures genome-wide epigenomic modifica-
tions, such as DNA methylation, histone modifications and
chromosome accessibilities [28–30]. Recent developments in
single-cell epigenomic approaches have led to the creation of
methods such as single-cell bisulfite sequencing (scBS-seq)
and single-cell reduced representation bisulfite sequencing
(scRRBS-seq) for the single-base resolution mapping of DNA
methylation in individual cells [31–33]. Other techniques,
such as TET-assisted bisulfite sequencing and Aba-seq, have
also been used to study hydroxymethylated cytosine (5hmC)
in bulk samples and have the potential to be adapted for
single-cell analysis [34–37]. Histone modification can be
detected using chromatin immunoprecipitation sequenc-
ing (ChIP-seq) [38]. Finally, high-throughput sequencing
techniques, such as transposase-accessible chromatin with
sequencing (ATAC-seq) and DNase I hypersensitive site
sequencing (DNase-seq), can identify genome regions open
for transcription and thus measure chromatin accessibility
in single cells [39, 40].

(iv) Single-cell proteomics data
Single-cell proteomics investigates individual cells’ protein
content, analyzing their roles and interactions [41]. This
technique is especially valuable when studying cells with
distinct functions or at varying stages of development. Vari-
ous methods are employed in single-cell proteomics, such as
fluorescence-activated cell sorting (FACS), single-cell mass
spectrometry (CyTOF) and microfluidics-based techniques.

(v) Joint-modality single-cell multi-omics data
New techniques have allowed for the simultaneous mea-
surement of multiple modalities, resulting in joint-modality
data that provides a more comprehensive understanding of
the molecular and cellular processes involved in tissue and
organ function [42, 43]. Several techniques allow researchers
to simultaneously measure the DNA methylation and
transcriptomic data in individual cells, such as scM&T-seq
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[44], scMT-seq [45], scTrio-seq [46] and snmCT-seq. Perturb-
seq [47, 48] and CRISP-seq [49] are techniques that mea-
sure CRISPR-based transcriptional interference and high-
throughput scRNA-seq. Similar techniques, such as Paired-
seq [50] and SNARE-seq [51], investigate transcriptome and
chromatin accessibility in single cells or nuclei. The data
generated by these techniques allow multimodal omics
analysis at the single-cell level.

OVERVIEW OF MDL TECHNIQUES
Recent studies have investigated the potential of deep learning
models in tackling complex and multimodal biological challenges
[52] with encouraging outcomes. The main goal of deep learning is
to train models that can learn high-level features of input data by
processing them through a series of layers. In this process, earlier
layers learn simpler data abstractions, which are combined in
deeper layers to form more informative and complex representa-
tions relevant to the task at hand [53]. Deep learning can capture
non-linear and cross-modal relationships, making it a powerful
tool for addressing multimodal biological problems.

FCNN: A fully connected neural network (FCNN) connects
all the nodes of one layer to the subsequent layer’s nodes.
Researchers have employed FCNN in various studies to solve
different problems. For example, Park et al. [54] used FCNN to
predict Alzheimer’s disease (AD) by concatenating gene expres-
sion and DNA methylation data. Huang et al. [55] utilized FCNN
to integrate mRNA and miRNA data to predict cancer patient
survival. Dent et al. [56] trained four FCNNs with four types of
drug features and integrated their predictions by taking the mean
of the probabilities of the 65 targets. Huang et al. [57] fused clinical
and imaging data using FCNN during the final decision stage.

CNN: Convolutional neural network (CNN) is a model that
comprises three layers: the convolutional layer, the pooling layer
and the fully connected layer. It has demonstrated impressive
performance in dealing with image and audio data. Chang et al.
[58] combined genomic profiles of 787 human cancer cell lines
and structural profiles of 244 drugs and applied CNN to predict
drug effectiveness. Similarly, Islam et al. [59] used a deep CNN
model to combine copy number alteration and gene expression
data to classify molecular subtypes of breast cancer. Spasov et al.
[60] utilized a CNN to fuse magnetic resonance images (MRI) and
clinical data to predict AD.

RNN: A recurrent neural network (RNN) maintains a state vec-
tor that encodes information from past time steps and updates it
at each time step. It is particularly effective for analyzing temporal
data. For instance, Bichindaritz et al. [61] utilized long short-term
memory techniques to predict the survival rate for breast cancer
by integrating gene expression and DNA methylation data. Lee
et al. [62] used gated recurrent units to learn marginal represen-
tation from multi-omics data to predict AD progression.

AE: Autoencoder (AE) is a neural network architecture that
consists of an encoder and a decoder, and it is commonly used
for representation learning. The encoder learns a compressed
latent representation of the input data, and the decoder aims
to reconstruct the input data from the latent representation. To
tackle multimodal biological problems, AE and its variations have
been widely used. For instance, Guo et al. [63] applied denoising
autoencoders to multi-omics ovarian cancer data to identify can-
cer subtypes. Islam et al. [59] employed a stacked autoencoder to
predict breast cancer subtypes using early fused copy number
alteration and gene expression data. Ronen et al. [64] utilized a
stacked variational AE (VAE) to measure the similarity between
colorectal tumors and cancer cell lines.

Figure 1. Workflow of deep learning-based single-cell multi-omics data
integration.

DBN: A deep belief network (DBN) comprises multiple Boltz-
mann machines arranged in a specific order, with lower com-
putational complexity than deep neural networks. Suk et al. [65]
adopted a multimodal DBN to predict AD by aggregating positron
emission tomography scans and MRI. To predict disease–gene
associations, Luo et al. [52] utilized two DBNs to learn latent rep-
resentation from protein–protein interaction networks and gene
ontology. A joint representation was then learned from that latent
representation using another DBN.

Heterogenous model: Zhang et al. [66] developed fusion mod-
els based on CNNs and RNNs to learn patient representation
by combining sequential clinical notes, static demographic and
admission data. In another study, Lin et al. [67] utilized three
separate encoder networks to learn marginal representations of
mRNA, DNA methylation and copy number variation data for
breast cancer subtype prediction. These marginal representations
were concatenated and fed into a classification subnetwork to
learn a joint representation. More recently, sciCAN [68] combined
generative adversarial networks (GAN) and encoder models for
integrating single-cell multi-omics data.

MDL MODELS FOR SINGLE-CELL DATA
INTEGRATION
We were able to identify a total of 21 studies published by
2022. Figure 1 shows the workflow of integrating single-cell
multi-omics data using MDL techniques. We first analyze the
single-cell multi-omics data (Table 2) and the proposed models
(Table 3). Then, we categorized the studies based on fusion
strategy, data type, key task and downstream analysis.

Data description
The input datasets of the studies (Table 2) are classified as ‘paired’
or ‘unpaired’. ‘Paired’ means the same cells or the same type of
cells are selected from different integrating modalities and used
as anchors for the integration task. ‘Unpaired’ means the cells
are not matched between different modalities, and no anchor is
defined.

MDL integration methods can be classified into three types,
horizontal, vertical and diagonal data integration, depending on
pairing and anchor information [136]. Horizontal integration uses
shared features like genes to link data from different modalities,
while vertical integration uses paired cells as anchors. In con-
trast, diagonal integration methods perform integration without
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Table 2. Data description of current works of MDL-based single-cell multi-omics data integration

Year Papers Cell type Integration
type

Data sample Technology Modality

2018 MAGAN [69] Paired Vertical Human bone marrow [70] CyTOF, scRNA-seq FACS-sorted/scRNA-seq
2019 k-Coupled AE [71] Paired Vertical Single neurons [72] Patch-seq scRNA-

seq/electrophysiological
profiles

2020 SCIM [73] Unpaired Diagonal Melanoma tumor from the
Tumor Profiler project [74],
human bone marrow
sample [75]

scRNA-seq/CyTOF scRNA-seq/CyTOF

2021 scMM [76] Paired Vertical Human PBMC [2] and
BMNC [5]

CITE-seq scRNA-seq/surface protein

Mouse skin [3] SHARE-seq scRNA-seq/scATAC-seq
Cobolt [77] Paired Vertical Adult mouse cerebral

cortices [51]
SNARE-seq mRNA-seq/scATAC-seq

Mop [78] scRNA-seq,
scATAC-seq

scRNA-seq/scATAC-seq

Human PBMC [79–82] 10X Multiome scRNA-seq/scATAC-seq
BABEL [83] Paired Vertical Human PBMC [84], DM and

HSR cells (GSE160148)
10X Multiome scRNA-seq/scATAC-seq

(single nuclei)
Adult mouse cerebral
cortex [51] (GSE126074)

SNARE-seq

Mouse skin [3] (GSE140203) SHARE-seq scRNA-seq/scATAC-seq
Human bone marrow [5]
(GSE128639)

CITE-seq scRNA-seq/protein epitope

scMVAE [85] Paired Vertical Human cell lines mixture
[51]

SNARE-seq scRNA-seq/scATAC-seq

Adult mouse cerebral
cortex [86]

scCAT-seq

totalVI [87] Paired Vertical Human PBMC10k [88] and
PBMC5k [89], MALT [90],
SLN111-D1, SLN111-D2,
SLN208-D1, SLN208-D2
(GSE150599)

CITE-seq scRNA-seq/surface protein

Crossmodal-AE
[91]

Paired and
unpaired

Vertical and
diagonal

Human lung [92]
(GSE117089), human
PBMCs [93]

scRNA-seq,
scATAC-seq

scRNA-seq/scATAC-seq

Human PBMC [94], Zenodo
[91]

– Chromatin image data

SMILE [95] Paired Vertical Mouse kidney [92]
(GSE117089)

sci-CAR scRNA-seq/scATAC-seq

Mixed cell lines [51]
(GSE126074)

SNARE-seq

Mouse brain and skin [3]
(GSE140203)

SHARE-seq

Human prefrontal cortex
[96] (GSE130711)

snm3c-seq Single-cell DNA
methylation/ Hi-C

Mouse brain [97]
(GSE152020)

Paired-tag scRNA-seq/4 histone mark
data (H3K4me1, H3K9me3,
H3K27me3, H3K27ac)

2022 scMoGNN [98] Paired Vertical Hallmark genesets [99]
from MsigDB

– GEX (scRNA-seq) to ADT
(protein), and GEX
(scRNA-seq) to scATAC-seq

SAILERX [100] Paired Vertical Human PBMC [2] 10X Multiome scRNA-seq/scATAC-seq
Mouse skin [3] SHARE-seq
Mouse cortex [51] SNARE-seq

GLUE [101] Unpaired Diagonal Mouse cortex [51]
(GSE126074)

SNARE-seq scRNA-seq/scATAC-seq

Mouse skin [3] (GSE140203) SHARE-seq
Human PBMC [84, 102] 10X Multiome
Mouse nephron [103]
(GSE151302) and Mop [78]

scRNA-seq,
scATAC-seq

Mop [104] snmC-seq DNA methylation

(Continued)
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Table 2. Continued

Year Papers Cell type Integration
type

Data sample Technology Modality

scMVP [105] Paired Vertical Mouse cerebral cortex
(GSE126074) [51]

SNARE-seq scRNA-seq/scATAC-seq

Human and mouse
(GSM3271040, GSM3271040)
[92]

sci-CAR

Mouse (GSE130399) [50] Paired-seq
Mouse skin (GSE140203) [3] SHARE-seq
Human PBMC and lymph
node [106]

10X Multiome

scJoint [107] Paired and
unpaired

Vertical and
diagonal

Mouse atlas [108, 109],
human hematopoiesis [110]

scRNA-seq, scATAC-seq scRNA-seq/scATAC-seq

Human fetal atlas [111, 112] scRNA-seq (GSE156793),
scATAC-seq (GSE149683)

Adult mouse cerebral
cortex [51] (GSE126074)

SNARE-seq

Human PBMC T-cell
stimulation experiment
[113] (GSE156478)

CITE-seq [114] and
ASAP-seq [113]

Gene expression levels
(scRNA-seq) or chromatin
accessibility (scATAC-seq)
simultaneously with
surface protein levels

sciCAN [68] Unpaired Diagonal Mixed cell lines [51]
(GSE126074)

SNARE-seq scRNA-seq/scATAC-seq

Mouse skin [3] (GSE140203) SHARE-seq
Human PBMC [115] 10X Multiome
Human hematopoiesis
[110] (GSE139369), human
lung [116] (GSE161383) and
mouse kidney [117]
(GSE157079)

scRNA-seq, scATAC-seq

CRISPR-perturbed
single-cell K562

Perturb-seq [47]
(GSE90063)

scRNA-seq

Spear-ATAC [118]
(GSE168851)

scATAC-seq

scDART [119] Unpaired Diagonal Mouse neonatal brain
cortex [51] (GSE126074)

SNARE-seq scRNA-seq/scATAC-seq

Mouse endothelial cells
[120] (GSE137117)

scRNA-seq, scATAC-seq

Human hematopoiesis scRNA-seq [121]
(GSE117498),
scATAC-seq [122]
(GSE96772)

Portal [123] Paired and
unpaired

Vertical and
diagonal

Mouse brain atlas [124] SPLiT-seq snRNA-seq
Mouse brain atlas [125, 126] Drop-seq and 10X scRNA-seq
Human PBMC [127] scRNA-seq scRNA-seq
Human brain [128, 129] snRNA-seq snRNA-seq
Human PBMC [113] CITE-seq scRNA-seq

ASAP-seq scATAC-seq
MIRA [130] Paired Vertical Mouse skin [3] SHARE-seq scRNA-seq/scATAC-seq

Mouse embryonic brain
[115]

10X Multiome

SCALEX [131] Paired Vertical Human PBMC [102, 132] 10X Multiome scRNA-seq/scATAC-seq
scMDC [133] Paired Vertical BMNC (GSE128639), CBMN

(GSE100866), PBMC,
SLN111_D1, SLN111_D2,
SLN208_D1 and SLN208_D2
(GSE150599)

CITE-seq scRNA-seq/surface
protein (ADT)

Mouse brain E18, PBMC10K,
PBMC3K [134]

SMAGE-seq (SNARE-seq
and 10X Multiome)

scRNA-seq/scATAC-seq

STACI [135] Unpaired Diagonal Mouse brain (STARmap
PLUS dataset)

STARmap Spatial RNA (gene
expression, cell
adjacency matrix) and
chromatin imaging

Note: Abbreviations. PBMC: peripheral blood mononuclear cells. BMNC: bone marrow mononuclear cells. Mop: mouse primary motor cortex. DM: colon
adenocarcinoma COLO-320 cells. HSR: colorectal adenocarcinoma COLO-320 cells. MALT: mucosa-associated lymphoid tissue. SLN111-D1, SLN111-D2,
SLN208-D1 and SLN208-D2: the murine spleen and lymph node data. MSigDB: Molecular Signatures Database. CBMN: cord blood mononuclear cells.
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Table 3. Current work on deep learning-based single-cell multi-omics data integration

Year Papers Methods Fusion Key task Evaluation

2018 MAGAN [69] GAN Intermediate (marginal
homogeneous)

• Modality prediction • No downstream task

2019 k-Coupled AE [71] AE Late • Modality prediction • Cell type discovery
2020 SCIM [73] VAE (2 encoders + 2

decoders + 1
discriminator)

Intermediate (joint
homogeneous)

• Joint embedding • Cell matching
• Cell type discovery

2021 scMM [76] VAE (2 encoders + 2
decoders)

Intermediate (joint
homogeneous)

• Joint embedding
• Modality prediction

• Cell type discovery
• cis-Regulatory analysis

Cobolt [77] VAE (2 encoders + 2
decoders)

Intermediate (joint
homogeneous)

• Joint embedding • DE
• Cell type discovery

BABEL [83] AE Intermediate (joint
homogeneous)

• Joint embedding
• Modality prediction

• Cell type discovery

scMVAE [85] VAE Early and intermediate
(joint homogeneous)

• Joint embedding • Cell type discovery
• cis-Regulatory analysis

totalVI [87] VAE Early • Joint embedding
• Modality prediction

• Protein identification and
correction
• DE
• Archetypal analysis

Crossmodal-AE
[91]

AE Intermediate (joint
heterogeneous)

• Joint embedding
• Modality prediction

• DE
• Cell matching

SMILE [95] Encoder Intermediate (marginal
homogeneous)

• Joint embedding
• Modality matching

• DE

2022 scMoGNN [98] GCNN Intermediate (marginal
and joint homogeneous)

• Joint embedding
• Modality prediction
• Modality matching

• No downstream analysis

SAILERX [100] VAE (1 encoder + 1
decoder)

Intermediate (joint
heterogeneous)

• Joint embedding • cis-Regulatory analysis
• Cell type discovery

GLUE [101] VAE (3 encoders + 3
decoders)

Intermediate (marginal
homogeneous)

• Joint embedding • cis-Regulatory analysis
• Cell type discovery

scMVP [105] VAE (3 encoders +2
decoders)

Intermediate (joint
homogeneous)

• Joint embedding • Cell type discovery
• cis-Regulatory analysis
• Trajectory inference

scJoint [107] Encoder Intermediate (joint
homogeneous)

• Joint embedding
• Modality prediction

• Cell type discovery
• DE

sciCAN [68] Encoder + GAN Intermediate (joint
heterogeneous)

• Joint embedding
• Modality prediction

• Trajectory inference analysis
• Cellular response analysis to
genetic perturbation

scDART [119] FCNN Intermediate (joint
homogeneous)

• Joint embedding
• Modality prediction

• Trajectory inference analysis
• DE
• Cell matching

Portal [123] GAN Intermediate (joint
homogeneous)

• Joint embedding • Cell type discovery

MIRA [130] VAE Late • Joint embedding • Trajectory inference analysis
• cis-Regulatory analysis

SCALEX [131] VAE Early • Joint embedding • DE
• Cell type discovery

scMDC [133] AE Early • Joint embedding
• Modality matching

• DE

STACI [135] Over-parameterized
AE

Early • Joint embedding
• Modality prediction

• DE
• Amyloid plaques prediction
• Identification of spatio-
temporal changes in AD

using paired cells or shared features as anchors. These meth-
ods aim to build a simplified representation of the relation-
ships between data modalities, assuming an underlying low-
dimensional structure links them. The current review excludes
studies in the horizontal category because they often use only
one data modality from different sources. As shown in Table 2,
only a few papers have used unpaired cells of different modalities
to perform diagonal integration. SCIM, crossmodal-AE, STACI,
GLUE, scJoint, sciCAN, scDART and Portal are examples of diagonal

integration methods. Crossmodal-AE, scJoint and Portal perform
both vertical and diagonal integration on paired or unpaired cell
types.

Table 2 also describes the datasets based on data sources,
technology or platform used for sequencing the data and com-
paring modalities. Most studies performed the integration task
between scRNA-seq and scATAC-seq [68, 76, 77, 83, 85, 91, 95,
100, 101, 105, 107, 119, 123, 130, 131]. Some studies performed
integration of multiple modality pairs like scMM [76], Cobolt [77],
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SMILE [95], Portal [123], scMoGNN and scMDC [133]. For example,
besides integrating scRNA-seq and scATAC-seq data, scMM and
totalVI also integrated scRNA-seq and surface protein profiling
data. Crossmodal-AE is the only study that performed integra-
tion between chromatin image and scRNA-seq data. STACI [135]
integrated single-cell spatial transcriptomics data with chromatin
images. Some studies go beyond modality pairs and can integrate
multiple data modalities. For example, GLUE integrated three
different omics data modalities and named it triple omics integra-
tion. SMILE also integrated three modalities using a combination
of the two model variants.

Model architecture
Table 3 summarizes the recent MDL models developed for single-
cell multi-omics data integration. All the models used two-
dimensional numerical matrices to represent the input data. We
categorize these models into seven groups, VAE, AE, encoders,
GAN, FCNN, GNN and heterogenous models, detailed as follows.

VAE: Most studies we surveyed utilized VAE. For instance,
SCIM employs VAE to integrate scRNA-seq and CyTOF modalities.
In SCIM, each modality is modeled by an encoder-decoder net-
work, and a discriminator is incorporated to identify a specific
source modality from the latent representation of other modal-
ities. Through adversarial training, SCIM can generate an inte-
grated latent space. However, SCIM cannot predict one modality
from another and thus cannot accomplish cross-modal transla-
tion tasks.

scMM, similar to SCIM, aims to integrate multiple modalities
into a shared space. However, scMM has the additional capability
of cross-modal translation. scMM uses a VAE to integrate two
modalities. The encoder-decoder network first takes the feature
vectors for each modality as input. An encoder is trained to
generate a low-dimensional joint variational posterior that can be
factorized by a ‘mixture of experts model’ (MOE) [137]. This joint
representation is then used to train decoders that reconstruct the
underlying data distribution in each modality. The MOE factor-
ization enables the separation of each modality from the joint
representations, which helps scMM to perform cross-modality
predictions.

Cobolt adopts an approach similar to scMM in projecting dif-
ferent modalities into a shared latent space. However, Cobolt
distinguishes itself from scMM in its attempt to integrate joint-
modality data with single-modality data. Given the current preva-
lence of single-modality data over joint-modality data in both
quality and quantity [77], there is a strong interest in integrating
both types of multi-omics data. Cobolt employs three encoders to
learn the latent feature distributions of the input modalities: one
for scRNA-seq, one for joint-modality data (scRNA-seq + scATAC-
seq) and another for scATAC-seq. Each encoder learns separate
latent embeddings and posterior distributions of latent variables.
Cobolt then projects the modalities into a shared latent space
by taking the posterior mean of these distributions. Finally, three
separate decoders learn from the shared latent embeddings.

The MDL models described earlier can generate a shared fea-
ture representation (joint embedding) that preserves modality-
specific information [105]. However, when significant noise or
sparsity exists in joint-modality data, the resulting joint embed-
ding may not accurately capture the biological variation, causing
difficulties in downstream analysis and interpretation [105]. To
address this issue, scMVAE and scMVP were developed. scM-
VAE utilizes one multimodal encoder, two single-modal encoders
and two single-modal decoders. The multimodal encoder models

scRNA-seq and scATAC-seq data with three joint-learning tech-
niques. One is to estimate a joint posterior from the product
of posteriors of each modality. One is to learn a joint-learning
space using a neural network, and another is to obtain a con-
catenation of the original features of each modality. Meanwhile,
the single-modal encoders play the roles of data normalization,
denoising and imputation of the input modalities. scMVP has the
same architecture as scMVAE, but scMVP’s joint-modality encoder
only uses a neural network to learn the joint-learning space of
the scRNA-seq and scATAC-seq modalities. scMVP improves joint
embedding by connecting its two decoders through a cell-type-
guided attention module that captures the correlation between
the two modalities. Furthermore, scMVP’s single-modal encoders
are connected to the joint embedding with two extra modules that
ensure clustering consistency.

The assumption that all data sources are equally valuable and
follow the same distribution is not always true. For example, in
scATAC-seq experiments, the amount of data per cell is typically
lower and more variable than in scRNA-Seq experiments from
the same cell [100]. Directly combining data using neural net-
works from such imbalanced modalities can lead to overfitting
[100]. SAILERX was introduced to address these challenges by
only learning scATAC-seq data with a VAE, and for scRNA-seq,
using pre-trained scRNA-seq embeddings. SAILERX also enforces
similarity between the latent space of both modalities through
regularization, which preserves local cell structure across modal-
ities. The goal is to avoid overfitting and allow hybrid integra-
tion of joint profiling data with single-modality data, similar to
Cobolt.

Combining RNA and protein data to create a unified rep-
resentation of cell state is challenging due to technical biases
and inherent noise in each data modality. In particular, pro-
tein data presents a unique challenge due to background noise
from ambient or nonspecifically bound antibodies [87]. The VAE-
based totalVI model provides a solution for integrating scRNA-
seq and protein data while correcting for protein background
noise. To achieve this, totalVI takes matrices of scRNA-seq and
protein count data as input, along with categorical covariates
such as experimental batch or donor information. The encoder
then generates a joint latent representation of both modalities,
which helps to control modality-specific noise properties and
batch effects. Finally, the decoder estimates the parameters of the
underlying distributions of both modalities from the joint latent
representation while correcting for protein background noise.

Integrating unpaired multi-omics data can be difficult since
each modality has unique feature spaces. To address this issue,
GLUE was developed to integrate unpaired multi-omics data via
graph-guided embeddings. GLUE uses a separate VAE to model
each data modality. To merge modality-specific feature spaces,
GLUE constructed a knowledge-based graph using cross-modality
regulatory interactions, with vertices representing the features of
different omics data modalities and edges representing regulatory
interactions. A variational graph AE (VGAE) is adopted to create
graph embeddings from the knowledge-based graph. The VGAE
is then connected with the modality-specific decoders to help
integrate these unpaired multi-omics data.

The above-discussed MDL techniques were not designed specif-
ically for online integration tasks [131]. As a solution, SCALEX was
developed to continuously integrate new single-cell multi-omics
data without recalculating all previous integrations [131]. The
VAE-based SCALEX model aims to create a generalized encoder
for data projection without retraining, and it achieves this through
three key design elements.



8 | Athaya et al.

AE: Several studies have adopted AEs for multimodal data
integration. One such approach is the k-coupled AE, which
uses a multi-agent AE approach [71], where each AE agent
learns a modality separately. These agent AEs are coupled by
an overall cost function that measures the dissimilarity among
the representations learned by the agent AEs. All agent AEs
minimize this overall cost function during training to produce
a better integrated latent representation. The k-coupled AE is
useful for cross-modal translation. Another study, BABEL, uses
two AE-based architecture to generate cross-modal translation.
Two separate encoders learn two modalities separately and
project them into a shared latent space, which is learned by
two decoders to create the original modalities. Another AE-based
model, scMDC, focuses on accurately clustering single-cell data.
It uses a multimodal AE to learn a joint latent representation
from the concatenated modalities of scRNA-seq and (CITE-
seq or scATAC-sesq). Unlike the previous studies focusing on
sequencing data only, crossmodal-AE integrates image and
sequencing data. The approach of the crossmodal-AE is similar
to BABEL. However, the AEs are customized according to specific
modalities in crossmodal-AE. For example, to project single-cell
image data, scRNA-seq, scATAC-seq and single-cell Hi-C data
into the shared latent space, AEs corresponding to CNN, FCNN
and GNN are designed, respectively. STACI extended the work of
crossmodal-AE, which used AE with over-parameterization. Over-
parameterization means extending the size of hidden layers to
be greater than the input feature space. The model used separate
decoders to obtain each modality from the latent embedding.

Encoders: The encoder-based SMILE model integrates single-
cell multi-omics data using contrastive learning. There are two
variants of SMILE: pSMILE and mpSMILE. The former has two
encoders corresponding to two input modalities. One-layer mul-
tilayer perceptrons (MLPs) are applied to each encoder to reduce
the dimensionality of its output. The outputs are then subjected
to noise contrastive estimation to maximize mutual informa-
tion in the shared latent space. mpSMILE uses two encoders
as well but has one encoder duplicated to give more weight
to the corresponding data modality. Doing so can improve dis-
criminative representations [107, 138]. In another study, scJoint
presents an encoder-based transfer learning method that learns
a joint embedding space from scRNA-seq and scATAC-seq data.
Since unpaired multi-omics data integration is challenging due to
distinct feature spaces, scJoint uses two loss functions to identify
orthogonal latent features and maximize the alignment of dif-
ferent modalities. In addition to a cross-entropy loss for cell-type
prediction, the joint embedding space can be used by a k-nearest
neighbor approach to transfer cell labels from scRNA-seq cells to
ATAC-seq cells, further improving the joint embedding space.

GAN: MAGAN is a model that addresses the challenge of
integrating unpaired data using a manifold alignment strategy.
MAGAN uses a dual GAN framework consisting of two GANs,
which align manifolds from two modalities. One GAN is
responsible for creating a mapping from the first modality to
the second modality, while the other GAN learns the mapping
from the second to the first modality.

FCNN: Existing methods for integrating unpaired data into a
single latent space primarily focus on cells that form clusters
rather than continuous cells that follow trajectories [8, 9, 139].
scDART addresses this limitation by utilizing a FCNN to project
data into a shared latent space while preserving cell trajectories.
The scDART model consists of two parts: the gene activity func-
tion, which generates a ‘pseudo-scRNA-seq’ count matrix from
scATAC-seq data; and the projection module, which takes both

the original scRNA-seq data and the ‘pseudo-scRNA-seq’ data as
input to produce a shared latent space. The diffusion/random-
walk-based distances between cells along the trajectory manifold
in the original and the latent space are considered in the overall
loss function to preserve the cell trajectory structure.

Graph neural network (GNN): Integration studies like BABEL,
scMM and Cobolt often treat each cell as an independent input,
which can overlook important high-order interactions between
cells and modalities. Such interactions are critical for effective
learning from single-cell data’s high-dimensional and sparse
cell features. scMoGNN leverages GNNs to integrate single-cell
modalities while preserving high-order structural information to
address this limitation. Specifically, scMoGNN first constructs
a cell-feature graph from a given modality and applies a graph
CNN (GCNN) to obtain latent embeddings of cells. These cell
embeddings are then fed into a task-specific head for downstream
tasks such as modality prediction, matching and joint embedding.

Heterogenous model: The SMILE model, mentioned earlier,
requires cell anchors and can only be applied when corresponding
cells are known across multiple modalities. sciCAN was devel-
oped to address this limitation. The sciCAN model consists of
representation learning using an encoder and modality alignment
using a GAN. The encoder employs noise contrastive estimation
as its loss function to learn a joint low-dimensional represen-
tation. The GAN component includes two discriminators: one
identifies source domains represented by a latent representation,
and the other generates one data modality from the other, such
as chromatin accessibility data from gene expression data. sci-
CAN differentiates itself from similar models like single-cell GAN
(scGAN) [140] and AD-AE by using one additional cycle-consistent
adversarial network, which introduces cycle-consistent loss to
learn the connections between two modalities.

With the emergence of Atlas-level scRNA-seq datasets, there is
a growing need for integration techniques that can handle large
numbers of cell populations and are computationally scalable.
In response, the Portal model was developed. To align single-cell
datasets, the Portal model employs a domain translation network
of two encoders, generators and discriminators. The encoders
learn latent embeddings for input modalities, the generators gen-
erate one modality data from the latent embedding of the other
modality and the discriminators identify non-aligned data points
to improve network training further.

Key tasks
Single-cell data integration can be divided into three key tasks:
modality prediction, matching and joint embedding [98]. In the
modality prediction task, one modality is predicted given the
other modality. Among the surveyed papers, MAGAN and k-
coupled AE both perform modality prediction tasks, as shown
in Table 3. MAGAN predicts scRNA-seq from CyTOF or vice
versa, while k-coupled AE predicts neuron morphological data
from scRNA-seq. No studies have focused solely on modality
matching. SCIM, Cobolt, scMVAE, SAILERX, GLUE, scMVP, Portal,
MIRA and SCALEX all perform joint embedding tasks exclusively.
In contrast, scMM performs joint embedding and modality
prediction simultaneously. First, scRNA-seq and scATAC-seq
modalities are jointly embedded, then used by decoders to predict
one modality given another. Similarly, BABEL, scJoint, sciCAN,
totalVI, crossmodal-AE, STACI and scDART perform both joint
embedding and modality prediction tasks on various single-
cell omics data modalities. SMILE performs joint embedding
and modality matching tasks with scRNA-seq, scATAC-seq,
DNA methylation and Hi-C modalities. scMoGNN performs all
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Table 4. Classification of single-cell multimodal studies according to fusion strategy

Fusion Category 1 Category 2 Papers

Early scMVAE (with direct learning), totalVI and SCALEX, STACI
Intermediate Homogeneous Marginal MAGAN, SMILE, scMoGNN (with modality prediction and modality

matching tasks) and GLUE
Joint SCIM, scMM, Cobolt, BABEL, scMVAE, scMoGNN (with joint

embedding task), scMVP, scJoint, scDART and Portal
Heterogeneous Marginal –

Joint Crossmodal-AE, SAILERX and sciCAN
Late k-Coupled AE and MIRA

Figure 2. Classification of fusion strategy.

Figure 3. (A) Early fusion strategy. (B) Intermediate fusion strategy. (C)
Late fusion strategy. Layers enclosed in blue rounded rectangle are shared
between modalities and used to integrate modalities [52].

three tasks (joint embedding, modality prediction and modality
matching) with mRNA, scATAC-seq and ADT modalities.

Fusion methods
Methods for integrating data from multiple modalities in an MDL
model architecture are called fusion methods. Three types of
fusion strategies have been identified: early fusion, intermediate
fusion and late fusion [52] (as shown in Figure 2). The fusion
strategies of the various studies are detailed as follows (Table 4).

Early fusion: The strategy of ‘early fusion’ involves concatenat-
ing input features from different modalities to serve as the input
of a deep learning model (Figure 3A). scMVAE, totalVI, STACI and
SCALEX are among the studies that utilized the early fusion strat-
egy. These studies aggregated modalities first and then utilized
VAE to learn the joint latent embedding.

Intermediate fusion: The majority of studies we surveyed have
used intermediate fusion, where the modalities are learned first
and fused later inside the MDL model. For instance, in Figure 3B,
the marginal representation of modality 1 and 2 are learned
first and integrated later inside the neural network layer. Inter-
mediate fusion can be further classified into two categories:
homogeneous and heterogeneous. Homogeneous fusion is used
when the modalities are learned through the same type of neural
network. In contrast, heterogeneous fusion is used when the

modalities are learned through different types of neural networks.
Moreover, based on representation, both homogeneous and het-
erogeneous fusion can be divided into marginal and joint types.
The marginal representation uses features to represent latent
components based on a single modality, while joint representation
encodes information from several modalities.

In joint homogeneous fusion, marginal representations are
first concatenated, and then a joint representation is learned from
that concatenated marginal representation. For example, SCIM
assumes joint homogeneous fusion since modalities are learned
by two separate VAEs and then imposed into a shared latent space.
Joint heterogeneous intermediate fusion is a good strategy for
learning informative cross-modality interactions, where different
modalities are learned through different types of neural networks
concatenated. Then, a joint representation is learned from that
concatenated marginal representation using a separate neural
network. For example, crossmodal-AE, SAILERX and sciCAN follow
the joint heterogeneous fusion strategy.

The marginal homogeneous fusion strategy involves using the
same type of neural network to learn marginal feature represen-
tation from different modalities, which are later merged into the
decision function. For example, SMILE adopted this strategy by
using two separate encoders to learn two modalities and create
two latent embeddings, followed by two MLPs that learned from
both embeddings to minimize the model’s loss.

Late fusion: Late fusion integrates the decisions of separate
models to make a final decision (Figure 3C). k-Coupled AE and
MIRA are examples of models that use the late fusion strategy.
In k-coupled AE, two modalities are learned through two separate
coupled AE, and the latent representations are later aggregated. In
MIRA, two modalities are learned through two separate VAEs, and
the latent representations are combined later to make the final
decision.

Downstream analysis
The integration of single-cell modalities using MDL provides great
assistance for downstream analysis. Following integration, the
MDL models are assessed through downstream analysis and uti-
lized for such purposes. Commonly practiced downstream anal-
ysis includes cell type discovery, differential expression analysis
(DE), cell trajectory inference, cell matching and cis-regulatory
analysis, as detailed below (Table 3).

Cell type discovery: The goal of cell type discovery is to identify
the different types of cells present within a sample. Most tools
performed cell type discovery to validate their results and illus-
trate their usage. For example, SCIM recovered T cells by inte-
grating scRNA and CyTOF modalities. scJoint found 19 cell types
common between scRNA-seq and scATAC-seq data. However, the
detected cell types often vary across the studies. For instance, in
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the crossmodal-AE study, scRNA-seq data from human peripheral
blood mononuclear cells (PBMCs) [93] was analyzed and clustered,
revealing the presence of four types of T cells. In comparison,
SAILERX clustered the PBMC 10k dataset [2] and identified 29
cell types. Similarly, scMM performed clustering on the same
PBMC dataset [2] and identified 54 cell types. Cell type discovery
accuracy is often validated by comparing the consistency of the
detected cell types with the cell labels annotated in the original
data. For example, scMM compared their discovered cell types
with the cell-type annotation of PBMC dataset [2]. Some stud-
ies such as SCALEX validated cell type discovery by assessing
through quantitative clustering metrics such as ARI (adjusted
Rand index), NMI (normalized mutual information) and silhouette
scores. Crossmodal-AE performed protein immunofluorescence
staining to validate the discovered cell types. In this experiment,
they selected two genes, CORO1A and RPL10A, that were predicted
to be strongly upregulated in specific subpopulations of naive
T cells with distinct patterns of chromatin density. They then
analyzed immunofluorescence staining data of the two proteins
along with the chromatin images. They demonstrated that the
tool effectively aligns gene expression with the image features,
allowing for the characterization of distinct subpopulations of
naive T cells.

DE: The process of DE involves identifying genes that are
expressed differently across distinct cell types. This analysis pro-
vides insights into how gene expression changes in response to
various biological conditions [141]. The reviewed studies utilized
DE analysis on several single-cell multi-omics datasets to inves-
tigate alterations in gene expression. For example, in a study
conducted by Cobolt, DE analysis showed distinct expression
levels of Adarb2 and Sox6 genes in scRNA-seq and scATAC-seq
clusters, which are known markers distinguishing between CGE
and Pvalb clusters. The scDART, SCALEX, STACI and SMILE also
performed DE on their data and made discoveries supported by
the literature. Most studies validated their DE analysis results
utilizing the existing evidence. For instance, scDART compared
their DE analysis findings with existing evidence [51]. On the other
hand, totalVI performed Welch’s t-test and Wilcoxon rank-sum
test to validate their DE analysis findings [87].

Trajectory inference: Trajectory inference aims to identify the
progression of a cellular dynamic process and organize cells based
on their movement through the process. scMVP, sciCAN, scDART
and MIRA all performed trajectory inference. For example, scMVP
conducted trajectory inference analysis on growing bulge cells
of the SHARE-seq mouse skin dataset and identified two paths
from αhigh CD34+ bulge to new bulge cells. sciCAN conducted
co-trajectory analysis to investigate the hematopoietic hierarchy.
The scDART algorithm was evaluated by trajectory inference
analysis on a neonatal mouse brain cortex dataset. Moreover,
MIRA investigated hair follicle maintenance and differentiation,
revealed the hierarchy of different follicle lineages and recreated
the true layout of the follicle. All studies validated the trajectory
inference results by comparing with the existing evidence [3].

Cell matching: Cell matching has been used as an assessment
technique to evaluate the effectiveness of joint latent embed-
ding. For example, SCIM employed this strategy to match cells
between scRNA and CyTOF modalities in a melanoma tumor
sample. Crossmodal-AE employed the cell-matching strategy on
the human lung adenocarcinoma dataset [92] to match samples
between RNA-seq and ATAC-seq modalities. In addition, scDART
evaluated the cell matching capability using the mouse neonatal
brain cortex dataset [51]. To evaluate cell matching accuracy, sev-
eral metrics such as k-nearest neighbors’ accuracy, neighborhood

overlapping score and cosine similarity score were utilized. For
instance, scDART utilized neighborhood overlapping and cosine
similarity scores to evaluate their cell matching accuracy and
achieved the neighborhood overlapping scores of 0.6 and the
cosine similarity scores of 0.712 in the mouse neonatal brain
cortex dataset [51].

cis-Regulatory analysis: cis-Regulatory analysis studies var-
ious cis-acting DNA sequences that modulate gene transcrip-
tion. It includes identifying distal and proximal gene regulatory
regions such as enhancers and promoters, transcription factor
binding sites and their binding patterns called motifs in regulatory
regions, as well as the grammars orchestrated by these binding
elements and motifs. Several tools, including scMM, SAILERX,
MIRA, GLUE and scMVP, have performed cis-regulatory analysis
as a downstream analysis of multi-omics data integration. For
example, scMM identified enriched regulatory motifs in genes and
peaks associated with latent dimensions, while SAILERX deter-
mined the top motifs that were most enriched in individual cell
types. MIRA used topic modeling of cell states and the regulatory-
potential modeling of individual gene loci to identify enriched
motifs, while GLUE identified distal gene regulatory regions based
on the cosine similarity between feature embeddings. All studies
evaluated cis-regulatory analysis findings by comparing their pre-
dictions with the existing evidence. For example, scMVP compared
their cis-regulatory analysis findings with a previous study [51]
and found a higher enrichment of H3K27ac and H3K4me1 in the
translation start site (TSS) distal peaks and H3K4me3 in the TSS
proximal regions.

DISCUSSION AND CONCLUSION
Several limitations and challenges must be addressed to effec-
tively integrate single-cell multi-omics data using deep learning
models. Firstly, data preprocessing is crucial for efficiently inte-
grating multi-omics data, but defining a unified pipeline for data
preprocessing tasks is challenging. Although many deep learning
models use one-hot encoding to standardize two data modalities,
other preprocessing tasks like gene finding, cell labeling, filtering,
scaling, normalization and data formatting are not standardized.
As a result, there is a disparity in results, even for the same input
data, making it difficult to explain the differences.

Secondly, more data information is always needed. For exam-
ple, studies such as SMILE and BABEL require paired data as cell
anchors that are often not readily available. scJoint requires cell
annotations for scRNA-seq data. However, paired information or
annotated cell anchors are not present in all datasets. Although
the diagonal integration method addresses this limitation, as no
pairing information is required for this type of integration, it is not
easy to find common ground to perform the integration among
different modalities without using any anchors. Besides, when
multiple encoders are involved in the AE-based models, it can be
difficult to train them at once without linking information from
various modalities. In addition, as the data become more complex,
it becomes harder to find a shared embedding space. Moreover, as
different studies used different datasets, it is difficult to compare
the methodologies fairly. Furthermore, MDL models need a large
amount of data for training and testing. For example, scMM
faces limitations in generating cell populations due to insufficient
large-scale atlas data for training. Cobolt needs a large amount of
single-modality data for cross-modality prediction. An imbalance
in data for the input modalities may create overfitting issues.

The third challenge in integrating multiple modalities is the
lack of interpretability of modality-specific information from the



Integrating single-cell multi-omics data | 11

joint latent embedding. To address this challenge, scMM created
pseudocells and used Spearman correlation to associate each
latent dimension with the features of each modality. However,
interpreting the latent dimensions limits the model to specific
data, and predicting cell populations not included in the training
data could be challenging.

Another challenge in DL methods is the selection of appro-
priate hyperparameters. These models require extensive tuning
of various parameters, such as the number of hidden nodes,
layers, training epochs and batch size, among others, which can
be time consuming and computationally intensive. While some
models have specific parameters to tune, such as scJoint’s cosine
similarity loss, which requires tuning the fraction of data pairs to
achieve optimal results, other models require more general tun-
ing. Furthermore, DL models suffer from a lack of generalizability,
and customizations in the architecture are often required for new
modalities of data. For instance, crossmodal-AE requires changing
the model architecture for each data modality. As a result, there
are still numerous areas to investigate and significant potential
for growth in the field.

Our study shows that MDL is gaining popularity in single-
cell multi-omics data integration. As the technology continues to
improve and data increases in different modalities (e.g. single-cell
imaging), the model performance has room for improvement in
single-cell multi-omics data integration. Although deep learning
methods demonstrate their influence in single-cell multi-omics
integration, no benchmark pipeline has been defined for dataset
selection, data preprocessing, architecture design, etc. So, future
research can be conducted to obtain a benchmark for specific
tasks. The current studies not only perform single-cell multi-
omics data integration, but also explore various downstream
analyses. However, the downstream analysis tasks are validated
mostly with the existing evidence. To show the power of the inte-
gration methods and generate new biological knowledge, future
research can be conducted to validate the downstream analysis
findings by performing experiments such as multiplex FISH [142].

MDL is a crucial area of research that aims to enhance our
understanding of single-cell data and potentially reveal novel bio-
logical insights [143]. With a growing body of published research,
new and innovative MDL architectures are expected to emerge.
This review does not provide specific recommendations for archi-
tecture design, as it depends on the problem being addressed.
However, the insights presented in this review can serve as a
valuable reference for future research and help advance the field
more coherently.

Key Points

• Surveyed 22 recent studies on single-cell MDL
• Analyzed these studies from five aspects
• No unified pipeline for data processing in MDL studies
• Interpreting of modality-specific information is still

challenging
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