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Abstract

Protein engineering is an emerging field in biotechnology that has the potential to revolutionize various areas, such as antibody
design, drug discovery, food security, ecology, and more. However, the mutational space involved is too vast to be handled through
experimental means alone. Leveraging accumulative protein databases, machine learning (ML) models, particularly those based on
natural language processing (NLP), have considerably expedited protein engineering. Moreover, advances in topological data analysis
(TDA) and artificial intelligence-based protein structure prediction, such as AlphaFold2, have made more powerful structure-based
ML-assisted protein engineering strategies possible. This review aims to offer a comprehensive, systematic, and indispensable set of
methodological components, including TDA and NLP, for protein engineering and to facilitate their future development.
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INTRODUCTION
Protein engineering aims to design and discover proteins with
desirable functions, such as improving the phenotype of living
organisms, enhancing enzyme catalysis, and boosting antibody
efficacy [1]. It has tremendous impacts on drug discovery, enzyme
development and applications, the development of biosensors,
diagnostics, and other biotechnology, as well as understanding
the fundamental principles of the protein structure-function rela-
tionship and achieving environmental sustainability and diversity.
Protein engineering has the potential to continue to drive innova-
tion and improve our lives in the future.

Two traditional protein engineering approaches include
directed evolution [2] and rational design [3, 4]. Directed evolution
is a process used to create proteins or enzymes with improved or
novel functions [5]. The method involves introducing mutations
into the genetic code of a target protein and screening the
resulting variants for improved function. The process is ‘directed’
because it is guided by the desired outcome, such as increased
activity, stability, specificity, binding affinity, and fitness. Rational
design involves using knowledge of protein structure and function
to engineer desirable specific changes to the protein sequence
and/or structure [4, 6]. Both approaches resort to experimental
screening of astronomically large mutational space, i.e. 20N for
protein of N amino acid residues, which is expensive, time-
consuming, and intractable [7]. As a result, only a small fraction of

the mutational space can be explored experimentally even with
the most advanced high-throughput screening technology.

Recently, data-driven machine learning has emerged as a new
approach for directed evolution and protein engineering [8, 9].
Machine learning-assisted protein engineering (MLPE) refers to
the use of machine learning models and techniques to improve
the efficiency and effectiveness of protein engineering. MLPE not
only reduces the cost and expedites the process of protein engi-
neering, but also optimizes the screening and selection of protein
variants [10], leading to the higher efficiency and productivity.
Specifically, by using machine learning to analyze and predict the
effects of mutations on protein function, researchers can rapidly
generate and test large numbers of variants, which establish
the protein-to-fitness map (i.e. fitness landscape) from sparsely
sampled experimental data [11, 12]. This approach accelerates the
process of protein engineering.

The process of data-driven MLPE typically involves several ele-
ments, including data collection and preprocessing, model design,
feature extraction and selection, algorithm selection and design,
model training and validation, experimental validation, and iter-
ative model optimization. Driven by technological advancements
in high-throughput sequencing and screening technologies, there
has been a substantial accumulation of general-purpose experi-
mental datasets on protein sequences, structures, and functions
[13, 14]. These datasets, along with numerous protein-engineering

http://creativecommons.org/licenses/by/4.0/


2 | Qiu and Wei

specific deep mutational scanning (DMS) libraries [15], provide
valuable resources for machine learning training and validation.

Data representation and feature extraction are crucial steps in
the design of machine learning models, as they help to reduce
the complexity of biological data and enable more effective model
training and prediction. There are several typical types of feature
embedding methods, including sequence-based, structure-based
[16, 17], physics-based [18, 19], and hybrid methods [20]. Among
them, sequence-based embeddings have been dominant due to
the success of various natural language processing (NLP) methods
such as long short-term memory (LSTM) [21], autoencoders [22],
and Transformers [23], which allow unsupervised pre-training
on large-scale sequence data. Structure-based embeddings take
advantage of existing protein three-dimensional (3D) structures
in the Protein Data Bank (PDB) [13] and advanced structure pre-
dictions such as AlphaFold2 [24]. These methods further exploit
advanced mathematical tools, such as topological data analysis
(TDA) [25, 26], differential geometry [27, 28], or graph approaches
[29]. Physics-based methods utilize physical models, such as den-
sity functional theory [30], molecular mechanics [31], Poisson-
Boltzmann model [32], etc. While these methods are highly inter-
pretable, their performance often depends on model parametriza-
tion. Hybrid methods may select a combination of two or more
types of features.

The designs and selections of MLPE algorithms depend on the
availability of data and efficiency of experiments. In real-world
scenarios, small labeled training datasets are prevalent, and as
a result, simple machine learning algorithms such as support
vector machines and ensemble methods are often employed for
small training datasets. In contrast, deep neural networks are
more suitable for large training datasets. In addition to regression
models, unsupervised zero-shot learning methods can also be
utilized to address scenarios with limited labeled data availability
[33, 34]. The iterative interplay between experiments and models
is another crucial component in MLPE by iteratively screening
new data to refine the models. Consequently, the selection of an
appropriate MLPE model is influenced by factors like experimen-
tal frequency and throughput. This iterative refinement process
enables MLPE to deliver optimized protein engineering outcomes.

MLPE has the potential to significantly accelerate the devel-
opment of new and improved proteins, revolutionizing numer-
ous areas of science and technology (Figure 1). Despite consid-
erable advances in MLPE, challenges remain in many aspects,
such as data preprocessing, feature extraction, integration with
advanced algorithms, and iterative optimization through exper-
imental validation. This review examines published works and
offers insights into these technical advances. First, we review cur-
rent advanced NLP-based models and efficient MLPE approaches.
Then we place particular emphasis on the advanced mathemat-
ical TDA approaches, aiming to make them accessible to general
readers. Last, we discuss potential future directions in the field.

SEQUENCE-BASED DEEP PROTEIN
LANGUAGE MODELS
In artificial intelligence, natural language processing (NLP) has
recently gained much attention for representing and analyzing
human language computationally [35]. NLP covers a wide range
of tasks, including language translation, sentiment analysis, chat-
bot development, speech recognition, and information extraction,
among others. The development and advancement of various
machine learning models have been instrumental in tackling the
complex challenges posed by NLP tasks.

Similar to human language, the primary structure of a protein
is also represented by a string of amino acids, with 20 canon-
ical amino acids. The analogy between protein sequences and
human languages has inspired the development of computational
methods for analyzing and understanding proteins using mod-
els adopted from NLP (Figure 1A). The self-supervised sequence-
based protein language models have been applied to study the
underlying patterns and relationships within protein sequences,
predict their structural and functional properties, and facilitate
protein engineering. These language models are pretrained on a
given data allowing to model protein properties for each given
protein. There are two major types of protein language models
utilizing different resources of protein data [33] (Table 1). The first
one is the local evolutionary models which focus on homologs of
the target protein such as multiple sequence alignments (MSAs)
to learn the evolutionary information from the mostly related
mutations. The second one is the Table 1 global evolutionary
models which learn from large protein sequence databases such
as UniProt [14] and Pfam [36].

Local evolutionary models
To train a local evolutionary model, MSAs search strategies such
as jackhmmer [51] and EvCouplings [52] are first employed. Taking
MSAs as inputs, local evolutionary models learn the probabilistic
distribution of mutations for a target protein. Probabilistic mod-
els, including Hidden Markov Models (HMMs) [37, 53] and Potts-
based models [38], are popular in modeling mutational effects.
Transformer models have been introduced to learn distribution
from MSAs. The MSA Transformer [39] introduces a row- and
column-attention mechanism. Recent years, variational autoen-
coders (VAEs) [54] serve as the alternate to model MSAs by includ-
ing the dependency between residues and aligning all sequences
to a probability distribution. The VAE model DeepSequence [22]
and the Bayesian VAE model EVE [40] exhibit excellent perfor-
mance in modeling mutational effects [20, 33, 55].

Global evolutionary models
With large-size data, global evolutionary models usually adopt
the large NLP models. Convolutional Neural networks (CNNs) [56]
models and residual network (ResNet) [57] have been employed
for protein sequence analysis [41]. Large-scale models, such as
long short-term memory (LSTM) [58], have also gained popularity
as seen in Bepler [42], UniRep [21], and eUniRep [43]. In recent
years, the Transformer architecture has achieved state-of-the-
art performance in NLP by introducing the attention mechanism
and the self-supervised learning via the masked filling training
strategy [59, 60]. Inspired by these advances, Transformer-based
protein language models provide new opportunities for building
global evolutionary models. A variety of Transformer-based mod-
els have been developed such as evolutionary scale modeling
(ESM) [23, 44], ProGen [47], ProteinBERT [49], Tranception [15] and
ESM-2 [50].

Hybrid approach via fine-tune pre-training
Although global evolutionary models can learn a variety of
sequences derived from natural evolution, they face challenges
in concentrating on local information when predicting the
effects of site-specific mutations of a target protein. To enhance
the performance of global evolutionary models, fine-tuning
strategies are subsequently implemented. Specifically, fine-tune
strategy further refines the pre-trained global models with local
information using MSAs or target training data. The fine-tuned
eUniRep [43] shows significant improvement over UniRep [21].
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Figure 1. Machine learning-assisted protein engineering (MLPE). (A). Machine learning models build fitness predictor using structure and sequence
protein data. (B). Zero-shot predictors navigate fitness landscape without labeled data. (C). Greedy acquisition exploits fitness using fitness predictions.
(D). Uncertainty acquisition balances exploitation and exploration. The example shows a Gaussian upper confidence bound (UCB) acquisition. (E).
Experimental measurements query fitness of candidate proteins in sequential optimization.

Similar improvement was also reported for ESM models [23, 44].
The Tranception model proposed a hybrid approach combining
a global autoregressive inference and a local retrieval inference
from MSAs [15]. Tranception achieved the advanced performance
over other global and local models.

With various language models proposed, comprehensive stud-
ies on various models and the strategy in building downstream
model is necessary. A study explored different approaches utiliz-
ing the sequence embedding to build downstream models [61].
Two other studies further benchmarked many unsupervised and
supervised models in predicting protein fitness [33, 55].

STRUCTURE-BASED TOPOLOGICAL DATA
ANALYSIS (TDA) MODELS
Aided by advanced NLP algorithms, sequence-based models
have become the dominant approach in MLPE [11, 12]. However,

sequence-based models suffer from a lack of appropriate descrip-
tion of stereochemical information, such as cis-trans isomerism,
conformational isomerism, enantiomers, etc. Therefore, sequence
embeddings cannot distinguish stereoisomers, which are widely
present in biological systems and play a crucial role in many
chemical and biological processes. Structure-based models offer
a solution to this problem. TDA has became a successful tool in
building structure-based models for MLPE [20].

TDA is a mathematical framework based on algebraic topology
[62, 63], which allows us to characterize complex geometric data,
identify underlying geometric shapes, and uncover topological
structures present in the data. TDA finds its applications in a
wide range of fields, including neuroscience, biology, materials
science, and computer vision. It is especially useful in situations
where the data is complex, high-dimensional, and noisy, and
where traditional statistical methods may not be effective. In this
section, we provide an overview of various types of TDA methods
(Table 2). In addition, we review graph neural networks, which



4 | Qiu and Wei

Table 1. Summary of protein language models. # para: number of parameters which are only provided for deep learning models. Max
len: maximum length of input sequence. Dim: latent space dimension. Size: pre-trained data size where it refers to number of
sequences without specification except MSA transformer includes 26 millions of MSAs. K: thousands; M: millions; B: billions. 1: Time
for the first preprint. The input data size, hidden layer dimension, and number of parameters are only provided for global models

Model Architecture Max len Dim # para Pretrained data Time1

Source Size

Local models
Profile HMMs [37] Hidden Markov – – – MSAs – Oct 2012
EvMutation [38] Potts models – – – MSAs – Jan 2017
MSA transformer [39] Transformer 1024 768 100M UniRef50 [14] 26M Feb 2021
DeepSequence [22] VAEs – – – MSAs – Dec 2017
EVE [40] Bayesian VAEs – – – MSAs – Oct 2021
Global models
TAPE ResNet [41] ResNet 1024 256 38M Pfam [36] 31M Jun 2019
TAPE LSTM [41] LSTM 1024 2048 38M Pfam [36] 31M Jun 2019
TAPE transformer [41] Transformer 1024 512 38M Pfam [36] 31M Jun 2019
Bepler [42] LSTM 512 100 22M Pfam [36] 31M Feb 2019
UniRep [21] LSTM 512 1900 18M UniRef50 [14] 24M Mar 2019
eUniRep [43] LSTM 512 1900 18M UniRef50 [14]; MSAs 24M Jan 2020
ESM-1b [23] Transformer 1024 1280 650M UniRef50 [14] 250M Dec 2020
ESM-1v [44] Transformer 1024 1280 650M UniRef90 [14] 98M Jul 2021
ESM-IF1 [45] Transformer – 512 124M UniRef50 [14]; CATH [46] 12M sequences;

16K structures
Sep 2022

ProGen [47] Transformer 512 – 1.2B UniParc [14]; UniprotKB
[14]; Pfam [36]; NCBI
taxonomy [48]

281M Jul 2021

ProteinBERT [49] Transformer 1024 – 16M UniRef90 [14] 106M May 2021
Tranception [15] Transformer 1024 1280 700M UniRef100 [14] 250M May 2022
ESM-2 [50] Transformer 1024 5120 15B UniRef90 [14] 65M Oct 2022

are deep learning frameworks cognizant of topological structures,
along with their applications in protein engineering. For those
readers who are interested in the deep mathematical details of
TDA, we have added a supplementary section dedicated to two
TDA methods - persistent homology and persistent spectral graph
(PSG) in Supplementary Methods.

Homology
The basic idea behind TDA is to represent the data as a point
cloud in a high-dimensional topological space, and then study the
topological invariants of this space, such as the genus number,
Betti number, and Euler characteristic. Among them, the Betti
numbers, specifically Betti zero, Betti one, and Betti two, can
be interpreted as representing connectedness, holes, and voids,
respectively [76, 77]. These numbers can be computed as the ranks
of the corresponding homology groups in appropriate dimensions.

Homology groups are algebraic structures that are associated
with topological spaces [76]. They provide information about
the topological connectivity of geometric objects. The basic idea
behind homology is to consider the cycles and boundaries in a
space. Loosely speaking, a cycle is a set of points in the space
that form a closed loop, while a boundary is a set of points that
form the boundary of some region in the space. The homology
group of a space is defined as the group of cycles modulo the
group of boundaries. That is, we identify two cycles that differ
by a boundary and consider them to be equivalent. The resulting
homology group encodes information about the Betti numbers of
the space.

Homology theory has many applications in mathematics and
science. It is used to classify topological spaces in category theory,
to study the properties of manifolds in differential geometry and

algebraic geometry, and to analyze data in various scientific fields
[76]. However, the original homology groups offer truly geometry-
free representations and are too abstract to carry sufficient geo-
metric information of data. Persistent homology was designed to
improve homology groups’ ability for data analysis.

Persistent homology
Persistent homology is a relatively new tool in algebraic topology
that is designed to incorporate multiscale topological analysis
of data [62, 63]. The basic idea behind persistent homology is
to construct a family of geometric shapes of the original data
by filtration (Figure 2C). Filtration systematically enlarges the
radius of each data point in a point cloud, leading to a family
of topological spaces with distinct topological dimensions and
connectivity. Homology groups are built from the family of shapes,
giving rise to systematic changes in topological invariants, or Betti
numbers, at various topological dimensions and geometric scales.
Topological invariants based on Betti numbers are expressed in
terms of persistence barcodes [78] (Figure 2D), persistence dia-
grams [79], persistence landscapes [80], or persistence images [81].
Persistent topological representations are widely used in applica-
tions, particularly in association with machine learning models
[82].

Persistent homology is the most important approach in TDA
(see Table 2 for a summary of major TDA approaches). It reveals
the shape of data in terms of the topological invariants and
has had tremendous success in scientific applications, including
image and signal processing [83], machine learning [84], biology
[82], and neuroscience[85]. Nonetheless, to effectively analyze
complex biomolecular data, persistent homology requires further
refinement and adjustment. [86].

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad289#supplementary-data
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Table 2. Summary of topological data analysis (TDA) methods for structures

Method Topological space Node attribute Edge attribute

Homology-based
Persistent homology [62, 63] Simplicial complex None None
Element-specific PH (ESPH) [16] Simplicial complex Group labeled Group labeled
Persistent cohomology [64] Simplicial complex Labeled Labeled
Persistent path homology [65] Path complex Path Directed
Persistent flag homology [66] Flag complexes None Directed
Evolutionary homology [67] Simplicial complex Weighted Weighted
Weighted persistent homology [68] Simplicial complex Weighted Weighted
Laplacian-based
Persistent spectral graph [69, 70] Simplicial complex None None
Persistent Hodge Laplacians [71] Manifold Continuum Continuum
Persistent sheaf Laplacians [72] Cellular complex Labeled Sheaf relation
Persistent path Laplacians [73] Path complex Path Direction
Persistent hypergraph [74] Hypergraph Hypernode Hyperedge
Persistent directed hypergraphs [75] Hypergraph Hypernode Directed

hyperedge

Figure 2. Conceptual illustration of the TDA-based protein modeling.
(A). A three-dimensional protein structure. (B). Point cloud representation
of protein structure. (C). Simplicial complexes and filtration provide
multiscale topological representation of the point cloud. (D). Persistent
homology characterizes topological evolution of the point cloud. (E).
Persistent Laplacian characterizes shape evolution of the point cloud.

Persistent cohomology and element-specific
persistent homology
One major limitation of persistent homology is that it fails
to describe heterogeneous information of data point [64]. In
other words, it treats all entries in the point cloud equally
without considering other important information about the data.
Biomolecules, for example, contain many different element types
and each atom may have a different atomic partial charge, atomic
interaction environment, and electrostatic potential function
that cannot be captured by persistent homology. Thus, it is
crucial to have a topological technique that can incorporate
both geometric and nongeometric information into a unified
framework.

Persistent cohomology was developed to provide such a mathe-
matical paradigm [64]. In this framework, nongeometric informa-
tion can either be prescribed globally or reside locally on atoms,
bonds, or many-body interactions. In topological terminology,
nongeometric information is defined on simplicial complexes.
This persistent cohomology-based approach can capture multi-
scale geometric features and reveal non-geometric interaction
patterns through topological invariants, or enriched persistence
barcodes. It has been demonstrated that persistent cohomology

outperforms other methods in benchmark protein-ligand binding
affinity prediction datasets [64], which is a non-trivial problem in
computational drug discovery.

An alternative approach for addressing the limitation of per-
sistent homology is to use element-specific persistent homology
(ESPH) [16]. The motivation behind ESPH is the same as that for
persistent cohomology, but ESPH is relatively simple. Basically,
atoms in the original biomolecule are grouped according to their
element types, such as C, N, O, S, H, etc. Then, their combinations,
such as CC, CN, CO, etc., are identified, and persistent homology
analysis is applied to the atoms in each element combination,
resulting in ESPH analysis. As a result, ESPH reduces geometric
and biological complexities and embeds chemical and biological
information into topological abstraction. The ESPH approach was
used to win the D3R Grand Challenges, a worldwide competition
series in computer-aided drug design [87].

Persistent topological Laplacians
However, aforementioned TDA methods are still limited in
describing complex data, such as its lack of description of
non-topological changes (i.e. homotopic shape evolution) [20],
its incapability of coping with directed networks and digraphs
(i.e. atomic partial charges and polarizations, gene regulation
networks), and its inability to characterize structured data (e.g.
functional groups, binding domains, and motifs) [86]. These
limitations necessitate the development of innovative strategies.

Persistent topological Laplacians (PTLs) are a new class of
mathematical tools designed to overcome the aforementioned
challenges in TDA [86]. One of the first methods in this class is
the PSG [69], also known as persistent combinatorial Laplacians
[69] or persistent Laplacians [70]. PSGs have both harmonic spec-
tra with zero eigenvalues and non-harmonic spectra with non-
zero eigenvalues (Figure 2E). The harmonic spectra recover all
the topological invariants from persistent homology, while the
non-harmonic spectra capture the homotopic shape evolution
of data that cannot be described by persistent homology [86].
PSGs have been used for accurate forecasting of emerging dom-
inant SARS-CoV-2 variants BA.4/BA.5 [88], facilitating machine
learning-assisted protein engineering predictions [20], and other
applications [89].

Like persistent homology, persistent Laplacians are limited in
their ability to handle directed networks and atomic polarizations.
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To address these limitations, persistent path Laplacians have
been developed [73]. Their harmonic spectra recover the topo-
logical invariants of persistent path homology [65], while their
non-harmonic spectra capture homotopic shape evolution. Both
persistent path Laplacians and persistent path homology were
developed as a generalization of the path complex [90].

None of the PTLs mentioned above are capable of handling dif-
ferent types of elements in a molecule as persistent cohomology
does. To overcome this limitation, persistent sheaf Laplacians [72]
were designed, inspired by persistent cohomology [64], persistent
Laplacians [69], and sheaf Laplacians for cellular sheaves [91].
The aim of persistent sheaf Laplacians is to discriminate between
different objects in a point cloud. By associating a set of non-trivial
labels with each point in a point cloud, a persistent module of
sheaf cochain complexes is created, and the spectra of persistent
sheaf Laplacians encode both geometrical and non-geometrical
information [72]. The theory of persistent sheaf Laplacians is an
elegant method for the fusion of different types of data and opens
the door to future developments in TDA, geometric data analysis,
and algebraic data analysis.

Persistent hypergraph Laplacians enable the topological
description of internal structures or organizations in data
[74]. Persistent hyperdigraph Laplacians further allow for the
topological Laplacian modeling of directed hypergraphs [75].
These persistent topological Laplacians can be utilized to describe
intermolecular and intramolecular interactions. As protein struc-
tures are inherently multiscale, it is natural to apply persistent
hypergraph Laplacians and persistent hyperdigraph Laplacians to
delineate the protein structure-function relationship.

Finally, unlike all the aforementioned PTLs, evolutionary de
Rham-Hodge Laplacians or persistent Hodge Laplacians are
defined on a family of filtration-induced differentiable manifolds
[71]. They are particularly valuable for the multiscale topological
analysis of volumetric data. Technically, a similar algebraic
topology structure is shared by persistent Hodge Laplacians and
persistent Laplacians, but the former is a continuum theory for
volumetric data and the latter is a discrete formulation for point
cloud. As such, their underlying mathematical definitions, i.e.
differential forms on manifolds and simplicial complexes on
graphs, are sharply different.

Deep graph neural networks and topological
deep learning
Similar to topological data analysis, graph- and topology-based
deep learning models have been proposed to capture connectivity
and shape information of protein structure data. Graph neural
networks (GNNs) consider the low-order interactions between
vertices by aggregating information from neighbor vertices. A
variety of popular graph neural network layers has been proposed,
such as convolution graph networks (GCN) [92], graph attention
networks (GAT) [93], graph sample and aggregate (GraphSAGE)
[94], Graph Isomorphism Network (GIN) [95], and gated graph
neural network [96].

With variety of architectures of GNN layers, self-supervised
learning models are widely used for representation learning of
graph-based data. Graph autoencoder (GAE) and variational graph
autoencoder (VGAE) consist of both encoder and decoder, where
the decoder employ a linear inner product to reconstruct adjacent
matrix [97]. While most of graph-based self-supervised models
only have encoder. Deep graph infomax (DGI) maximizes mutual
information between a graph’s local and global features to achieve
self-supervised learning [98]. Graph contrastive learning (GRACE)
constructs positive and negative pairs from a single graph, and

trains a GNN to differentiate between them [99]. Self-supervised
graph transformer (SSGT) uses masked node prediction to train
the model. Given a masked graph, it tries to predict the masked
node’s attributes from the unmasked nodes [100].

In applications to learning protein structures, GCNs have been
widely applied to building structure-to-function map of proteins
[101, 102]. Moreover, self-supervised models provide powerful pre-
trained model in learning representation of protein structures.
GeoPPI [103] proposed a graph neural network-based autoencoder
to extract structural embedding at the protein-protein binding
interface. The subsequent downstream models allow accurate
predictions for protein-protein binding affinity upon mutations
[103] and further design effective antibody against SARS-CoV-
2 variants [104]. GRACE has been applied to learn geometric
representation of protein structures [105]. To adopt the critical
biophysical properties and interactions between residues and
atoms in protein structures, graph-based self-supervised learning
models have been customized to achieve the specific functions.
The inverse protein folding protocol was proposed to capture the
complex structural dependencies between residues in its repre-
sentation learning [45, 106]. OAGNNs was proposed to better sense
the geometric characteristics such as nner-residue torsion angles,
inter-residue orientations in its representation learning [107].

Topological deep learning, proposed by Cang and Wei in 2017
[108], is an emerging paradigm. It integrates topological repre-
sentations with deep neural networks for protein fitness learning
and prediction [20, 87, 108]. Similar graph and topology-based
deep learning architectures have also been proposed to capture
connectivity and shape information of protein structure data [75,
88]. Inspired by TDA, high-order interactions among neural nodes
were proposed in k-GNNs [109] and simplicial neural networks
[110].

ARTIFICIAL INTELLIGENCE-AIDED PROTEIN
ENGINEERING
Protein engineering is a typical black-box optimization problem,
which focuses on finding the optimal solution without explic-
itly knowing the objective function and its gradient. In protein
engineering, the goal in designing algorithms for this problem is
to efficiently search for the best sequence within a large search
space:

x∗ = arg max
x∈S

f (x), (1)

where S is an unlabeled candidate sequence library, x is a
sequence in the library and f (x) is the unknown sequence-to-
fitness map for optimization. The fitness landscape, f (S), is
a high-dimensional surface that maps amino acid sequences
to properties such as activity, selectivity, stability, and other
physicochemical features.

There are two practical challenges in protein engineering. First,
the fitness landscape is usually epistatic [111, 112], where the
contribution of individual amino acid residues to protein fitness
have dependency to each other. The interdependence leads to
complex, non-linear interactions among different residues. In
other word, the fitness landscape contains large number of local
optima. For example, in a four-site mutational fitness landscape
for GB1 protein with 204 = 160 000 mutations, 30 local maximum
fitness peaks were found [111]. Either traditional directed evolu-
tion experiments such as single-mutation walk and recombina-
tion, or machine learning models, is difficult to find the global
optima without trapped at local one. Second, protein engineering
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process usually collects limited number of data comparing to
the huge sequence library. There are an enormous number of
ways to mutate any given protein: for a 300-amino-acid protein,
there are 5700 possible single-amino-acid substitutions and 32
381 700 ways to make just two substitutions with the 20 canonical
amino acids [12]. Even with high-throughput experiments, only a
small fraction of the sequence library can be screened. Despite
this, many systems only have low-throughput assays such as
membrane proteins [113], making the process more difficult.

With enriched data-driven protein modeling approaches from
protein sequences to structures, recent advanced machine learn-
ing methods have been widely developed to accelerate protein
engineering in silico (Figure 1A) [1, 11, 12, 114, 115]. Utilizing
a limited experimental capacity, machine learning models can
effectively augment the fitness evaluation process, enabling the
exploration of a vast search space S. This approach facilitates
the discovery of optimal solutions within complex design spaces,
despite constraints on the number of trials or experiments.

Using a limited number of experimentally labeled sequences,
machine learning models can carry out zero-shot or few-shot
predictions [11]. The accuracy of these predictions largely depends
on the distribution of the training data, which influences the
model’s ability to generalize to new sequences. Concretely, if the
training data is representative or closer to a given sequence, the
model is more likely to make accurate predictions for that specific
sequence. Conversely, if the training data is not representative or
distant from the given sequence, the model’s predictive accuracy
may be compromised, leading to less reliable results. Therefore,
MLPE are usually an iterative process between machine learning
models and experimental screens. Incorporating the exploration-
exploitation trade-off in this context is essential for achieving
optimal results. During the iterative process, the model must bal-
ance exploration, where it seeks uncertain regions that machine
learning models have low accuracy, with exploitation, where it
refines and maximizes fitness based on previously gained knowl-
edge. A right balance is critical to preventing overemphasis on
either exploration or exploitation leading, which may lead to
suboptimal solutions. In particular, the epistatic nature of protein
fitness landscapes influences the exploration-exploitation trade-
off in the design process.

MLPE methods need to take the experimental capacity into
account when attempt to balance the exploitation-exploration. In
this section, we discuss different strategies upon the number of
experimental capacity. First, we discuss zero-shot strategy when
no labeled experimental data is available. Second, we discuss
supervised models for performing greedy search (i.e. exploitation).
Last, we discuss uncertainty quantification models that balance
exploration and exploitation trade-off.

Unsupervised zero-shot strategy
First, we review the zero-shot strategy that interrogates protein
fitness with an unsupervised manner (Figure 1B and Table 3). This
is designed for the scenarios in the early stage designs where no
experiments have been conducted or the experimentally labeled
data is too limited allowing accurate fitness predictions from
supervised models [11, 20]. They delineate a fitness landscape at
the early stage of protein engineering. Essential residues can be
identified and prioritized for mutational experiments, allowing
for a more targeted approach to protein engineering [22]. Addi-
tionally, the initial fitness landscape can be utilized to filter out
protein candidates with a low likelihood of exhibiting the desired
functionality. By focusing on sequences with higher probabilities,

Table 3. Comparisons for fitness predictors. Results were
adopted from TopFit [20]. Performance was reported by average
Spearman correlation over 34 DMS datasets and 20 repeats.
Supervised model use ensemble regression from 18 regression
models [20]

Zero-shot predictors

Model name training set size

0

ESM-1b PLL [23, 33] 0.435
eUniRep PLL [127] 0.411
EVE [40] 0.497
Tranception [15] 0.478
DeepSequence [22] 0.504

Supervised models

Embedding name training set size

24 96 168 240
Persistent homology [20] 0.263 0.432 0.496 0.534
Persistent Laplacian [20] 0.280 0.457 0.525 0.564
ESM-1b [23] 0.219 0.421 0.494 0.537
eUniRep [43] 0.259 0.432 0.485 0.515
Georgiev [127] 0.169 0.326 0.402 0.446
UniRep [21] 0.183 0.347 0.420 0.462
Onehot 0.132 0.317 0.400 0.450
Bepler [42] 0.139 0.287 0.353 0.396
TAPE LSTM [41] 0.259 0.436 0.492 0.522
TAPE ResNet [41] 0.080 0.216 0.305 0.358
TAPE transformer [41] 0.146 0.304 0.371 0.418

protein engineering process can be made more efficient and
effective [34].
Zero-shot predictions rely on the model’s ability to recognize pat-

terns in naturally observed proteins, enabling it to make informed
predictions for new sequences without having direct training data
for the target protein. As discussed in Section 2, protein language
models, particularly generative models, learn the distribution of
naturally observed proteins which are usually functional. The
learned distribution can be used to assess the likelihood that a
newly designed protein lies within the distribution of naturally
occurring proteins, thus providing valuable insights into its poten-
tial functionality and stability [11].

VAEs are popular local evolutionary models for zero-shot pre-
dictions such as DeepSequence [22] and EVE models [40]. In VAEs,
the conditional probability distribution p(x | z, θ) is the decoder
in a form of neural network with parameters θ , where x is the
sequence being query and z is its latent space variable. Similar,
encoder, q(z | x, φ), is modeled by another neural network with
parameters φ to approximate the true posterior distribution p(z |
x). For a given sequence x, its probabilistic likelihood in VAEs is
p(x | θ) parameterized by parameters θ . Direct computation of this
probability, p(x | θ) = ∫

p(x | z, θ) dz, is intractable in the general
case. The evidence lower bound (ELBO) forming a variation infer-
ence [54] provides a lower bound of the log likelihood:

log p(x | θ) ≥ ELBO(x) = Eq log p(x | z, θ) − KL(q(z | x, φ) | p(z)). (2)

ELBO is taken as the scoring function to quantify the muta-
tional likelihood of each query sequence. The ELBO-based zero-
shot predictions show advanced performance reported in multi-
ple works [20, 33, 55].
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Transformer is the currently state-of-the-art model which
has been used in many supervised tasks [23]. It learns a global
distribution of nature proteins. It has also been proved to
have advanced performance for zero-shot predictions [33, 44].
The training of Transformer uses mask filling that refers to
the process of predicting masked amino acid in a given input
sequence by leveraging the contextual information encoded in
the Transformer’s self-attention mechanism [59, 60]. The mask
filling procedure creates a classification layer on the top of the
Transformer architecture. Given a sequence x, the masked filling
classifier generate probability distributions for amino acids at
masked positions. Suppose x has L amino acids x = x1x2 · · · xL,
by masking a single amino acid at ith position, the classifier
calculates the conditional probability of p(xi | x(−i)), where x(−i)

is the remaining sequence excluding the masked ith position. To
reduce the computational cost, the pseudo-log-likelihoods (PLLs)
are usually used to estimate the log-likelihood of a given sequence
[33, 34]:

PLL(s) =
L∑

i=1

log P(si | s(−i)). (3)

The PPLs assume the independence between amino acids. To con-
sider the dependence between amino acids, one can calculate the
conditional probability by summing up all possible factorization
[34]. But this approach leads to much higher computational cost.

Furthermore, many different strategies have been employed
to make zero-shot predictions. Fine-tune model can improve the
predictions by combining both local and global evolutionary mod-
els [43]. Tranception scores combine global autoregressive infer-
ence and an local MSAs retrieval inference to make more accu-
rate predictions. In addition to these sequence-based models,
the structure-based GNN-based models including ESM-1F [45]
and RGC [116] have also been proposed by utilizing large-scale
structural data from AlphaFold2. However, the structure-based
model is still limited in accuracy comparing to sequence-based
models.

Supervised regression models
Supervised regression models are among the most prevalent
approaches used in guiding protein engineering, as they enable
greedy search strategies to maximize protein fitness (Figure 1C).
These models, including statistical, machine learning, and deep
learning techniques, rely on a set of labeled data as their
training set to predict the fitness landscape. By leveraging the
information contained within the training data, supervised
regression models can effectively estimate the relationship
between protein sequences and their fitness, providing valuable
insights for protein engineering and optimization [1, 12].

A variety of supervised models have been applied to predict
protein fitness. In general, statistical models and machine learn-
ing models such as linear regression [117], ridge regression [33],
support vector machine (SVM) [118], random forest [119], gradient
boosting tree [120] have accurate performance for small training
set. And deep learning methods such as deep neural networks
[121], convolutional neural networks (CNNs) [17], attention-based
neural networks [122] are more accurate with large size of train-
ing data. However, in protein engineering, the size of training
data increases sequentially which make the supervised models
difficult to provide accurate performance all time. Alternatively,
the ensemble regression was proposed to provide robust fitness
predictions despite of training data size [11, 123]. The ensemble
regression average predictions from multiple supervised models
and they provide more accurate and robust performance than

single model [20]. To remove the inaccurate models in the average,
cross-validation is usually used to rank accuracy of each model
and only top models are taken to average the predictions. Paired
with the zero-shot strategy, the ensemble regression trained on
informed training set pre-selected by zero-shot predictions can
efficiently pick up the global optimal protein with a few round of
experiments [34, 124, 125]. And such approach has been applied to
enable resource-efficient engineering CRISPR-Cas9 genome editor
activities [126].

Rather than the architectures of supervised models, the predic-
tive accuracy highly rely on the amount of information obtained
from the featurization process (Table 3). The physical-chemical
properties extract the properties of individual amino acids or
atoms [127]. The energy-based scores provide descriptions for
the overall property of the target protein [18]. However, neither
of them successfully take the complex interactions between
residues and atoms into account. To tackle this challenge, recent
mathematics-initiated topological and geometric descriptors
achieved great success in predicting protein fitness including
protein-protein interactions [17], protein stability [120], enzyme
activity, and antibody effectivity [20]. The aforementioned
descriptors (Section 3.1) extract structural information from
atoms at different characteristic lengths. Furthermore, the
sequence-based protein language models provide another
featurization strategies. The deep pre-trained models have the
latent space which provide the informative representation of
each given sequence. Building supervised models from the deep
embedding exhibits accurate performance [20, 128]. Recent works
combine different types of sequence-based features [33, 129] or
combine structure-based and sequence-based features [20] show
the complementary roles of different featurization approaches.

Active learning models for
exploration-exploitation balance
With the extensive accurate protein-to-fitness machine learning
models, active learning further designs iterative strategy between
models and experiments to sequentially optimize fitness with the
consideration of exploitation-exploration trade-off (Figure 1D–E)
[115].

To balance the exploitation-exploration trade-off, the super-
vised models require to predict not only the protein fitness but
also quantify the uncertainty of the given protein [130]. The
most popular uncertainty quantification in protein engineering
is Gaussian process (GP) [131], which automatically calibrate the
balance. Especially, GP using the upper confidence bounds (UCBs)
acquisition has efficient convergent rate theoretically for solving
the black-box optimization (Equation 1). A variety protein engi-
neering employed GP to accelerate the fitness optimization. For
examples, the light-gated channelrhodopsins (ChRs) were engi-
neered to improve photocurrence and light sensitivity [132, 133],
green fluorescent protein has been engineered to become yellow
fluorescence [134], acyl-ACP reductase was engineered to improve
fatty alcohol production [135], P450 enzyme has been engineered
to improve thermostability [136].

The tree-based search strategy is also efficient by building a
hierarchical search path, such as the hierarchical optimistic opti-
mization (HOO) [137], the deterministic optimistic optimization
(DOO), and the simultaneous optimistic optimization (SOO) [138].
To handle the discrete mutational space in protein engineering,
an unsupervised clustering approach was employed to construct
the hierarchical tree structure [124, 125].

Recently, researchers have turned to generative models to
quantify uncertainty in protein engineering, employing methods
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such as Variational Autoencoders (VAEs) [22, 40, 54], generative
adversarial networks (GANs) [139, 140], and autoregressive
language models [15, 141]. Generative models are a class of
machine learning algorithms that aim to learn the underlying
data distribution of a given dataset, in order to generate new,
previously unseen data points that resemble the training data.
These models capture the inherent structure and patterns
present in the data, enabling them to create realistic and diverse
samples that share the same characteristics as the original
data. For examples, ProGen [47] is a large language model that
generate functional protein sequences across diverse families.
A Transformer-based antibody language models utilize fine-
tuning processes to assist design antibody [142]. Recently, a novel
Transformer-based model called ReLSO has been introduced
[143]. This innovative approach simultaneously generates protein
sequences and predicts their fitness using its latent space
representation. The attention-based relationships learned by the
jointly trained ReLSO model offer valuable insights into sequence-
level fitness attribution, opening up new avenues for optimizing
proteins.

CONCLUSIONS AND FUTURE DIRECTIONS
In this review, we have discussed the advanced deep protein
language models for protein modeling. We further provided an
introduction of topological data analysis methods and their appli-
cations in protein modeling. Relying on both structure-based and
sequence-based models, MLPE methods were widely developed
to accelerate protein engineering. In the future, various machine
learning and deep learning will have potential perspectives in
protein engineering.

Accurate structure prediction methods enhanced
accurate structure-based models
Comparing to sequence data, three-dimensional protein struc-
tural data offer more comprehensive and explicit descriptions of
the biophysical properties of a protein and its fitness. As a result,
structure-based models usually provide superb performance than
sequence-based models for supervised tasks with small training
set [20, 120].

As protein sequence databases continue to grow, self-
supervised models demonstrate their ability to effectively model
proteins using large-scale data. The protein sequence database
provides a vast amount of resources for building sequence-
based models, such as UniProt [14] database contains hundreds
of millions sequences. In contrast, protein structure databases
are comparatively limited in size. The largest among them,
Protein Data Bank (PDB), contains only 205 thousands of protein
structures as of 2023 [13]. Due to the abundance of data resources,
sequence-based models typically outperform structure-based
models significantly [116].

To address the limited availability of structure data, researchers
have focused on developing highly accurate deep learning
techniques aimed at enabling large-scale structure predictions.
These state-of-the-art methodologies have the potential to
significantly expand the database of known protein structures.
Two prominent methods are AlphaFold2 [24] and RosettaFold
[144], which have demonstrated remarkable capabilities in
predicting protein structures with atomic-level accuracy. By
harnessing the power of cutting-edge deep learning algorithms,
these tools have successfully facilitated the accurate prediction

of protein structures, thus contributing to the expansion of the
structural database.

Both AlphaFold2 and RosettaFold are alignment-based, which
rely on MSAs of the target protein for structure prediction.
Alignment-based approaches can be highly accurate when there
are sufficient number of homologous sequences (that is, MSAs
depth) in the database. Therefore, these methods may have
reduced accuracy with low MSAs depth in database. In addition,
the MSAs search is time consuming which slows down the
prediction speed. Alternatively, alignment-free methods have also
been proposed to tackle these limitations [145]. An early work
RGN2 [146] exhibits more accurate predictions than AlphaFold2
on orphans proteins which lack of MSAs. Supervised transformer
protein language models predict orphan protein structures
[147]. With the development of variety of large-scale protein
language models in recent years, the alignment-free structural
prediction methods incorporate with these models to exhibit
their accuracy and efficiency. For example, ESMFold [50] and
OmegaFold [148] achieve similar accuracy with AlphaFold2 with
faster speed. Moreover, extensive language model-based methods
were developed for structural predictions of single-sequence
and orphan proteins [149–152]. Large-scale protein language
models will provide powerful toolkits for protein structural
predictions.

In building protein fitness model, the structural TDA-based
model has exemplified that the AlphaFold2 structure is as reliable
as the experimental structure [20]. The zero-shot model, ESM-IF1,
also shows advanced performance with coupling with the large
structure AlphaFold database [45]. In the light of the revolutionary
structure predictive models, structure-based models will open
up a new avenue in protein engineering, from directed evolution
to de novo design [153, 154]. More sophisticated TDA methods
will be demanded to handle the large-scale datasets. Large-scale
deep graph neural networks will need to be further developed, for
example, to consider the high-order interactions using simplicial
neural networks [110, 155].

Large highthroughput datasets enabled larger
scale models
Current MLPE methods are usually designed for limited training
set. The ensemble regression is an effective approach to accu-
rately learn the fitness landscape with small but increasing size
of training sets from deep mutational scanning [34].

The breakthrough biotechnology, next-generation sequencing
(NGS) [156] largely enhances the capacity of DMS for collecting
supervised fitness data in various protein systems [111, 112, 157].
The resulting large-scale deep mutational scanning databases
expand the exploration range of protein engineering. Deeper
machine learning models are emerging to enhance the accuracy
and adaptivity for protein engineering.

Key Points

• Machine learning and deep learning techniques are rev-
olutionizing protein engineering.

• Topological data analysis enables advanced structure-
based machine learning-assisted protein engineering
approaches.

• Deep protein language models extract critical evolution-
ary information from large-scale sequence databases.
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