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Abstract

Implementing a specific cloud resource to analyze extensive genomic data on severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) poses a challenge when resources are limited. To overcome this, we repurposed a cloud platform initially designed for use in
research on cancer genomics (https://cgc.sbgenomics.com) to enable its use in research on SARS-CoV-2 to build Cloud Workflow for Viral
and Variant Identification (COWID). COWID is a workflow based on the Common Workflow Language that realizes the full potential of
sequencing technology for use in reliable SARS-CoV-2 identification and leverages cloud computing to achieve efficient parallelization.
COWID outperformed other contemporary methods for identification by offering scalable identification and reliable variant findings
with no false-positive results. COWID typically processed each sample of raw sequencing data within 5 min at a cost of only US$0.01. The
COWID source code is publicly available (https://github.com/hendrick0403/COWID) and can be accessed on any computer with Internet
access. COWID is designed to be user-friendly; it can be implemented without prior programming knowledge. Therefore, COWID is a
time-efficient tool that can be used during a pandemic.
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INTRODUCTION
COVID-19 is the most recent global infectious disease event,
with the event occurring after the emergence of the Middle East
respiratory syndrome (MERS) epidemic that occurred in 2012
[1]. COVID-19 is caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2, initially named 2019-nCoV), a novel
coronavirus of probable bat origin [2] that was first reported to
infect humans in Wuhan, China, in late December 2019 [3]. Within
3 years of its discovery, the virus has infected more than 650
million people worldwide [4], leading to COVID-19 being declared
a pandemic by the World Health Organization in March 2020 [5].

To improve the effectiveness of the response to this pandemic,
a means of accurately identifying SARS-CoV-2 infection must be
identified.

Real-time reverse transcription-polymerase chain reaction (RT-
PCR) is a widely used molecular diagnostic technique for detecting
the presence of SARS-CoV-2 in clinical laboratory settings [6].
However, because the design of the assay necessitates the use of
specific probe sequences, the RT-PCR technique has several limi-
tations, including frequent false-negative results [7] and an inabil-
ity to detect mutations in viral variants [8]. Modern sequencing
technology can be used to analyze the entire length of a specific
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genome, which enables concurrent sequencing of millions of
reads of nucleic acid bases. Such technology has extremely
low per-base read error rates [9]. Thus, sequencing may be
an appropriate method for simultaneously and accurately
identifying SARS-CoV-2 and its variants. However, sequencing
generates considerable amounts of raw, FASTQ read data for
each sample, and therefore, additional analysis time is required
for sequencing, which may delay the identification process.
This drawback becomes particularly severe during the time of
a pandemic, when speed is crucial. Typical desktop computers
have a limited capacity to process raw sequencing data. However,
cloud technology can facilitate the performance of data-intensive
tasks on computers by providing access to numerous, more
powerful computational resources through a network [10]. This
can enable analytical results to be generated in a timely manner.
Furthermore, some of these generated results (e.g., the consensus
genomes of SARS-CoV-2 in the FASTA format) can be deposited
on public repository databases, such as the Global Initiative
on Sharing All Influenza Data (GISAID) [11] or GenBank [12],
which is an online resource hosted by the National Center
for Biotechnology Information (NCBI) [13], which enables other
researchers around the world to utilize these results. As of
December 2022, more than 20 million records of SARS-CoV-2
genome sequences derived using various sequencing technologies
are available online; most of the sequences (∼70%) are available
on the GISAID (https://gisaid.org) and the remaining sequences
are available on the NCBI GenBank (https://www.ncbi.nlm.nih.
gov/sars-cov-2/). The majority of these sequences were identified
using Illumina sequencing, which is a widely used sequencing
technology in SARS-CoV-2 studies [14].

Direct utilization of cloud technology in clinical settings
remains challenging because many clinical staff have little expe-
rience with this technology and lack expertise in computational
fields, such as programming, systems design and systems admin-
istration. Several platforms for facilitating SARS-CoV-2 detection
have been introduced. These include new public cloud platforms,
such as IDseq (https://idseq.net) [15] and Serratus (https://
serratus.io) [16], both of which were developed to facilitate
detection of pathogens, including SARS-CoV-2. Existing platform
capabilities have also been expanded to improve the platforms’
abilities to facilitate detection of COVID-19. The capabilities of
the National Genomics Data Center platform (https://bigd.big.ac.
cn) hosted by the China National Center for Bioinformation [17]
were expanded to create the 2019 Novel Coronavirus Resource
(2019nCoVR, https://bigd.big.ac.cn/ncov/) [18]. In addition, the
capabilities of the Ensembl (https://www.ensembl.org) platform
[19] of the European Bioinformatics Institute [20] were expanded
to create Ensembl COVID-19 (https://covid-19.ensembl.org) [21].
Although these cloud-based resources are highly useful, their
long-term development and maintenance necessitates the use of
numerous resources, including infrastructure, financing, human
capital and time. Therefore, such cloud-based platforms are
unsustainable for use in developing or undeveloped countries
that have limited resources and have also been affected by the
global pandemic.

Seven Bridges Genomics (SBG) hosts the Cancer Genomics
Cloud (CGC, https://cgc.sbgenomics.com) [22], a publicly acces-
sible cloud-based platform that offers several services [23]. For
example, it incorporates hundreds of built-in bioinformatics tools
and workflows as part of its Software as a Service, provides
programming environments and support through its Platform as
a Service, and provides virtualized computational resources (i.e.,
processors, memory and storage) through Amazon Web Services

(AWS) or the Google Cloud Platform under its Infrastructure as a
Service. The CGC is a dedicated platform specifically designed to
assist with cancer research. This platform improves the ease of
access to and analysis of petabytes of genomics data related to
cancer, like The Cancer Genome Atlas [24] that contains numer-
ous human samples from various cancer types including vari-
ants associated with cancer [25], through its Data as a Service.
Repurposing is widely employed in biomedicine. For example,
the antiviral drugs remdesivir, molnupiravir and clevudine, which
were originally used to treat Ebola, Venezuelan equine encephali-
tis, and hepatitis B, respectively [26], have been repurposed for
treating COVID-19. Similarly, repurposing the CGC, which was
originally developed to aid cancer research, to facilitate COVID-
19 identification may be feasible because of (1) its considerable
coverage of cloud services, which can be utilized to reduce devel-
opment and maintenance costs, and (2) the shared features of
cancer and COVID-19 in terms of the variants.

The 2019nCoVR has been integrated with a dedicated web-
based analysis platform (https://bigd.big.ac.cn/ncov/online/tools)
to enable analysis of raw sequencing reads of SARS-CoV-2 by
using independent modules [27]. However, the utility of this plat-
form is limited when large samples are being considered, as is
the case during a pandemic, because the design of its default
analytical pipeline only allows for one sample to be processed
per execution. Analytical pipelines can be described as a form
of workflow system [28]. These pipelines can be made scalable
through parallelization, which enables the simultaneous perfor-
mance of large-scale tasks to thereby enable analysis of multiple
samples during a single execution. Parallelization can be achieved
through multithread processing performed in a local system or
batch processing performed in a cloud system [29].

Some studies have used the CGC for SARS-CoV-2 analysis. A
study [30] used the CGC for viral identification by employing
workflows built into the CGC to process SARS-CoV-2 sequencing
data. Another study [31] optimized the workflows used in [30] and
integrated them into a single workable workflow that enabled
robust viral identification. Furthermore, a study [32] integrated
several of the CGC’s built-in bioinformatics tools to develop a sin-
gle workflow for use in variant identification. These three studies
used the Common Workflow Language (CWL) [33], a language
used to define workflows and that the CGC supports, to define
their workflows. [32] used batch processing, whereas [30, 31]
used multithread processing to achieve parallelization. A uniform
workflow that integrates the capabilities of each workflow used in
previous CGC-based studies must be developed to ensure the full
potential of sequencing and cloud technology can be reached.

Herein, we present Cloud Workflow for Viral and Variant Iden-
tification (COWID), which can be used to identify SARS-CoV-2 by
using Illumina sequencing data. COWID is a CWL-based workflow
powered by the CGC that maximizes the potential of cloud-based
sequencing and parallelization to complete identification. In addi-
tion, COWID builds upon the research of the aforementioned
CGC-based studies by optimizing the parallelization of multiple
threads and batches to complete viral and variant identification.

MATERIALS AND METHODS
Data selection
We used two open-access datasets listed on the public repository
database of the NCBI BioProject [34]. The first dataset (accession
no: PRJNA784038) was generated by a SARS-CoV-2 study consid-
ering Omicron, the SARS-CoV-2 variant of concern (VOC) that
emerged in 2021. Omicron has 3.3-fold higher transmissibility
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Figure 1. Summary of open-access datasets.

than the Delta VOC [35] and was first reported in southern Africa
[36]. The second dataset (accession no: PRJNA316178) was gen-
erated by a non-SARS-CoV-2 study of MERS coronavirus (MERS-
CoV). MERS-CoV is closely related to SARS-CoV-2 at the genus level
(Betacoronavirus) but not at the subgenus level—Merbecovirus is
the subgenus for MERS-CoV [37] and Sarbecovirus is the subgenus
for SARS-CoV-2 [38]. MERS-CoV and SARS-CoV-2 are the same
enveloped positive single-strand ribonucleic acid (RNA) type of
coronavirus.

We subsequently performed retrieval and assessment on
the CGC platform to process the raw sequencing data of these
two datasets. In total, 78 samples (70 in the first dataset and
8 in the second dataset) were selected on the basis of their
Illumina sequencing data types and their high per-base sequence
read quality; an assessment conducted using the CGC’s built-
in FASTQC tool, which uses the FASTQC program (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/) revealed no
adapter sequences. The raw sequencing data were retrieved
from the NCBI Sequence Read Archive (SRA) database [39] and
transferred to the CGC platform by using a built-in CGC workflow
named SRA Download and Set Metadata. In SRA Download
and Set Metadata, SRA fasterq-dump from the SRA Toolkit is
implemented, with the SRA metadata files of selected sample
identifiers in listed TXT files used as input. In total, 156 paired-end
FASTQ files were used. These files contained nearly 25 million raw
sequencing reads amounting to more than 15 GB of data, which
were used as input data for COWID (Figure 1 and Supplementary
data in the Materials sheet).

Data identification
COWID was built using Rabix [40], a software environment that
enables the development processes of coding, testing and debug-
ging to be performed for CWL applications. The CWL application
can be described as an independent tool or workflow. COWID is
a workflow consisting of nodes, which may be inputs, tools, or
outputs, and of edges. In COWID, data elements such as files or

parameters flow between connected nodes. The nodes for inputs,

tools and outputs, are represented by the icons , and ,
respectively. The edges are represented as gray lines connecting
the nodes. COWID has three necessary inputs, six embedded tools
and four generated outputs (Figure 2).

COWID integrates two parallel identification modules:

1. The viral identification module uses the Centrifuge algo-
rithm [41] and comprises three components: Download,
Build and Classifier. To improve efficiency, we included only
the Classifier within COWID and retained the others within
Reference Index Creation—a built-in Centrifuge workflow
that is performed on the CGC before COWID is run. In
doing so, we reduce redundancy in the creation of indexes
for specific species, which might otherwise prolong the
processing time when COWID is run in parallel. In this
built-in workflow, some parameters of SARS-CoV-2 must
be configured prior to execution. The taxonomic identifier
(taxID) field must ‘2697049,’ which corresponds to the taxID
of the SARS-CoV-2 sequences that are to be downloaded from
the NCBI Taxonomy database [42]. The RefSeq category field
should be set to ‘reference genome’ to filter the category
of SARS-CoV-2 sequence data that are downloaded from
the NCBI RefSeq database [43]. The term ‘viral’ must be
entered into the domain and basename fields to specify the
domain classification the SARS-CoV-2 sequence data should
be obtained from and the name of the created reference
index, respectively. The output reference index created
using this built-in workflow is stored in the compressed
TAR format (processable in 2 minutes for US$0.02) and can
then be input into COWID. The Centrifuge Classifier tool
(version 1.0.3) can then be used to identify SARS-CoV-2 in
the input FASTQ reads. In the Centrifuge Classifier, a fast
and memory-efficient full-text minute (FM) index based
on space-optimized Burrows–Wheeler transform is used
to assist in the classification of reads. This results in a
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Figure 2. COWID graphical interface.

balanced use of computational time and memory [44]. A
final identification report is generated in the TSV format
and contains the number of reads identified in the developed
reference index.

2. The variant identification module incorporates aspects of
the 2019nCoVR and Genome Analysis Toolkit (GATK) [45]
best practice framework, which comprises three main stages.
The first stage involves alignment with the Burrows–Wheeler
Alignment Maximal Exact Matches (BWA MEM) tool (version
0.7.17) [46]. This tool is used to implement a data structure
similar to that of the FM index used for the Centrifuge algo-
rithm, which enables data to be rapidly aligned with refer-
ence genome data provided as another input in COWID after
being processed by the BWA INDEX tool. The BWA MEM tool
is bundled with the Biobambam2 sortmadup tool (version
2.0.87) [47], which is used to identify and eliminate duplicate
reads. The second stage of the framework involves variant
calling using the HaplotypeCaller tool (version 4.2.0.0) [48].
In this tool, the alignment output file, which is in the BAM
format, is used to call a variant in a read that aligns with a
reference genome that was processed using the SBG FASTA
Indices tool. The third stage involves genome generation by
using the BCFtools Consensus tool (version 1.9) [49]. This
tool integrates the output file of the variant calling step,
which is in the VCF format, with a reference genome file to
generate a new consensus genome, with the resulting file in
the FASTA format. We use a single nucleotide variation (SNV)
or short insertion and deletion (indel) to define a variant as
a mutation that caused a change in the original reference
genome.

Data validation
We compared the original SARS-CoV-2 identification results avail-
able on the SRA database with the results we obtained using our
viral identification system because the results were based on the
same sample identifiers. The original identification results were
obtained using the baseline method of the Sequence Taxonomic
Analysis Tool (STAT) [50], a k-mer-based tool for classifying reads

into taxonomic levels. Because the reference index was specif-
ically built for SARS-CoV-2 identification, we only included the
SARS-CoV-2 samples in the reference dataset when the STAT had
been employed for SARS-CoV-2 identification. This ensured a fair
comparison of the viral identification of COWID and the STAT.
We visually inspected the normality distribution of the reads
identified in both COWID and the STAT by using a density plot or,
when only one variable was involved, the Shapiro–Wilk normality
test. We employed a paired-sample significant parametric test
if the data were normally distributed and a nonparametric test
if the data were not normally distributed. Subsequently, a t-test
was conducted for parametric data, and the Wilcoxon test was
conducted for nonparametric data to determine the significance
of the differences between the identification of the two methods
that were identified in the normality tests [51]. The normality and
significance tests were performed in R (version 4.2.0).

To validate the variant identification, we used three online
resources with data on SARS-CoV-2 variants. The web-based
Phylogenetic Assignment of Named Global Outbreak Lineages
(Pangolin) tool (https://pangolin.cog-uk.io; version 4.2 with
pangolin-data version 1.19; accessed on April 27, 2023) [52]
was used to assign a lineage on the basis of the consensus
genome sequence generated by COWID. Nextclade (https://clades.
nextstrain.org; version 2.13.0, accessed on April 27, 2023) [53] was
used to cross-validate the lineage assignment. Finally, the VOC
tracker on the University of California Santa Cruz SARS-CoV-
2 Genome Browser (https://genome.ucsc.edu/cgi-bin/hgTracks?
db=wuhCor1; accessed on September 7, 2022) [54] was used to
obtain a list of Omicron variants (B.1.1.529 lineage) from the
2022 version of the database [55], which incorporated genomics
data from the GISAID. We also completed a comparison of
variant identification on the 2019nCoVR platform by using the
Fastq-to-Variants module and the same FASTQ input files. This
comparison was conducted because the module also uses the
GATK framework and a web-based interface to identify variants.

Technical settings
Application and execution settings must be applied to enable
COWID to be run in parallel. For the application settings (Figure 3,

https://pangolin.cog-uk.io
https://clades.nextstrain.org
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Table 1. Comparison between COWID and other CGC-associated studies

Study Identification No. of
samples

Computational resources Timea Costb

vCPUc Memory Storage

Study 1–Lim & Lee, 2020d Viral 062 16 122 1024 13 0.11
Study 2–Lim et al., 2021d Viral 182 16 122 1024 10 0.08
Study 3–Lim et al., 20221 Variant 055 08 015 1024 07 2.09e

COWID2 Viral &Variant 078 08 016 0032 05 1.17f

aminutes. bUS$. cvirtual central processing units. dr4.4xlarge Spot Instance (US$1.064/h); 1 c4.2xlarge Spot Instance (US$0.398/h); 2 c5.2xlarge Spot Instance
(US$0.34/h). eUS$0.04 per sample. fUS$0.01per sample.

top), the user must enable the batch option by selecting sam-
ple identifier metadata and defining sequencing FASTQ files as
input reads, a downloaded FASTA file as a reference genome, and
a prebuilt Centrifuge index TAR file as a reference index. For
the execution settings (Figure 3, bottom), the user must select
the spot instance setting on AWS rather than the normal on-
demand instance setting to reduce execution costs. A custom
compute optimized instance type of c5.2×large is recommended.
This instance type which includes a configuration of 8 virtual
central processing units (vCPUs) and 16 GB of random access
memory (RAM) along with 32 GB of attached disk storage. This
instance type typically costs US$0.34 per hour, which is consid-
erably lower (∼50% lower) than the cost of the on-demand type
and has fewer interruptions (5% fewer) despite having the same
configuration and service location (https://aws.amazon.com/ec2/
spot/instance-advisor/).

RESULTS
Workflow performance
COWID enables batch processing, which allows for the simulta-
neous identification of all samples on the basis of the available
instances in a single execution. When COWID was used, the cost
and time required to identify one sample of paired sequencing
data for the viral and variant forms of SARS-CoV-2 were typically
US$0.01 and 5 minutes, respectively (Figure 4 and Supplementary
data in the Computation sheet). In addition, with COWID, the
analysis could be scaled up by inputting more samples when a
sufficient number of instances could be accessed. In addition,
unlike previous CGC-based studies (studies 1 to 3; [30–32]), which
have used the default type of spot instance, in COWID, custom
settings can be used to allocate computational resources. Retain-
ing only the essential tools for viral and variant identification of
previous CGC-based studies improved the performance of COWID
in terms of both time and cost (Table 1).

COWID facilitates multithread processing, enabling simulta-
neous viral and variant identification for each instance of each
available sample. In our study, COWID typically required 5 min-
utes to analyze one sample, with approximately 1 minute spent
initiating available computational resources and 4 minutes spent
completing the main identification process (Figure 5A). During the
main identification process, three tools were run in parallel (BWA
INDEX for ∼30 s, SBG FASTA Indices for ∼60 s, and Centrifuge
Classifier for ∼40 s). These tools consumed more computational
power. Subsequently, three additional tools were run (BWA MEM
for ∼20 s, HaplotypeCaller for ∼100 s, and BCFtools Consensus
for ∼70 s). Rather than running each individual tool serially,
which requires a longer amount of time, COWID runs some tools
in parallel through multithread processing. Moreover, COWID
enables these tools to run automatically, which further saves time.

Our execution settings allocated the minimum configuration of
computational resources for running COWID, ensuring suitable
amounts of vCPU, RAM and disk storage were used (Figure 5B);
an initial instance of c5.2×large with 8 vCPU and 16 GB of RAM
was the most favorable of the tested configurations. This config-
uration is cost effective, and the attached storage usage was set
to a minimum (32 GB) in accordance with the rule of the power
of two (2n), which is a common binary system employed in the
computational field.

Viral identification
The ability of COWID to identify SARS-CoV-2 reads is depen-
dent on the characteristics of the dataset. When a SARS-CoV-2
dataset was used, most of the reads were identified as SARS-CoV-
2, resulting in a high identification rate. In contrast, few reads
were identified as SARS-CoV-2 when the MERS-CoV dataset was
used, resulting in a low identification rate (Figure 6A).

COWID outperformed the STAT in viral identification for every
SARS-CoV-2 sample. Unlike the STAT, which considers many
species in its identification, COWID focuses on only specific
species of SARS-CoV-2, which enables robust read classification
and a higher mean number of reads identified as SARS-CoV-2
(Figure 6B and Supplementary data in the Identification sheet).
This study employed the nonparametric test of paired samples
because (1) the identified reads of SARS-CoV-2 for both methods
exhibited nonnormal distributions and (2) the normality test
results indicated that the SARS-CoV-2 reads identified through
the methods significantly differed, with P < 0.05 (P = 0.01178 for
COWID and P = 0.009273 for the STAT). Furthermore, the results
of the paired-sample Wilcoxon test revealed that the median
number of identified reads obtained using COWID significantly
differed from that obtained using the STAT (P < 0.05; Figure 6C).

Variant identification
The ability of COWID to identify SARS-CoV-2 variants is depen-
dent on the characteristics of the dataset. Many variants were
detected in the SARS-CoV-2 dataset, whereas fewer variants were
detected in the MERS-CoV dataset (Figure 7A and Supplementary
data in the Identification sheet). When we validated the consen-
sus genome data for identified variants (Figure 7B), we observed
that most of the samples in the SARS-CoV-2 dataset (∼96%) were
classified as Omicron (either B.1.1.529 or a BA sublineage); this
finding is in accordance with the description of the dataset, which
indicated that the dataset contained Omicron data. BA.1 was the
dominant lineage in our SARS-CoV-2 dataset; this finding is con-
sistent with that reported by Ou et al. [56], who indicated that BA.1
is a major circulating Omicron subtype. All samples in the MERS-
CoV dataset were classified as the original ancestor lineage of
SARS-CoV-2 (B lineage), indicating false-positive results. When we
compared somewhat similar sequences (blastn) of the reference

https://aws.amazon.com/ec2/spot/instance-advisor/
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Figure 3. COWID setting interface for application (top) and execution (bottom).

MERS-CoV genomes (GenBank accession no: NC_019843.3; 30,119
base pairs) with the SARS-CoV-2 genomes (GenBank accession no:
NC_045512.2; 29,903 base pairs) by using the Nucleotide BLAST
tool on the NCBI (https://blast.ncbi.nlm.nih.gov) [57], we identi-
fied 10 similar sequences, with one SARS-CoV-2 sequence (13,133–
19,802 region) exhibiting a high identity alignment score (67%). All
variants identified in the MERS-CoV dataset were located in the
same region as that of this highly similar sequence (Figure 7C).
These variants corresponded to a nonstructural protein (nsp)
of RNA-dependent RNA polymerase (RdRp or nsp12) or helicase

(nsp13) in open reading frame 1ab (ORF1ab), which are the two
most conserved enzymes for positive-strand RNA viruses [58]. The
similarity in the sequences of MERS-CoV and SARS-CoV-2 may
explain why some reads identified as SARS-CoV-2 were detected
in the MERS-CoV dataset in the results we obtained using our
viral identification system; these reads may be located in those
sequences.

COWID identified all 61 Omicron-related variants that are
primarily located on the spike (S) protein as either SNV variants or,
less frequently, as indel variants. It identified a similar proportion

https://blast.ncbi.nlm.nih.gov
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Figure 4. Results of COWID in a web-based interface for overall batch (top) and specific sample tasks (bottom).

Figure 5. Computational performance of COWID. A, Tracking of COWID embedded tools. B, Monitoring process of COWID resources.
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Figure 6. Viral identification results obtained using COWID. A, Distribution of the identification rate. B, Distribution of identified reads obtained using
both methods, with a dashed line indicating the mean. C, Visualization of the paired-sample significance test.

Figure 7. Variant identification results obtained using COWID. A, Distribution of identified variants. B, Summary of assigned lineages. C, Summary of
identified variants with their corresponding amino acid mutation in the MERS-CoV dataset. D, Summary of identified variants with their corresponding
amino acid mutation in the SARS-CoV-2 dataset.

of variants to that identified by 2019nCoVR for the same SARS-
CoV-2 dataset, indicating COWID is reliable with respect to variant
identification (Figure 7D). Syed et al. [59] demonstrated that some
variations in the structural proteins of SARS-CoV-2 were crucial
to the high transferability of Omicron. Six variations in the
receptor binding domain of the S protein (K417N, N440K, G446S,
G496S, Q498R and N501Y, which correspond to G22813T, T22882G,
G22898A, G23048A, A23055G and A23063T on our list) can reduce
the neutralization capabilities of the antibodies induced by

vaccination. In addition, two variants in the serine/arginine–rich
region of the N protein (R203K and G204R, which correspond
to G28881A and G28883C on our list) play a vital role in
viral packaging and cell entry efficiency, which enhance viral
infectivity. Moreover, a mutation in the E protein (T9I, which
corresponds to C26270T on our list) and three mutations in the
M protein (D3G, Q19E and A63T, which correspond to A26530G,
C26577G and G26709A on our list) may reduce viral assembly
and fitness. Three Omicron variants (G22813T, T22882G and
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G22898A) had considerably low incidence rates (7%) relative to
other variants, which may be because different primers were
used when they were sequenced. A version of a particular primer
(ARTIC v4) was reported to be insensitive to these three variants
[60]. In addition, a sample assigned to lineage B in the SARS-
CoV-2 dataset was suspected to be a false positive because it
consistently had the lowest rate of identification (1.83%) and of
variant identification (12). Moreover, this sample did not contain
any of the four signature variants of SARS-CoV-2, namely C241T,
C3037T, C14408T and A23403G [61], which correspond to the 5′

untranslated region, ORF1ab polyprotein F924F (or nsp3 F106F)
and P4715L (or RdRp P323L), and S protein D614G mutations.

DISCUSSION
In this study, we developed and applied COWID to analyze publicly
available SARS-CoV-2 sequencing data. COWID is mainly built
on the CGC, which is a publicly accessible cloud platform, and
comprises two main analytical modules: viral identification and
variant identification. Each module is constructed using widely
used bioinformatics tools that are publicly available on the CGC,
and publicly available SARS-CoV-2 reference genome is used as
its input. COWID generates consensus genomes, which can be
deposited in public repository databases, such as the GISAID
or NCBI GenBank. We demonstrated that identification must
be completed for both viruses and variants to maximize the
potential of sequencing for characterization purposes. If it is
not completed for both, identification results may be unreliable;
moreover, variant and consensus genomes derived from variant
identification results would not be able to be detected on the basis
of the viral identification rate, which could increase the risk of
false positives. We validated the viral and variant identification
results we obtained using COWID by comparing them with those
available on online resources. Finally, reducing the time required
for and complexity of bioinformatics analysis through the paral-
lelization of identification processes and multithread processing
of sequencing sample batches can improve the effectiveness of
using metagenomics for pathogen surveillance [62].

COWID is designed to be accessible and implementable in
resource-limited settings; to implement COWID, only a computer
and an Internet connection are required. Its interface can be
accessed on a browser by anyone, regardless of their level
of programming knowledge. Several studies have developed
dedicated computational workflows for analyzing SARS-CoV-
2 sequencing data in parallel through the use of different
workflow management systems, including COVseq [63] in
Snakemake [64], poreCov [65] and viralrecon [66] in Nextflow
[67], and ViReflow [68] in Reflow (https://github.com/grailbio/
reflow). These workflows have different analytical purposes:
COVseq is used to generate large-scale primer sequences for
SARS-CoV-2 sequencing libraries; poreCov and viralrecon have
comprehensive, end-to-end viral and variant identification
capabilities; and ViReflow can generate consensus genomes on
a large scale. Regarding input data, only data from Illumina
sequencing can be used in COVseq and ViReflow, only data from
nanopore sequencing can be used in poreCov, and both forms
of data can be used in viralrecon. Only ViReflow, which has a
graphical interface, is user-friendly; the other workflows can only
be implemented if the user has prior programming knowledge
because the user must understand the code syntax when running
the analysis. In addition, these workflows all involve multithread
processing, which requires a high configuration of computational
resources and therefore may require the use of expensive

services if parallelization is implemented. Compared with these
workflows and 2019nCoVR, COWID is easier to use; it has a
web-based interface and efficient parallel processing capabilities
(Table 2). In addition, unlike other workflows (COVseq, poreCov,
viralrecon and ViReflow) that require the prior installation of
all dependencies to set up the workflow environment (e.g., a
workflow manager and a software container), COWID leverages
the containerized software tools available in Docker [69] and the
embedded CWL workflow management system predefined on
the CGC, which eliminates the need for additional installation.
This enables researchers to complete robust identification
without being required to complete an installation process.
Users can directly implement COWID by copying and pasting its
open-source code (available at https://github.com/hendrick0403/
COWID), which is available in the machine-readable JSON format,
on the CGC platform. The simplicity of its implementation
ensures that individuals with no programming expertise can
effectively utilize COWID for identification without being required
to manually run code-based computational tools. The user-
friendly COWID interface may be a solution for ease-of-use
problems that were reported for CWL when it was implemented
on other platforms [70]. In addition, COWID is suitable for use
during a pandemic, when scientists are likely to be working
remotely [71], because COWID enables analyses to be run online.

COWID provides a uniform yet standardized bioinformatics
workflow that integrates several well-established bioinformatics
tools to minimize analytical bias when identification is being
completed for multiple samples. COWID can reduce human error
that may occur during large-scale identification, such as that
that may be conducted during a pandemic. COWID generates
intermediate files of alignment reads in the BAM format and a
list of variants in the VCF format, both of which can be used
for advanced downstream analysis. COWID is powered by the
CGC platform, which supports the programming languages R and
Python. These languages are widely used by data scientists and
life scientists because they can be used to implement many pack-
ages that are used for biological research. In addition, COWID can
be used to analyze user-provided sequencing data. However, to
ensure the reliability of results, users should ensure the quality of
reads before running COWID. Users can browse and select files for
uploading to the CGC from a local system. Furthermore, the core
identification modules of COWID can be applied for identification
of pathogen species other than SARS-CoV-2 if genome and index
references for the species are available.

COWID was developed to adhere to the principles of Findability,
Accessibility, Interoperability and Reusability [72]. The COWID
code is available online (findability) and are publicly accessible
(accessibility). COWID can be used to obtain consensus genome
results, which are interoperable with other online resources
(interoperability). Moreover, users can use their own data rather
than solely open-access data (reusability). Because COWID was
built using a code specific to the CGC platform to enable the
CGC’s bioinformatics tools and computational resources to
be accessed, it might not function on other cloud platforms.
Therefore, users are required to register online to gain access to
the CGC platform prior to running COWID. Nevertheless, COWID
can serve as a model for achieving scalable identification of
SARS-CoV-2 on other cloud platforms because the tools used to
construct the COWID workflow are open-sourced. Moreover, users
can employ other tools when their source codes are available.
Because our workflow operates on a cloud system, Internet of
a sufficient speed is necessary for its use, especially during the
time-consuming process of uploading sequencing data from a

https://github.com/grailbio/reflow
https://github.com/grailbio/reflow
https://github.com/hendrick0403/COWID
https://github.com/hendrick0403/COWID
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Table 2. Comparison of available computational workflows of SARS-CoV-2

Category Feature 2019nCoVR COVseq poreCov viralrecon ViReflow COWID

Design Interface web-based CLI CLI CLI GUI web-based
Workflow systems No Snakemake Nextflow Nextflow Reflow CWL
Cloud-based No Optional Optional Optional Yes (AWS) Yes (CGC)
Parallelization No Yesa Yesa Yesa Yesa Yesb,c

Sequencing platform Illumina Illumina Nanopore Illumina,
Nanopore

Illumina Illumina

Function Viral identification No No Yes Yes No Yes
Variant
identification

Yes No Yes Yes No Yes

Genome generation Yesc Yesd Yesd Yesc,d Yesc,d Yesd

CLI, command line interface; GUI, graphical user interface; CWL, Common Workflow Language; AWS, Amazon Web Services; CGC, Cancer Genomics Cloud.
amultithread. bbatch. cassembly. dalignment.

local system. Additionally, the simultaneous batch processing
of COWID has a default limit of 80 instances, necessitating a
request to the SBG team when a user wishes to run the workflow
in parallel in more instances. The current COWID version accepts
only input files from the Illumina sequencing platform, which
uses sequencing-by-synthesis technology to generate short read
data types [73]. We expect to enable COWID to accept long
read sequencing data from Nanopore in the future to enable
comprehensive identification using any sequencing data type. In
addition, because our workflow focuses on only identification,
earlier preprocessing steps must be performed using other tools
or workflows. The integration of preprocessing tools or workflows
with COWID may enhance its end-to-end viral and variant
identification capabilities.

CONCLUSION
In this study, we present a proof of concept for repurposing the
CGC from its original purpose of use for cancer research to the
purpose of use for COVID-19 research through our customizable
workflow, COWID. Using the existing cloud platform to build
COWID was an effective solution to resource-setting limitations
because building a cloud resource for SARS-CoV-2 identification
from scratch would have required considerable effort. COWID
leverages the CGC’s capabilities in that it is capable of parallel
processing of instances through multithread processing, which
enables it to process multiple sample batches and simultane-
ously perform viral and variant identification. Moreover, running
COWID with a custom spot instance type ensures both affordabil-
ity and low execution time. We demonstrated that SARS-CoV-2
identification must be performed for both viruses and variants
to reduce the risk of false-positive results and enhance variant
identification. Our simple tool with a low computational cost
can be applied by people with or without prior programming
knowledge in their normal workspace, even when the workspace
has limited resources, to perform viral and variant identification
of SARS-CoV-2.

Key Points

• We present COWID, a novel genomics workflow based on
the Common Workflow Language (CWL), that addresses
the CWL’s ease-of-use problem that occurs when it is
implemented on other platforms because of its depen-
dence on command lines. COWID’s web-based interface

is suitable for individuals with or without prior program-
ming knowledge.

• COWID was developed on the basis of the cloud repur-
posing concept. It is suitable for countries with limited
resources. Repurposing a cloud-based database required
fewer resources than constructing a cloud resource for
SARS-CoV-2 identification from scratch would have.

• COWID enables parallelization through batch multi-
threading, ensuring an efficient and scalable analysis
and that execution times and costs remain low, for the
completion of reliable viral and variant identification of
SARS-CoV-2.

SUPPLEMENTARY DATA
Supplementary data are available online at https://academic.oup.
com/bib.

ACKNOWLEDGEMENTS
We thank the Seven Bridges Genomics bioinformatics team for
providing the tools used in our workflow and for their tech-
nical support when we executed our workflow. We also thank
the authors and the laboratories that generated the SARS-CoV-2
and MERS-CoV datasets on the NCBI BioProject and SARS-CoV-
2 reference genome data on the NCBI GenBank and those who
contributed to the GISAID, which served as a source in our cross-
validation of our variant identification results. We also thank
Daniel Pickren Chamberlin, Wallace Academic Editing, and the
Office of Research and Development at Taipei Medical University
for their assistance with editing our English manuscript.

FUNDING
This work was supported by the National Science and Technology
Council of the Taiwanese government (MOST 111-2221-E-038-
027 to Y-C.G.L.) and the Seven Bridges Cancer Research Data
Commons Cloud Resource, which is funded in whole or in part
by federal funds from the National Cancer Institute, National
Institutes of Health (HHSN261201400008C), and ID/IQ agreement
no. 17X146 (HHSN261201500003I and 75N91019D00024). Part of
the funding was provided by the Intramural Research Program
of the National Institute of Neurological Disorders and Stroke,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad280#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib


COWID | 11

National Institutes of Health of Bethesda, Maryland, USA (ZIC
NS009443-01 to Y.C.F.).

DATA AVAILABILITY
The COWID source code is available online at the GitHub
repository (https://github.com/hendrick0403/COWID). A simple
walkthrough of using COWID on the CGC platform has been
attached along with the index reference we created prior to
running the code. COWID can be implemented on the Cancer
Genomics Cloud platform of Seven Bridges Genomics (https://cgc.
sbgenomics.com). The open-access data used in this study were
downloaded from the NCBI BioProject (https://www.ncbi.nlm.nih.
gov/bioproject/) under accession no. PRJNA784038 for the SARS-
CoV-2 dataset and PRJNA316178 for the MERS-CoV dataset. The
reference genome data for SARS-CoV-2 can be downloaded from
NCBI GenBank (https://www.ncbi.nlm.nih.gov/genbank/) under
accession no. NC_045512.2.

AUTHORS’ CONTRIBUTIONS
H.G.-M.L. prepared the manuscript, including the figures and
supplementary data; developed and executed the workflow; and
conducted main analysis. Y.C.F. contributed to the discussion
of the study design, acquired sequencing data, and assisted
data analysis and interpretation. Y-C.G.L. validated the biological
results, provided computational resources, and supervised the
study. All authors have read and agreed to the final version of the
manuscript.

REFERENCES
1. Zaki AM, van Boheemen S, Bestebroer TM, et al. Isolation of a

novel coronavirus from a man with pneumonia in Saudi Arabia.
N Engl J Med 2012;367:1814–20.

2. Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak asso-
ciated with a new coronavirus of probable bat origin. Nature
2020;579:270–3.

3. Zhu N, Zhang D, Wang W, et al. A novel coronavirus from
patients with pneumonia in China, 2019. N Engl J Med 2020;382:
727–33.

4. Dong E, Du H, Gardner L. An interactive web-based dashboard
to track COVID-19 in real time. Lancet Infect Dis 2020;20:533–4.

5. Mahase E. Covid-19: WHO declares pandemic because of "alarm-
ing levels" of spread, severity, and inaction. BMJ 2020;368:m1036.

6. Corman VM, Landt O, Kaiser M, et al. Detection of 2019
novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill
2020;25:25.

7. Xiao AT, Tong YX, Zhang S. False negative of RT-PCR and pro-
longed nucleic acid conversion in COVID-19: rather than recur-
rence. J Med Virol 2020;92:1755–6.

8. Ascoli CA. Could mutations of SARS-CoV-2 suppress diagnostic
detection? Nat Biotechnol 2021;39:274–5.

9. Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol
2008;26:1135–45.

10. Langmead B, Nellore A. Cloud computing for genomic data
analysis and collaboration. Nat Rev Genet 2018;19:208–19.

11. Shu Y, McCauley J. GISAID: global initiative on sharing
all influenza data - from vision to reality. Euro Surveill
2017;22:30494.

12. Sayers EW, Cavanaugh M, Clark K, et al. GenBank. Nucleic Acids
Res 2022;50:D161–4.

13. Sayers EW, Bolton EE, Brister JR, et al. Database resources of the
national center for biotechnology information. Nucleic Acids Res
2022;50:D20–6.

14. Knyazev S, Chhugani K, Sarwal V, et al. Unlocking capacities of
genomics for the COVID-19 response and future pandemics. Nat
Methods 2022;19:374–80.

15. Kalantar KL, Carvalho T, de Bourcy CFA, et al. IDseq-an open
source cloud-based pipeline and analysis service for metage-
nomic pathogen detection and monitoring. Gigascience 2020;9:9.

16. Edgar RC, Taylor J, Lin V, et al. Petabase-scale sequence align-
ment catalyses viral discovery. Nature 2022;602:142–7.

17. Members C-N, Partners. Database resources of the National
Genomics Data Center, China National Center for bioinforma-
tion in 2022. Nucleic Acids Res 2022;50:D27–38.

18. Song S, Ma L, Zou D, et al. The global landscape of SARS-CoV-
2 genomes, variants, and haplotypes in 2019nCoVR. Genomics
Proteomics Bioinformatics 2020;18:749–59.

19. Cunningham F, Allen JE, Allen J, et al. Ensembl 2022. Nucleic Acids
Res 2022;50:D988–95.

20. Cantelli G, Bateman A, Brooksbank C, et al. The European
bioinformatics institute (EMBL-EBI) in 2021. Nucleic Acids Res
2022;50:D11–9.

21. De Silva NH, Bhai J, Chakiachvili M, et al. The Ensembl COVID-19
resource: ongoing integration of public SARS-CoV-2 data. Nucleic
Acids Res 2022;50:D765–70.

22. Lau JW, Lehnert E, Sethi A, et al. The cancer genomics cloud:
collaborative, reproducible, and democratized-a new paradigm
in large-scale computational research. Cancer Res 2017;
77:e3–6.

23. Navale V, Bourne PE. Cloud computing applications for biomed-
ical science: a perspective. PLoS Comput Biol 2018;14:e1006144.

24. Cancer Genome Atlas Research N, Weinstein JN, Collisson EA,
et al. The cancer genome atlas pan-cancer analysis project. Nat
Genet 2013;45:1113–20.

25. Huang KL, Huang KL, Mashl RJ, et al. Pathogenic germline vari-
ants in 10,389 adult cancers. Cell 2018;173:355–370.e14.

26. Cully M. A tale of two antiviral targets - and the COVID-19 drugs
that bind them. Nat Rev Drug Discov 2022;21:3–5.

27. Gong Z, Zhu JW, Li CP, et al. An online coronavirus analysis
platform from the National Genomics Data Center. Zool Res
2020;41:705–8.

28. Perkel JM. Workflow systems turn raw data into scientific knowl-
edge. Nature 2019;573:149–50.

29. Strozzi F, Janssen R, Wurmus R, et al. Scalable workflows
and reproducible data analysis for genomics. Methods Mol Biol
2019;1910:723–45.

30. Lim HG, Lee YG. Empowering cloud technology for SARS-CoV2
identification. F1000Research 2020;9:858 (poster).

31. Lim HG, Hsiao SH, Lee YG. Orchestrating an optimized
next-generation sequencing-based cloud workflow for robust
viral identification during pandemics. Biology (Basel) 2021;
10:10.

32. Lim HG, Hsiao SH, Fann YC, Lee YCG. Robust mutation profiling
of SARS-CoV-2 variants from multiple raw Illumina sequencing
data with cloud workflow. Genes (Basel) 2022;13:13.

33. Amstutz P, Crusoe MR, Tijanić N, et al. Common Workflow
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