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Abstract

Annotation of cell-types is a critical step in the analysis of single-cell RNA sequencing (scRNA-seq) data that allows the study of
heterogeneity across multiple cell populations. Currently, this is most commonly done using unsupervised clustering algorithms,
which project single-cell expression data into a lower dimensional space and then cluster cells based on their distances from each
other. However, as these methods do not use reference datasets, they can only achieve a rough classification of cell-types, and it is
difficult to improve the recognition accuracy further. To effectively solve this issue, we propose a novel supervised annotation method,
scDeepInsight. The scDeepInsight method is capable of performing manifold assignments. It is competent in executing data integration
through batch normalization, performing supervised training on the reference dataset, doing outlier detection and annotating cell-types
on query datasets. Moreover, it can help identify active genes or marker genes related to cell-types. The training of the scDeepInsight
model is performed in a unique way. Tabular scRNA-seq data are first converted to corresponding images through the DeepInsight
methodology. DeepInsight can create a trainable image transformer to convert non-image RNA data to images by comprehensively
comparing interrelationships among multiple genes. Subsequently, the converted images are fed into convolutional neural networks
such as EfficientNet-b3. This enables automatic feature extraction to identify the cell-types of scRNA-seq samples. We benchmarked
scDeepInsight with six other mainstream cell annotation methods. The average accuracy rate of scDeepInsight reached 87.5%, which
is more than 7% higher compared with the state-of-the-art methods.
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INTRODUCTION
Rapidly developing single-cell RNA sequencing (scRNA-seq) tech-
nologies have made it possible to observe gene expression at
the single-cell level and enhance our understanding of complex
biological systems and diseases, such as cancer and chronic dis-
eases. These methods have significant implications for studying
a wide variety of tissues and the different types of cells within
them. Accurate cell annotation is a prerequisite for downstream
analysis of single-cell data. However, cell annotation is a time-
consuming and expert-dependent step in single-cell analysis. The
annotation process can be divided into three steps [1], automatic
annotation, manual annotation by an expert and verification.
Due to the emergence of a large number of single-cell datasets,
manual annotation by experts based on empirical analysis is
practically impossible at a rate needed to meet the research needs.

Furthermore, manual annotation is not only time consuming and
laborious, but the annotation results can be subjective.

Owing to these factors, improving the accuracy of automatic
annotation has become an essential area of research and in
response to these practical needs the researchers have proposed
a variety of relevant annotation methods. These can be roughly
divided into three different types according to the theoretical
basis [2]: (i) annotation based on marker genes, (ii) annotation
using correlation analysis with reference datasets and (iii) anno-
tation by supervised classifiers trained on reference datasets.

Most single-cell annotation methods start with unsupervised
cell clustering analysis. Cells are first assigned into groups using
clustering methods such as k-means [3], Single-Cell Consensus
Clustering (SC3) [4] and shared nearest neighbor (SNN) [5]. The
clusters are then mapped to different cell-types by analyzing the
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abundance of marker genes within each cluster. However, these
marker gene-based methods have several limitations. The first
issue is the accuracy of the marker gene database. Even though
there are now databases such as PanglaoDB [6], ScType [7] and
CellMarker [8], the selection of some marker genes still depends
on prior research knowledge. The second issue is that information
on marker genes is often insufficient for many cell subtypes and,
in particular, newly discovered cell-types. The third issue is the
duplication of marker genes between subtypes of cells. Taking
the ScType database as an example, the marker genes of multiple
subclasses of B cells heavily overlap with each other, and the lack
of specificity leads to confusion between similar subtypes during
classification.

Annotation methods based on correlation analysis with refer-
ence datasets tend to be more accurate than marker gene-based
methods [9]. This is because gene–gene correlations are generally
ignored when analyzing marker gene lists. Annotation can be
done more comprehensively by correlating target unannotated
datasets with reference datasets of similar biological tissues.
However, batch effects between the reference dataset and the
target dataset can hinder the correct annotation of cell-types.
Technical differences, such as sequencing methods and experi-
mental batches, will affect the results of single-cell sequencing.
Despite this, current correlation-based annotation methods, such
as SingleR [10], often do not offer batch effect processing methods
as part of their pipeline. When annotating datasets obtained in
different experiments, it is very difficult to eliminate the influence
of the batch effects.

Single-cell datasets are often high dimensional and sparse.
In this case, machine learning (ML) is a good choice for pro-
cessing complex sequencing data. After learning the expression
patterns of multiple genes in different cell-types on the refer-
ence dataset, ML methods can transfer labels from the reference
dataset to the target dataset. Deep learning methods in particular
are capable of learning highly abstracted representations from
data such as images, sounds and texts. Given the robustness of
deep learning methods and the availability of finely annotated
reference datasets, supervised learning models have gradually
become widely used in the analysis of reference datasets. Cur-
rently, representative ML methods for processing single-cell omics
data mainly include Bidirectional Encoder Representations from
Transformers (BERT) [2], Autoencoders (AEs) [11] and Recurrent
Neural Networks (RNNs) [12]. Single-cell omics data are often
treated as texts or sequence data since they are not images and
do not have graph network structures.

In this paper, we propose scDeepInsight, an original method
integrating the whole cell-type identification process (Figure 1).
scDeepInsight can directly annotate the query dataset based on
the model trained on the reference dataset. In the first step,
scDeepInsight does preprocessing of scRNA-seq data, including
quality control and integration through batch normalization.
By incorporating DeepInsight [13], our method can convert
the scRNA-seq samples into corresponding images. Images
generated from the reference dataset are used to train a CNN,
which can then be used to predict cell-types found in the
query dataset(s). The absolute superiority of CNNs in image
classification and feature extraction has been widely recognized
[14]. Furthermore, extracted features in the training process are
helpful in investigating marker genes by using DeepFeature [15].
With a unique approach for converting scRNA-seq to image data,
our method allows to fully exploit the advantages of CNNs in cell-
type classification. scDeepInsight enables accurate and efficient
annotation of multiple cell subtypes and can perform outlier

detection. Cell-type prediction results are validated using reliable
pre-annotated cell labels. Also, some rare/unknown cell-types,
which are not included in the reference datasets, can be detected
during the annotation process. Further details are explained in
the Materials and Methods section.

MATERIALS AND METHODS
Overview of scDeepInsight
The workflow of scDeepInsight integrates the whole process
of single-cell annotation, including data preprocessing, image
conversion, neural network training and cell-type prediction
(Figure 1). It takes individual unique molecular identifier (UMI)
count matrices generated after sequencing as input. Each row
of the matrix represents one cell with a unique barcode, and
each column represents a gene. As scDeepInsight is a single-
cell labeling model based on supervised learning, a reference
dataset is also required. After preparing reference and test
datasets, data preprocessing is performed. This step includes
quality control, normalization and correction of batch effect
between the query dataset and reference dataset. Afterwards,
DeepInsight is utilized to convert the processed non-image data
into images. First, the processed data are transformed into two-
dimensional embeddings by some visualization method, like t-
SNE. By mapping genes to pixels, the expression of different genes
in a sample is transformed into a unique image. The lighter the
pixel shade is in the image, the higher is the expression level of the
gene in this cell. Next, the processed images from the reference
dataset are used as the input for the CNN. After training, images
transformed from the query dataset can be fed into the trained
model to complete the annotation of cell-types. The output of the
model is a vector of probabilities that a cell belongs to a specific
cell-type. The label corresponding to the highest probability is
taken as a cell-type prediction for that single-cell sample.

Sample quality control
Quality control directly impacts the reliability of the downstream
analysis. By controlling the number of specific genes detected in
a single cell (nFeature_RNA), the total number of UMI detected
(nCount_RNA) and the proportion of mitochondrial genes (per-
cent.mt) in each cell, cells with little effective information can
be filtered out. Low-quality cells or empty droplets typically have
very few genes detected. However, if there is an overlap where two
or more cells are captured simultaneously, UMI detected in such
cells will also become abnormally large. Both of these two cases
should be removed. In this paper, we generally limit nFeature_RNA
to between 300 and 4000 for single-cell samples. In addition,
dying cells often exhibit extensive mitochondrial contamination.
In this step, we set the threshold of percent.mt to 15 and cells
exceeding this value are filtered out to avoid excessive influence
of mitochondrial genes.

Gene expression normalization
Commonly used normalization methods such as Scanpy::zheng17
[16] include selection of highly expressed genes, normalization
and scaling. In scDeepInsight, we use SCTransform [17] to normal-
ize the expression data. This method performs regularized nega-
tive binomial regression on total UMI counts per cell to eliminate
the variance due to sequencing depth. UMI reads are commonly
positively correlated with the sequencing depth of the cells. Tra-
ditional logarithmic normalization process cannot remove this
correlation among different cell samples. When extracting vari-
able genes, genes selected by SCTransform also demonstrate more
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Figure 1. The scDeepInsight pipeline: the key steps performed by scDeepInsight from inputting single-unique molecular identifier count matrix to
outputting cell annotation prediction. A reference dataset with a query data is processed via quality control, normalization and correction of batch
effects. Then, processed tabular data are converted into 2D embeddings. After framing and feature mapping, single-cell expression data are transformed
into corresponding images. After this step, the reference dataset is used in training the CNN model. In the training step, no query dataset is used. Once
the CNN model is trained, it is used to cluster single-cell samples from query dataset into cell-types. For subsequent query datasets, no further training
of the reference dataset is performed, and therefore, the previously trained model can be directly used for clustering and annotation.

biologically meaningful variation than those chosen by the tra-
ditional normalization methods [18]. In addition, by performing
regression on the percentage of mitochondrial genes or cell cycle
of samples, SCTransform can also remove the influence of these
factors.

Batch effect correction
Batch effects have a quantitative impact on single-cell gene
expression values. As a consequence, cells that should have been
clustered together may end up divided into different clusters due
to batch effects. We implemented several methods to eliminate
the batch effect, including Canonical Correlation Analysis (CCA),
ComBat and Harmony. Out of these methods, we found that CCA
performed the best in most experiments. CCA is a multivariate
statistical method to study the correlation between two groups
of variables, and it can reveal internal relationships between
variables. By calling Seurat::IntegrateData [19], the CCA method
can be used to find anchors between datasets and integrate
multi-sample datasets accordingly. This step can avoid the
impact of biological heterogeneity caused by different experiment
batches or sequencing technology on the accuracy of subsequent
analysis.

Data scaling
The processed data needs to be scaled to the range [0, 1] before
it is passed on to the image converter. For scRNA-seq data, two
scaling methods are commonly used. The first is according to
the maximum and minimum values of the expression data of
each gene. The second is to take the dataset as a whole and
scale it according to the global maximum and minimum values.
In actual experiments, it appears that the values of some highly
expressed genes are much higher than that of other genes. For this

reason, the data processing function normalize_total of Scanpy
also provides the option to ignore some particularly highly
expressed genes when calculating regularization. In this context,
differences in gene expression across cells are attenuated if scaled
using global maximum and minimum. Therefore, each gene was
scaled separately according to corresponding maximum and
minimum values of expression.

Generation of images from tabular data
We utilized DeepInsight [13] to map the high-dimensional feature
space of scRNA-seq data into a 2D image space, where each pixel
corresponds to a gene, and its intensity reflects the expression
level of that gene in the cell. We used pyDeepInsight (https://
github.com/alok-ai-lab/pyDeepInsight) to perform the image con-
version with t-SNE to generate the 2D embeddings. To avoid over-
lapping of genes in the same pixel, we varied the perplexity value
of t-SNE to identify the best-performing embedding using the
training subset of the PBMC dataset (see Supplementary Figure 1
available online at http://bib.oxfordjournals.org/ for different per-
plexity values) [20–22]. The 2D embeddings were subsequently
transformed into images with the Cartesian plane for positioning
features. This 2D positioning of features is determined by their
similarity, and DeepInsight uses the convex hull algorithm to find
the smallest rectangle containing all feature points and rotate it to
the horizontal or vertical direction applicable to CNN architecture.
Finally, Cartesian coordinates are converted to pixels according
to the specified output image size, and the feature/gene values
are mapped to these locations in the pixel frame. After this
transformation, we used EfficientNet-b3 [23], a CNN pre-trained
on large image datasets that can extract critical features that are
integrated at the end for discriminating patterns, to analyze and
classify scRNA-seq data.

https://github.com/alok-ai-lab/pyDeepInsight
https://github.com/alok-ai-lab/pyDeepInsight
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad266#supplementary-data
http://bib.oxfordjournals.org/
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Table 1. Summary of inter-datasets

Dataset Genes Cells Protocol Cell-types

Hao (reference) 20 729 161 764 10× Chromium 3′ v3 31
Yazar (test) 36 571 255 734 10× Chromium 3′ v2 25
Schulte–Schrepping (test) 33 228 45 787 10× Chromium 3′ v2, v3 20
Arunachalam (test) 22 878 49 139 10× Chromium 3′ v3 26
Lee (test) 22 021 43 512 10× Chromium 3′ v3 24
10×-Multiome-Pbmc10k (test) 29 095 9631 10× Multiome 19
Wilk (test) 24 955 15 765 Seq-Well 27

CNN model training and validation
To take advantage of the feature extraction ability and shorter
training time achievable by using transfer learning, EfficientNet-
b3 CNN model, which was pre-trained on large image datasets,
was used for all analysis in this paper. In addition, label smoothing
and early stopping optimization techniques were used to reduce
overfitting. All datasets used in the experiments were first sub-
divided into training and validation parts at 85:15 ratio. One of
the accuracy plots during the training process is shown in Sup-
plementary Figure 2 available online at http://bib.oxfordjournals.
org/.

RESULTS
Datasets and preprocessing
The database of peripheral blood mononuclear cells (PBMCs)
offers readily accessible heterogeneous cell samples that contain
several similar but distinct cell-types. PBMC datasets are usu-
ally dominated by several cell-types and are very unbalanced
datasets. Furthermore, there are many similar cell subtypes, such
as CD4+ Central Memory T (CD4 TCM) and CD4+ Central Effector
T (CD4 TEM). Correctly annotating PBMC cells has always been a
challenging task for researchers [7, 11]. In this paper, we used a
PBMC dataset that had been labeled by experts in prior experi-
ments [24] as a reference dataset for scDeepInsight training. The
reference dataset contained over 160 000 single-cell samples and
31 different cell-types.

Independent test (or query) datasets used in this paper for
benchmarking scDeepInsight are described in Table 1. The num-
ber of cell samples and cell-types contained in test datasets were
relatively large. In addition to the five query datasets from the 10×
Chromium sequencing protocol, we also used the data from the
Wilk [25] study in our benchmarking analysis. The Wilk dataset
was generated using seq-Well sequencing technology and con-
tains 15 765 cells. The dataset was preprocessed using the same
pipeline as the 10× Chromium datasets, including quality control,
gene filtering and normalization. However, the nFeature_RNA and
nCount_RNA of the Wilk dataset were much smaller than those of
the reference dataset, with an average of 1852 genes detected per
cell and an average of 6497 UMIs per cell (Supplementary Figure
3 available online at http://bib.oxfordjournals.org/). Notably, the
expression levels varied greatly between the reference and test
sets. Despite the differences in sequencing protocols and data
characteristics scDeepInsight outperformed other methods on
this dataset as well, as shown in Figure 3. This suggests that
scDeepInsight is robust to differences in sequencing protocols and
data characteristics.

The test dataset needs to be preprocessed before using DeepIn-
sight for image conversion. After quality control, cell samples
with poor sequencing quality were filtered out (Figure 2A; see
Materials and Methods section). Then, we used SCTransform to

complete the screening for highly expressed genes and do the
normalization. Dealing with batch effects between reference and
test datasets is an important step in preprocessing. Samples
sequenced by 10× Chromium 3′ v3 in the test dataset used the
same sequencing technology as the reference dataset, so the
sequencing depth (total UMI counts per cell) was approximately
the same. However, in the part of the test set sequenced by
10× Chromium v2 and Seq-Well, fewer genes and UMI counts
were detected, and the sequencing depth was shallower than
that of the reference dataset. Such differences due to sequencing
platforms should be addressed when dealing with batch effects.
Experiments on the test dataset Schulte–Schrepping [26] showed
that CCA could successfully eliminate the batch effect (Figure 2B).
Prior to batch effect correction, distribution patterns displayed
high degree of variation between the samples from reference and
test datasets, even though these cell samples were of the same
cell-type (such as CD4 TCM and CD4 TEM cells). After eliminating
the batch effect, the distribution difference between expression
data in UMAP results was mainly determined by cell-types, rather
than the batch effect arising from the sequencing platform differ-
ences between the test and reference datasets (Figure 2C).

Parameter settings and intra-dataset analyses
We conducted several intra-dataset analyses with different per-
plexity parameters and distance functions for t-SNE-based image
conversion of the PBMC reference dataset. The mappings between
converted pixels and eigengenes generated by scDeepInsight are
shown in Supplementary Figure 1A available online at http://bib.
oxfordjournals.org/ for various perplexity parameters. We also
evaluated the classification accuracy of different perplexities
using intra-dataset analysis on the PBMC reference dataset, and
the results are presented in Supplementary Figure 1B available
online at http://bib.oxfordjournals.org/. In addition, we employed
a Bayesian optimization technique that takes into account the
specifics of the training dataset, allowing us to search for the most
appropriate hyperparameters. Supplementary File 1 available
online at http://bib.oxfordjournals.org/ provides reasonable
ranges for the initial and final values selected by the optimization
algorithm for the training datasets.

To further demonstrate the robustness of scDeepInsight, we
performed intra-dataset analysis with scDeepInsight on datasets
from other tissues. Specifically, we analyzed the kidney dataset
(https://doi.org/10.48698/3z31-8924) from the Kidney Precision
Medicine Project (KPMP) and pancreas dataset Tabula (GSE132042)
generated using Smart-seq2 protocol. The kidney dataset created
by KPMP contains 107 344 cells from the human kidney, and
Tabula dataset contains 3384 cells from the mouse pancreas.
Both datasets were preprocessed using the same pipeline as the
one used for the 10× Chromium datasets, and scDeepInsight was
able to successfully eliminate batch effects on these datasets
as well, as shown in Supplementary Figure 4 available online

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad266#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad266#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad266#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad266#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://doi.org/10.48698/3z31-8924
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad266#supplementary-data
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Figure 2. Preprocessing results of the test dataset Schulte–Schrepping. (A) The left plot is the quality control plot of the test dataset. Cells whose
nFeature_RNA was less than 300 or more than 4000 were filtered out. Cells with percent.mt larger than 15 were also excluded. The right plot is labeled
by the sequencing technology of data: samples in the reference dataset sequenced by 10× Chromium 3′ v3, samples in the query dataset sequenced by
10× Chromium 3′ v2 and 10× Chromium 3′ v3. (B) The Uniform Manifold Approximation and Projection (UMAP) representation of the reference before
batch effect correction labeled by cell-types and data sources. (C) The UMAP representation of datasets after batch effect correction.

at http://bib.oxfordjournals.org/. For the kidney dataset, the
annotation accuracy on the test set by scDeepInsight was 93.8%,
whereas the second best-performing method, SingleR, scored
86.7%. For the pancreas dataset Tabula generated using Smart-
seq2 protocol, the accuracy achieved by scDeepInsight was
95.8%, and second-best method scBert had 89.2% annotation
accuracy.

Performance of scDeepInsight with inter-datasets
and comparison with other methods
Inter-dataset accuracy was measured on six independent PBMC
test datasets with high-quality pre-annotated labels. We used
accuracy and adjusted Rand index (ARI) to measure the quality
of cell-type predictions. Accuracy represents the percentage of
predicted cell-types that perfectly fit with the cell-types labeled

http://bib.oxfordjournals.org/
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in previous reliable experiments. ARI is a measure of similarity
between real cell labels and predicted cell-type clusters. The
higher the value of ARI, the more similar the predicted results
are to the original labels of cell samples. Moreover, to provide a
more comprehensive evaluation of our method’s performance, we
have included additional metrics such as F1-score and AUROC in
addition to accuracy. As the PBMC datasets used in our study are
imbalanced, we have also included AUPRC metric in our bench-
marking process. All of these results are presented in Supplemen-
tary Figure 5 available online at http://bib.oxfordjournals.org/.
Our findings demonstrate that scDeepInsight outperforms other
methods not only in accuracy but also in F1-score, AUROC and
AUPRC, indicating the robustness of our approach in identifying
cell-types from scRNA-seq data.

To benchmark the accuracy of our method, we have compared
its performance to different kinds of mainstream cell annota-
tion methods. The first type was annotation based on marker
genes, including SCINA, SC3 and Seurat::FindClusters. As a graph-
based clustering algorithm provided by Seurat, FindClusters is
able to identify clusters through shared nearest neighbor (SNN)
modularity optimization. Unlike SC3 and SNN, SCINA does not
use unsupervised clustering. Instead, SCINA directly performs
enrichment analysis on the specific marker gene list to assign
type annotation. Furthermore, we chose ScType as a marker gene
database. Integrating two marker gene databases, CellMarker
and PanglaoDB, it provides a comprehensive database of spe-
cific markers covering many cell-types. In this paper, we refer
to marker genes of the immune system in the ScType database
to complete the annotation of clustering results. In order to
ensure the fairness of the comparison, the marker genes were
not manually selected when implementing these methods. For
the reference-based annotation method, we chose SingleR, which
achieves cell-type annotation by calculating and comparing the
Spearman correlation coefficient between single-cell samples in
query and reference datasets. To guarantee the validity of bench-
marking, the same reference dataset used in scDeepInsight was
utilized for learning. We also tested CellTypist and scBERT to
make the comparison more comprehensive. Being an automatic
labeling method, CellTypist offers built-in, pre-trained models for
different tissues by integrating multiple single-cell data sets. The
model we chose was Healthy_COVID19_PBMC, which best fitted
the test datasets. Similarly, scBERT also provides a pre-trained
model trained on a large-scale reference dataset PanglaoDB [6]
and can perform cell-type annotation after fine-tuning the model
with the target dataset. When implementing other annotation
methods in the benchmarking process, we utilized the parameter
values recommended by the original authors and performed the
standard pipelines used by them.

On six test datasets, our method outperformed the other six
methods (Figure 3 and Supplementary Figure 5 available online at
http://bib.oxfordjournals.org/). The average accuracy of scDeepIn-
sight (87.5%) was more than 7% greater than the next best-
performing method, SingleR. Specifically, on the dataset Yazar,
the accuracy was the highest (96.1%). Also, the average ARI of
scDeepInsight 0.851 on these six datasets was about 0.07 higher
than that of other methods, which shows that the prediction
results of scDeepInsight could better reflect real clustering pat-
terns of cell labels. Other metrics also confirmed the superiority
of scDeepInsight (Supplementary Figure 5 available online at
http://bib.oxfordjournals.org/). The average of F1-score, AUROC
and AUPRC improved by 0.092, 0.109 and 0.105, respectively, rel-
ative to the next-best method. In addition, these query datasets
included both 10× Chromium 3′ v2, v3 and Seq-Well sequencing

technologies. Despite the differences in sequencing protocols and
data characteristics, scDeepInsight outperformed other methods
on this dataset as well, as shown in Figure 3 and Supplementary
Figure 5 available online at http://bib.oxfordjournals.org/. This
suggests that scDeepInsight is robust to differences in sequencing
protocols and data characteristics.

Furthermore, scDeepInsight had a high recognition accuracy
for main cell-types in the test dataset (Figure 4). As shown in
Figure 4A, 99.4% of CD14 Monocytes were correctly labeled as
CD14 Mono by scDeepInsight. CD14 Monocytes accounted for
more than 35% of the test dataset (Figure 4B). The heatmap of
the confusion matrix shows that high recognition accuracy was
achieved for most cell-types (Figure 4C; corresponding detailed
confusion matrix is shown in Supplementary Figure 6 available
online at http://bib.oxfordjournals.org/). The cell-type prediction
results by scDeepInsight were largely consistent with the original
labels and further subdivided into some cell-types (Figure 4D).

The other unsupervised clustering methods rarely found the
correct number of clusters. Some of the cell subtypes, including
CD4 Proliferating and CD8 Proliferating, could not be recognized
using other annotation methods. Cell-type annotation results of
the Schulte–Schrepping dataset using SC3 with ScType are shown
in Figure 4E. Samples were first clustered by SC3 and then anno-
tated by referring to the marker gene database ScType. Compared
with prediction results by scDeepInsight, this annotation method
recognized fewer clusters and cell subtypes.

In conclusion, compared with other mainstream sequencing
methods, our method was not only more accurate but also more
capable of detecting similar cell subtypes.

The ability to discover new cell-types
The ability to discover new cell-types is a critical feature of
scDeepInsight that distinguishes it from many existing methods
for cell-type annotation. Traditional annotation methods rely on
reference datasets or marker gene databases, which may not
cover all cell-types present in a given test dataset. Unsupervised
methods can reveal new cell-types by detecting clusters that can-
not be annotated to known cell-types, but many supervised meth-
ods simply label all samples as known cell-types contained in the
reference dataset. This approach can ignore rare or unknown cell-
types, which can significantly impact the accuracy of cell-type
labeling.

scDeepInsight addresses this limitation by returning the prob-
ability that each single cell should be labeled as a specific cell-
type. By setting a probability threshold, we can filter out the
cases where the predicted probability for all cell-types is very low,
indicating that the sample is not similar to any known cell-types
in the reference dataset. In such cases, these cells can be predicted
as an unknown type.

To demonstrate scDeepInsight’s ability to identify rare or
unknown cell-types, we evaluated its performance on two
datasets containing cells from COVID-19 infected patients: the
Lee [27] and Arunachalam [28] datasets. These datasets contain
some neutrophils, activated natural killer cells, activated CD4-
positive T cells and activated CD8-positive T cells, which do not
exist in the reference PBMC dataset derived entirely from healthy
donors. We found that the predicted probabilities returned by the
fully connected layer for cells from healthy donors and infected
patients are not identical. Different distribution plots of predicted
probabilities are depicted in Supplementary Figure 7 available
online at http://bib.oxfordjournals.org/. When filtering out 1% of
cells with the smallest predicted probability, 72 out of a total of 89
neutrophils contained in the Lee dataset can be correctly detected

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad266#supplementary-data
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Figure 3. The performance of scDeepInsight. (A) Accuracy and ARI of scDeepInsight compared to other methods: SC3, FindClusters, SCINA, SingleR,
CellTypist and scBERT, across the six datasets: Yaza, Schulte–Schrepping, Arunachalam, Lee, 10×-Multiome-Pbmc10k and Wilk. (B) The accuracy and
ARI box plots of scDeepInsight and the other six methods used in benchmarking are depicted.

and annotated as unknown cell-types. For the Arunachalam
dataset, 1536 out of a total of 1880 activated immune cells not
contained in the reference dataset can be successfully identified
under the same threshold condition.

Identifying rare or unknown cell-types has important implica-
tions for our understanding of disease processes and the develop-
ment of new treatments. For example, the identification of new
immune cell subtypes could lead to the discovery of new thera-
peutic targets or improve our understanding of how the immune
system responds to viral infections. In summary, scDeepInsight’s
ability to identify rare or unknown cell-types is a valuable feature
that has the potential to significantly advance our understanding
of complex biological systems.

Identification of marker genes
By analyzing the fully connected layer in a trained CNN,
DeepFeature [15] can construct Class Activation Mapping (CAM)
to extract features of different classes. In this study of the single-
cell classification, we also introduced CAM to help analyze the
features differentially expressed among multiple cell-types. After
applying DeepFeature to single-cell datasets, it was found that
the genes extracted in different cell-types contained marker
genes corresponding to these types. Generated CAM graphs are
shown in Supplementary Figure 8 available online at http://
bib.oxfordjournals.org/. Through the analysis of the extracted
marker genes, the accuracy of the cell-type annotation model
established by scDeepInsight at the biological level could also be
proven. We selected two marker genes for Monocytes extracted
by scDeepInsight from the reference dataset and colored the
UMAP representation of the reference according to the expression
values (Figure 5A). By referring to the cell-type distribution of the
reference dataset shown in Figure 5B, the differential expression

of these two genes in different regions also confirmed their
reliability as marker genes.

Summary of overall performance
Compared with unsupervised clustering algorithms, supervised
labeling methods based on reference datasets can often achieve
more accurate identification. However, supervised annotation
methods require a correctly labeled reference dataset as the pre-
requisite, which is a limitation. In addition, training on reference
datasets also brings additional time costs. Nonetheless, as an
original supervised cell-type annotation method, scDeepInsight
converts preprocessed single-cell data into images and utilizes
CNN’s strengths in feature extraction and classification, enabling
accurate identification of cells in a few epochs. We have shared
our pre-trained models so that other researchers can easily
use scDeepInsight to annotate their own datasets. On large-
scale PBMC test datasets, both annotation accuracy, ARI and
AUROC have improved relative to other mainstream methods.
Furthermore, scDeepInsight is capable of detecting new cell-
types not contained in the reference dataset. With the assistance
of DeepFeature, our method can also extract marker genes for
multiple cell-types.

DISCUSSION
DeepInsight, on which scDeepInsight is based, has several
advantages, including its flexibility, ability to reveal patterns and
insights that are not easily observable in the original feature
space, and interpretability of results through visualized features.
Its approach of positioning features in the Cartesian plane instead
of samples (i.e. cells) allows it to avoid dimensionality reduction
of the features [20]. Also, it can utilize various visualization

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad266#supplementary-data
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Figure 4. Cell-type labels of the reference dataset and prediction results on dataset Schulte–Schrepping. (A) The stacked percentage column chart of the
prediction results on the Schulte–Schrepping dataset. (B) UMAP representation colored by cell-types in the original study. (C) Heatmap of the confusion
matrix. (D) UMAP representation colored by cell-types predicted by scDeepInsight. (E) UMAP representation colored by annotation results using SC3
clustering with ScType.
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Figure 5. (A) CD14 [29] and CDKN1C [30] were proven to be marker genes for monocytes, CD14 Monocytes and CD16 Monocytes correspondingly in the
previous study. (B) The UMAP 2D embedding after performing normalization and principal component analysis (PCA) dimensionality reduction on the
reference dataset. Cells are grouped and colored by known labels from previous studies.

techniques, such as PCA, UMAP or kernel PCA, as alternatives
to t-SNE, which we have employed in this work due to its high
performance. Kobak and Berens propose an improved protocol
for visualizing single-cell transcriptomics data using t-SNE
that includes PCA initialization, high learning rate and multi-
scale similarity kernels [21]. They recommend exaggeration
and downsampling-based initialization for large datasets, and
demonstrate that this protocol yields superior results compared
to naive application of t-SNE. They also discuss the advantages
and disadvantages of t-SNE compared to UMAP, and describe how
to position new cells on an existing t-SNE reference atlas and
visualize multiple related data sets consistently. In relevance to
the interpretability of results, we used CAM in DeepFeature [15].
Another option may be to use a ‘relevance aggregation’ method
that improves the interpretability of neural networks for tabular
data [22]. The algorithm generates scores for each input feature by
combining the relevance computed from several samples, making
it easier to identify important features.

Although DeepInsight has several advantages, its limitation lies
in the potential for genes to overlap in the same pixel due to
the limited pixel frame size of the image. To avoid overlapping
of genes in the same pixel, we set an appropriate resolution for
the converted image. Wattenberg and colleagues [20] discuss the
usefulness of t-SNE in visualizing high-dimensional data. They
explained the importance of the perplexity parameter in creating
accurate t-SNE plots and cautioned that the cluster sizes shown
in these plots may not accurately represent the original cluster
sizes in high-dimensional space. Its effectiveness relies on select-
ing parameters carefully and interpreting the plots thoughtfully.
Therefore, when selecting t-SNE, we optimized and manually
set the parameters for perplexity and distance function, with
larger perplexity values recommended for datasets with larger
numbers of cells. This approach not only helps to reduce obscurity
caused by overlapping but also facilitates the identification of
marker genes for specific cell-types. To mitigate the stochasticity
of t-SNE, another approach is to generate multiple embeddings
using different random seeds and select the one with the lowest
Kullback–Leibler divergence from the original data distribution.
Alternatively, one can fix the random seed to obtain consistent
embeddings for a particular dataset.

Ablation study for multiple conditions
To further investigate the impact of individual steps in the
pipeline on the accuracy of cell-type annotations, we conducted

ablation experiments under multiple conditions. In the data
preprocessing stage, we compared various single-cell processing
methods and tested whether data normalization and batch
effect correction processes improved the accuracy of cell-type
annotation. As shown in Supplementary Figure 9A available
online at http://bib.oxfordjournals.org/, batch effect correction
increased accuracy by an average of 3.18% across six test datasets,
while data normalization increased accuracy by an average of
0.82%. In the image conversion step, we replaced DeepInsight
with numpy.resize to convert single-cell expression data into
three-channel images and evaluated the resulting accuracy.
The accuracy plot and the converted image are presented in
Supplementary Figure 9B and C available online at http://bib.
oxfordjournals.org/, respectively. Without DeepInsight’s image
conversion, the average accuracy dropped sharply to 15.2% on the
six test datasets. However, using the scDeepInsight annotation
pipeline with the same network structure and parameters, the
average annotation accuracy rate can reach 87.5% on those test
datasets.

Next, we measured the choice of CNN models in extracting
image features through convolution and pooling operations,
which are then processed in the fully connected layer for image
classification. Different CNN models have been developed based
on differences in network structure and connection mode.
scDeepInsight provides support for multiple CNN models, such
as ResNet [31] and DenseNet [32]. In our ablation study, we
compared the performance of various CNN models and found
that EfficientNet-b3 [23] exhibited high efficiency and accuracy.
These results are presented in Supplementary Figure 9 available
online at http://bib.oxfordjournals.org/. Moreover, scDeepInsight
shows strong performance on multiple CNN networks, suggesting
that changing the type of image network may not significantly
impact recognition accuracy.

Speed of scDeepInsight
Although the running time is hardware dependent, our proposed
scDeepInsight method can complete the annotation process of
10 000 cell samples within 60 min with one Intel Xeon Gold 6242
CPU (16 cores, 2.80 GHz). Table 2 presents the processing time
of various methods. Of the total time cost, 55 min is devoted to
performing batch effect correction, while 5 min is used for image
conversion and loading the pre-trained model. If the batch effect
correction method Seurat::IntegrateData is not used, and only
basic preprocessing methods are applied to the target annotation
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Table 2. Execution time cost by different methods to annotate a
dataset of 10 000 cells

Machine learning methods Time cost (s)

scDeepInsight 3327
scDeepInsight (no batch correction) 68
SC3 341
FindClusters 196
SCINA 103
SingleR 3524
CellTypist 178
scBERT 1567

dataset, the entire annotation process will be less than 3 min.
However, using batch effect correction can increase the accuracy
of the model, but also significantly increase the total time cost.
For this reason, we provide details of the two annotation pipelines
(with and without batch effect correction) and their correspond-
ing pre-trained models on our GitHub repository. This way, users
can choose whether to perform batch correction on the target
data, based on their actual application scenario. Furthermore, as a
supervised annotation method, scDeepInsight is efficient during
the training process. The accuracy of the EfficientNet-b3 model
on the validation set can converge to more than 95% within 50
epochs. When using a batch size of 128, the time cost for one batch
is about 10 min using two GPUs (Quadro RTX 8000 48GB) with one
Intel Xeon Gold 6242 CPU (16 cores, 2.80 GHz).

Obtaining reliable reference datasets
We have provided guidance on how to select good reference
data for use with scDeepInsight. Specifically, we recommend
the use of reference datasets from Azimuth (https://azimuth.
hubmapconsortium.org/references/) released by Satija lab, which
have been widely used in the single-cell analysis community and
have been shown to be reliable.

We also acknowledge that the availability of relevant reference
datasets is still limited and that efforts to expand coverage of cell-
types that can be identified using supervised annotation methods
are needed. Such datasets need to be produced experimentally
with techniques such as FACS, sometimes accompanied with in
silico insights for finding, defining and accurately annotating cell-
types. One highly promising project in this regard is The Human
Cell Atlas [33], an international collaboration aimed at mapping
all cell-types in the human body.

CONCLUSIONS AND FUTURE DIRECTION
In this paper, we proposed scDeepInsight, which integrates the
whole operation of data preprocessing, image conversion and con-
structing the CNN model for cell-type prediction. The prediction
results correctly reflected the number of clusters and further
enabled outlier detection for unknown types. First, we selected a
PBMC dataset containing trusted cell-type labels as a reference.
By performing standard tests on six different independent test
sets, it was shown that scDeepInsight had significantly higher
accuracy and could identify more cell subtypes than the other
six mainstream cell labeling methods. In addition, we addressed
classical problems in single-cell annotation, such as batch effect
correction methods and the detection of rare/unknown cell-types.
Finally, by applying DeepFeature to extract marker genes of cell-
types, the accuracy of scDeepInsight in feature extraction was
further proved in biological significance.

In the future, we will integrate more reference datasets
obtained from different tissues to construct a more comprehen-
sive cell-type classification model. Also, we will try to integrate
protein and spatial chromatin accessibility information to further
improve the accuracy of cell-type identification. Furthermore, in
subsequent versions of our software, we plan to provide pre-
trained models based on reference datasets from different types
of tissues to address the issue of limited availability of reference
datasets.

Key Points

• In this paper, we propose a holistic approach,
scDeepInsight, for annotating single-cell RNA data. The
scDeepInsight pipeline combines essential methods for
cell annotation: batch normalization, outlier detection,
supervised learning on the reference dataset and cell
annotation on the query datasets.

• Our scDeepInsight method innovatively converts single-
cell expression data into images after preprocessing
operations such as normalization and batch effect cor-
rection, and fully utilizes the advantages CNN models
have in image classification and feature extraction.

• scDeepInsight has shown very encouraging results: aver-
age annotation accuracy across six independent single-
cell query datasets was 87.5%, which is more than
7% higher than other state-of-the-art methods typi-
cally used for this task. Also, rare cell-types can be
detected by filtering out cells with the least predicted
probability.

• scDeepInsight can leverage DeepFeature method to find
marker genes for specific cell-types. Further analysis of
these results suggested biologically meaningful connec-
tions of potential interest to our understanding of the
differences between various types of blood cells.

• The software package for scDeepInsight is available for
download, and web links are provided in the paper.

SUPPLEMENTARY DATA
Supplementary data are available online at https://academic.oup.
com/bib.
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be downloaded directly from https://scglue.readthedocs.io/
en/latest/data.html. Query datasets Yazar [34] (GSE196830),
Schulte–Schrepping [26] (EGAS00001004571), Lee [27] (GSE149689),
Arunachalam [28] (GSE155673), Wilk [25] (GSE150728), kidney
dataset from KPMP (GSE183279) and Tabula (GSE132042) are
all available from the CELLxGENE database (https://cellxgene.
cziscience.com/datasets).

CODE AVAILABILITY
scDeepInsight is available as a Python package, and the latest
version can be downloaded from the Python Package Index (PyPI):
https://pypi.org/project/scdeepinsight/. In addition, to facilitate
and simplify the deployment process, we have uploaded a
ready-to-use environment: https://hub.docker.com/r/shangrujia/
scdeepinsight. We also provide pre-trained annotation mod-
els to save users’ time. The entire code base, including the
implementation of the proposed scDeepInsight pipeline and
the pre-trained models, is available at https://github.com/
shangruJia/scDeepInsight. Another GitHub repository (https://
github.com/shangruJia/scDeepInsight-additional) stores codes
for reproducing the training and testing results used in the paper
for benchmarking. Gene IDs and barcodes of the cell samples used
in this paper are recorded in Supplementary File 2 available online
at http://bib.oxfordjournals.org/, which can also be downloaded
from this repository.
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