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Abstract

RNA-binding proteins (RBPs) are central actors of RNA post-transcriptional regulation. Experiments to profile-binding sites of RBPs in
vivo are limited to transcripts expressed in the experimental cell type, creating the need for computational methods to infer missing
binding information. While numerous machine-learning based methods have been developed for this task, their use of heterogeneous
training and evaluation datasets across different sets of RBPs and CLIP-seq protocols makes a direct comparison of their performance
difficult. Here, we compile a set of 37 machine learning (primarily deep learning) methods for in vivo RBP–RNA interaction prediction and
systematically benchmark a subset of 11 representative methods across hundreds of CLIP-seq datasets and RBPs. Using homogenized
sample pre-processing and two negative-class sample generation strategies, we evaluate methods in terms of predictive performance
and assess the impact of neural network architectures and input modalities on model performance. We believe that this study will not
only enable researchers to choose the optimal prediction method for their tasks at hand, but also aid method developers in developing
novel, high-performing methods by introducing a standardized framework for their evaluation.
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INTRODUCTION
Out of the over 20 000 annotated human protein-coding genes,
at least 1500 are predicted to code for RNA-binding proteins
(RBPs) [1]. RBPs are involved in a diverse number of functions,
such as export and localization of transcripts, post-transcriptional
modification, alternative splicing and translation [2] and play an
important role in human diseases, such as cancer, neurodegener-
ative and metabolic diseases [3]. Uncovering the targets of RBPs is
crucial to elucidate their cellular function in health and diseases.
Several experimental methods for identifying RBP in vivo binding-
sites transcriptome-wide have been developed, with arguably
the most prevalent being Crosslinking and Immunoprecipitation
followed by sequencing (CLIP-seq) [4] and its derivatives, such as
PAR-CLIP [5], iCLIP [6] and eCLIP [7]. CLIP-seq data are commonly
post-processed with peak callers, which identify, from the mapped
reads, regions of enriched signal over background, i.e. binding
sites. While experimental methods give an unprecedented insight
into the binding specificities of RBPs, in vivo profiling of pro-
tein–RNA interactions is subject to the transcript abundances in
the experimental cell type. Thus, researchers must instead rely
on computational methods to impute missing binding sites on
non-expressed transcripts or to characterize RBP-binding sites
in settings where no experimental data are available, in order
to avoid numerous costly experiments across a wide range of
experimental conditions.

Method development for RBP binding-site prediction is an
active area of research in the domain of computational RNA
biology and an abundance of RBP binding-site prediction methods
have been developed in recent years [8–10]. Development of new

methods further accelerated with the advent of deep learning,
which showed ground breaking performance improvements in
many domains of research, including genomics. Current state-
of-the art methods for RBP binding-site prediction are usually
formulated as a supervised learning problem, to predict whether
an RNA sequence is bound or not bound by a certain RBP. Bound
regions are usually defined as high-confidence binding sites, so
called peaks, from CLIP-seq experiments. Models are then trained
to classify RNA sequences as bound or unbound, either in a
single-task (one RBP per time) or in a multi-task (several RBP
simultaneously) manner [11]. Given this rapid development of
several predictive models (Figure 1A), it is becoming increasingly
difficult for both experimental and computational RNA biologists
to select the most appropriate method for the task at hand. This
is largely due to the fact that studies train and evaluate their
methods on different CLIP-seq datasets, which either encompass
a different set of profiled RBPs or may contain binding sites that
have been derived via different experimental CLIP-seq protocols
(Tables 1 and 2). Indeed, it has been shown that different RBPs
show a different degree of binding specificity [12] and thus,
prediction methods have different upper and lower baselines,
depending on the composition of the evaluation dataset. Further,
CLIP-seq protocols differ in their signal footprint. For instance,
protocols, such as iCLIP [6] or eCLIP [2], profile protein–RNA
interaction at single-nucleotide resolution, raising the question
whether an increase in predictive performance is due to an
improvement in data quality, rather than an improvement of
the computational methods. Classification methods require
annotation of sequences with positive and negative labels, such
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Figure 1. Overview of models and schematic of our benchmark. (A) Cumulative barplot of the published methods (see Table 1) representing the evolution
of architecture choice over the years. (B) Illustration of the benchmark presented in this work. Methods representing various architectures were selected.
Three datasets of experimentally derived binding sites were preprocessed into folds, separating sequences basing on their transcript assignment. From
the selected models and datasets, we first perform an all-against-all evaluation to rank architectures and models (per dataset and across datasets). We
also evaluate the impact of negative control sampling on model performance, as well as input modalities. Finally, we explore datasets properties, such
as cell-type impact for matched RBPs.

that during training a decision function between the two classes
can be learned. While CLIP-seq followed by peak calling explicitly
yields a set of positive samples, negative samples are less trivial
to obtain. Different negative sample generation strategies were
developed across methods, further increasing heterogeneity
during method evaluation. To date, multiple studies showed
the presence of intrinsic biases in CLIP-seq, such as enhanced
crosslinking likelihood at uridines, presence of stick-RBPs and
RNase-bias towards termination at guanines [13, 14]. These biases
may be predominantly present in the positive class set and may
therefore serve as features for class-discrimination, leading to
inflated method performances.

In this study, we describe 37 approaches and systemati-
cally benchmark 11 RBP binding-site prediction methods on bind-
ing sites of 3 large CLIP-seq repositories, comprising a total of
313 unique CLIP-seq experiments across 203 RBPs. Datasets are

derived from (a combination of) common CLIP-seq protocols,
including iCLIP [6], eCLIP [2] and PAR-CLIP [15]. We develop an
uniform data pre-processing and training set construction strat-
egy for all methods, enabling us to evaluate method performance
in an unbiased way and allowing us to contrast methods exclu-
sively based on method-intrinsic properties. Notably, we employ
two negative-class generation strategies, where one strategy is
agnostic to CLIP-seq biases while the other performs bias-aware
sampling. We evaluate common properties of methods and their
potential impact on model performance, with respect to archi-
tecture design choices and input modalities, such as the use of
secondary RNA structure as an auxiliary input. Further, we per-
form cross-evaluation of models for two different cell types, K562
and HepG2, to address the question of whether models trained
on CLIP-seq data from one cell type are suitable for prediction
on another. Finally we investigate the potential generalization of
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Table 1. Overview of methods dedicated to predicting the binding propensity of RNA-binding proteins for a given genomic interval of
interest. Star symbol ‘∗’ indicates shallow-learning methods. In red are the methods selected for the benchmark

Method Year Data type Evidence Architecture Prediction Ref

GraphProt∗ 2014 RBP-24 Sequence
structure

Graph embedding
SVM

Binary [20]

DeepBind 2015 RNAcompete Sequence CNN Intensity [45]
Deepnet-RBP 2016 RBP-24 Sequence

structure
3D structure

DBN Binary [29]

iDeepA 2017 RBP-24 Sequence Attention, CNN Binary [46]
Concise 2017 VanNostrand_ENCODE

RBP-31
Sequence
genomic annotation

spline transformation,
CNN

Position-wise
signal

[43]

iDeep 2017 RBP-31 Sequence
structure
genomic annotation
motif, co-binding

DBN, CNN Binary [35]

iDeepS 2018 RBP-31 Sequence
structure

CNN, BLSTM Binary [30]

pysster 2018 VanNostrand_ENCODE Sequence CNN Binary [28]
DLPRB 2018 RNAcompete Sequence

structure
CNN,RNN Intensity [33]

cDeepBind 2018 RNAcompete Sequence
structure

CNN, LSTM Intensity [27]

iDeepV 2018 RBP-67 Sequence word2vec, CNN Binary [55]
iDeepE 2018 RBP-24 Sequence CNN (global+local) Binary [47]
iDeepM 2018 RBP-67 Sequence CNN, LSTM Binary [48]
DeepRAM /
ECBLSTM

2019 RBP-31 Sequence CNN, BLSTM,
k-mer embedding

Binary [49]

SeqWeaver 2019 Authors’ datasets Sequence CNN Binary [80]
RDense 2019 RNAcompete Sequence

structure
CNN, BLSTM Intensity [32]

ThermoNet 2019 RNAcompete Sequence
structure

CNN Intensity [74]

mmCNN 2019 RBP-24 Sequence
structure

CNN Binary [37]

iCapsule 2019 Authors’ datasets Sequence
structure

Capsule Network Binary [26]

HOCNNLB 2019 RBP-31 Sequence k-mer embedding
CNN

Binary [63]

DeepCLIP 2020 RBP-24;RNAcompete
VanNostrand_ENCODE

Sequence CNN, BLSTM Binary [50]

DeepRiPe 2020 Mukherjee_PARCLIP
VanNostrand_ENCODE

Sequence
genomic annotation

CNN Multi-label
probability

[40]

RPI-NET /
RNAonGraph

2020 RBP-24 Sequence
structure

GNN Binary [36]

DeepRKE 2020 RBP-24;RBP-31 Sequence
structure

embedding, CNN,
BLSTM

Binary [25]

iDeepMV 2020 RBP-67 Sequence Multi-view CNNs
ensemble

Binary [81]

DeepA-RBPBS 2020 RBP-31 Sequence
structure

CNN, biGRU Binary [64]

MSC-GRU 2020 RBP-31 Sequence CNN, biLSTM Binary [65]
MultiRBP 2021 RNAcompete Sequence

structure
CNN Multi-label

intensity
[34]

PRISMNet 2021 VanNostrand_ENCODE Sequence
structure

CNN Binary [51]

RNAprot 2021 RBP-24 Sequence
genomic annotation
conservation

LSTM Binary [42]

Multi-resBind 2021 Mukherjee_PARCLIP
VanNostrand_ENCODE

Sequence
genomic annotation

CNN Multi-label
probability

[41]

RBP-ADDA 2021 RNAcompete Sequence Adversarial domain
adaptation

Binary [82]

ResidualBind 2021 RNAcompete Sequence CNN Intensity [53]
kDeepBind 2021 RBP-31 Sequence k-mer embedding

CNN
Binary [62]

(Continued)
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Table 1. Continued

Method Year Data type Evidence Architecture Prediction Ref

RBPSpot 2021 ENCORI Sequence
structure

embedding
DNN

Binary [54]

BERT-RBP 2022 VanNostrand_ENCODE Sequence Language model Binary [59]
DeepPN 2022 RBP-24 Sequence CNN, GCN Binary [83]

Table 2. Overview of datasets used by methods considered in this review. In bold are the datasets selected for the benchmark

Dataset Year First introduced
by

Description and numbers Ref

RNAcompete 2013 RNAcompete 207 RBPs, across 231 experiments.
Total of 241 000 sequences each 38–41 nt length,
split into 2 sets: set A (120,326) and set B (121,031).
Each sequence has a score from the log odds ratio of
intensities of pull-down vs input.

[44]

RBP-24 2014 GraphProt Sites derived from CLIP-seq experiments.
24 experiments (23 from Dorina) for 21 RBPs.
16 PAR-CLIP, 4 HITS-CLIP, 4 iCLIP.

[20]

AURA2 2014 AURA2 Database of post-transcriptional regulatory
interactions
in UTR, including binding sites of RBPs.

[84]

RBP-31 2016 iONMF Mix of PAR-CLIP, iCLIP and HITS-CLIP.
31 CLIP experiments for 19 RBPs.
Positive controls: derived from positions
with high read-counts.
Negative controls: positions sampled from genes
without interactions from any of the 19 RBPs.

[61]

RBP-67 2016 RNAcommender 67 distinct RBPs, 72 226 UTRs.
Total of 502 178 interactions curated
from the AURA2 database.

[85]

Mukherjee_PARCLIP 2019 DeepRiPe PAR-CLIP experiments for 59 RBPs
profiled in the HEK293 cell line.

[39]

VanNos-
trand_ENCODE

2020 Van Nostrand
et al.

150 RBPs assessed in two cell-types (HepG2, K562),
for a total of 223 experiments.

[7]

methods across CLIP-seq protocols, by performing cross-CLIP-seq
evaluation where models trained from one protocol are applied
onto data from other protocols.

The remainder of this article is structured as follows: First, we
give a brief overview over machine learning methods for protein-
RNA interaction prediction with a focus on input modalities and
deep learning model architectures. Next, we cover benchmarking
datasets and their preprocessing, before introducing methods
selected for benchmarking. Third, we introduce our benchmark
design, summarized in Figure 1B, including train/test splitting,
negative sample generation and evaluation metrics. Finally, we
report and critically discuss benchmarking results.

PREDICTING PROTEIN–RNA INTERACTION:
FROM SHALLOW LEARNING TO DEEP
LEARNING
Predicting protein-binding sites on arbitrary RNA or DNA
sequences is a long-standing and unsolved task of computational
biology research. While initial methods were predominantly
mechanistic programs, often operating via scanning of sequences
for a suitable binding site using a position-weight-matrix (PWM)
representation of the protein’s target sites [16–19], the field
soon shifted towards more general machine learning methods,
which allow for protein-binding prediction without first deriving
an intermediate PWM representation. These methods were no
longer constrained by the representation of binding preferences

as fixed-length PWMs, which allowed for modeling of more
complex protein–RNA interaction functions and resulted in
greater predictive performance compared to classical approaches.
For instance, GraphProt [20], a method based on a support
vector machine (SVM), uses string and graph kernels to encode
the primary and secondary structure of an RNA input. While
traditional machine learning methods still relied on manual
engineering of input features to classify RBP-bound versus
unbound sequences, emergence of deep learning methods
enabled quasi end-to-end model training. As a result, the research
focus shifted from hand-crafting efficient representations of RNA
sequence and auxiliary inputs, towards exploration of efficient
deep learning architectures and informative input modalities.

In this study, following a comprehensive literature screening,
37 deep learning methods for the prediction of protein–RNA inter-
action in vitro and in vivo were identified. Methods were catego-
rized based on their input modalities as well as neural network
architecture elements and are summarized in Table 1.

Input modalities
The main input modality to predictive models of RNA–RBP binding
sites is represented by the RNA primary sequence. Sequences of
a fixed or variable length surrounding a potential RBP-binding
sites are converted to either a numerical or one-hot-encoded
representation and fed into the model. Besides RNA sequence
as the primary input, models make use of a variety of auxiliary
inputs, including RNA secondary and tertiary structure, genomic
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region context, evolutionary conservation and protein co-binding
(Table 1).

RNA secondary and higher-order structure
The higher-order structure of an RNA sequence has been shown to
play a vital role in facilitating interactions with the RNA molecule
and proteins [21]. For instance, Roquin-1 binds to transcripts via
recognition of specific stem loop structures [22] to regulate the
post-transcriptional degradation of its targets. Several methods
make use of computational RNA folding tools, such as RNAfold
[23] or RNAshapes [24], to predict and incorporate secondary
RNA structure as additional method inputs. These methods differ
significantly with respect to how predicted structures are incor-
porated into the model. DeepRKE [25], iCapsule [26], cDeepBind
[27], pysster [28], Deepnet-RBP [29] and iDeepS [30] first pre-
dict a minimum free-energy (MFE) structure via RNAshapes [24],
before projecting each position in the input sequence onto an
element from structural vocabulary, such as hairpin, multi-loop or
stem. Subsequently, the structural vocabulary sequence is one-
hot encoded. Notably, Deepnet-RBP additionally uses R3DMA [31]
to additionally annotate hairpin and internal loop regions with
probable tertiary structural motifs. RDense [32], DLPRB [33] and
MultiRBP [34] refine this approach by computing the relative fre-
quency of structural elements at each position via RNAplfold [23].
Here, each position in the input encodes secondary structure as a
categorical distribution over structural elements. This represents
an extension to one-hot encoding, which only takes into account
the single MFE structure. Rather than considering structural ele-
ments, iDeep [35] uses RNAplfold [23] to predict the unpaired-
probability of each position in the input sequence. RPINet [36]
and mmCNN [37] operate directly on the predicted base-pairing
probability matrix (BPPM). While mmCNN scans the BPPM via 2D
convolutional operations, RPINet encodes base-pairing probabili-
ties between input positions as weighted edges in a graph. Lastly,
PrismNet is the only method that uses experimentally derived in
vivo structure via icSHAPE [38], which yields a position-wise score
across input sequencing, indicating whether a given position is
paired or unpaired. The score vector is concatenated with the one-
hot encoded RNA input before being passed to the model. While
predicted structure is generally cell-type agnostic, as the same
RNA structure is used for prediction, icSHAPE provides cell-type
specific structure information. Given that RBPs may exhibit cell-
type specific binding [7], this may represent an advantage over
structure prediction methods. Further, methods only incorporate
information on the predicted minimum free-energy structure
(such as iDeepS or DeepRKE) may lack information on other viable
conformations in the RNA’s secondary structure ensemble, which
may only have marginally higher free-energy values. On the other
hand, icSHAPE data show a high degree of sparsity and does not
provide proper folding information, but instead probes, which
nucleotides are paired or unpaired.

Genomic context
Analysis of transcriptome-wide binding site locations showed that
many RBPs preferentially bind to specific genomic regions or land-
marks [39]. For instance, splicing-associated RBPs predominantly
bind at splice junctions and thus information on whether an input
sequence is derived from exons, introns or lies at their junction
may serve as additional evidence for protein–RNA interaction
prediction. DeepRiPe [40], Multi-resBind [41] and iDeep [35] use
a region-vocabulary approach to encode the genomic context of
a given input sequence. Here, input positions are first annotated
with one of 4 (5 in case of iDeep) genomic region types, including

CDS, 5’/3’ UTR, introns and exons, followed by one-hot encoding.
Using a similar approach, RNAProt [42] maps positions to exon/in-
tron regions, prior to one-hot encoding. Concise [43] computes
the distance of each input position to a set of genomic land-
marks, including 5’ splice sites, poly-A sites and transcription start
sites. Raw distances are transformed to smoothed representations
using spline transformations.

Sequence conservation, co-binding and motifs
Interaction with RBPs determines the fate of transcripts and thus,
disruption of RBP target sites may lead to misregulation of post-
transcriptional processes and disease. Therefore, RBP target sites
are expected to show a higher degree of evolutionary conservation
when compared to non-target sites. Leveraging this fact, RNAProt
[42] incorporates phastCons and phyloP conservation scores as
auxiliary inputs. To leverage prior knowledge, iDeep [35] com-
pute motif-scores for 102 human RBPs using the CISBP-RNA [44]
database. Input sequences are additionally annotated with co-
binding information using experimental data from other RBPs.

Deep learning architectures for protein–RNA
interaction prediction
DeepBind [45] was one of the first methods which employed deep
learning for the prediction of protein-binding from nucleotide
sequences, demonstrating ground-break on both in vitro and in
vivo protein–RNA interaction datasets. DeepBind makes use of a
single 1D Convolutional layer, which consists of a set of short,
learnable filters that are applied over the input sequence. Over
the course of training, the filter-weights are adjusted to yield high
activation scores at sequence locations which represent potential
binding targets, loosely resembling PWMs scanning of classical
methods. Commonly, the outputs of convolutional filters serve as
input to downstream layers, such as additional convolutional or
recurrent layers, or are directly fed into a linear classifier, which
predicts the final binding affinity of the protein of interest for the
given RNA sequence. Convolutional neural networks (CNNs) are at
the heart of several protein–RNA predictions methods, including
iDeep{A,S,E,M} [30, 46–48], pysster [28], DeepRAM [49], DeepCLIP
[50], DeepRiPe [40], MultiRBP [34], PrismNet [51] and Multi-resBind
[41], among others (see Table 1). Pysster [28] increases the num-
ber of convolutional layers to 3, resulting in a deeper model
which can potentially learn more complex binding functions. An
additional increase of the input length to 400 (from 101 in case
of DeepBind) further increases the receptive field of the model
and allows it to consider a broader sequence context around
potential binding sites. DeepRiPe [40] uses a single convolutional
layer and jointly predicts binding of several RBPs in a multi-
task manner, exploiting the fact that many RBPs shared binding
preferences and tend to co-bind. This results in an efficient model
representation, as convolutional filters are shared across tasks
(RBPs), potentially increasing model performance and training
stability. Notably, DeepRiPe scans both sequence and genomic
region (Section 2.1.2, Genomic Context) inputs with separate CNN
modules, before joining their outputs for the final classification.
A similar approach is used by iDeepS [30] for the independent
processing of sequence and secondary structure inputs. PrismNet
[51] and Multi-resBind [41] (another multi-task model) further
increase network depth via stacking of convolutional layers, while
adding residual connections to combat the vanishing gradient
problem. PrismNet [51] additionally makes use of a squeeze-and-
excitation (SE) module [52] to recalibrate outputs of the first
convolutional layer. In contrast to DeepRiPe and Multi-resBind,
the multi-task method MultiRBP [34] uses convolutional kernels
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of varying size in the same layer, in order to accommodate bind-
ing footprints of different size, across a large number of RBPs.
To increase the receptive field of the CNN model, ResidualBind
[53] uses several dilated convolutional layers with exponentially
increasing dilation coefficient.

Convolutional filters act as (partial) motif detectors, where
more complex binding motifs are constructed from the outputs
of previous convolutional layers, as the network depth increases.
To aggregate the outputs of convolutional layers across the entire
sequence, multiple methods make use of recurrent layers, such as
long-short-term-memory (LSTM) or gated-recurrent-units (GRU),
which enable efficient learning of long-range dependencies. Deep-
CLIP [50], cDeepBind [27], iDeepS [30], deepRAM’s ECBLSTM model
[49] and DeepRKE [25] use a bidirectional LSTM (BLSTM) on top
of the outputs of the preceding convolutional layer. While in
case of iDeepS, cDeepBind, deepRAM and DeepRKE, the BLSTM
output serves as input to a final linear classifier, DeepCLIP directly
returns the sum over the BLSTM output as a binding affinity score.
Other methods are based on an exclusively recurrent architecture,
such as RNAProt [42], which uses an LSTM that directly operates
on the RNA sequence. DLPRB [33] combines convolutional and
recurrent layers in an alternative way, by concatenating the out-
puts of a convolutional and a recurrent module, both operating on
the RNA sequence, which are then fed into a final linear classifier.
The majority of methods use one-hot encoding to project the
RNA sequence into a machine-readable format. However, sev-
eral methods, including RBPSpot [54], iDeepV [55] and deepRAM
[49], use a word2vec [56] model to first learn an embedding of
nucleotide 3-mers in an unsupervised manner. During training, k-
mers of the input RNA sequence are projected into the word2vec
model’s embedding, which then serves as input to subsequent
layers. Recently, Transformer-based models emerged as an alter-
native architecture to CNN- and RNN-based models in fields
of natural language processing (NLP) as well as computational
biology research [57, 58]. Pre-trained on large corpora of unlabeled
data, these models showed ground-breaking performance when
fine-tuned on task specific, labeled data. BERT-RBP [59] uses a
DNABERT [60] model, pre-trained on a tokenized version of the
human genome and fine-tunes it on in vivo protein–RNA interac-
tion data. With over 100 million trainable parameters, BERT-RBP
represents the largest-capacity deep learning model for protein–
RNA interaction prediction evaluated in this study by a large mar-
gin. To jointly incorporate RNA sequence and secondary structure
graph representations (Section 2.1.1, RNA Secondary and Higher-
Order Structure), RPINet [36] uses a modified graph convolutional
network (GCN). In each layer, the current node embedding is
updated via a graph convolutional operation on the predicted BPP
matrix and a convolutional operation along the sequence axis. To
obtain binary predictions, the final input embedding is processed
by a LSTM layer.

MATERIAL AND METHODS
Data and preprocessing
RBP-binding prediction methods were trained and evaluated on
binding sites from three distinct sets of experiments, derived from
common CLIP-seq protocols, including eCLIP [2], PAR-CLIP [15] and
iCLIP [6]. While these datasets were used as training and evalua-
tion sets for some of the benchmarked methods in this study, no
study systematically evaluated their method on all three datasets.
The RBP / dataset matrix is shown in Table 2. Supplementary
Table 1 provides a full list of all CLIP-seq experiments, including
RBP, cell type and protocol.

ENCODE (eCLIP)
The ENCODE Project [7] contains the largest collection of CLIP-
seq datasets to date, encompassing 223 eCLIP [2] experiments
for 150 RBPs across two cell lines, HepG2 and K562. It has been
utilized by a number of studies for model training and evaluation,
including Pysster [28], DeepRiPe [40], DeepCLIP [50], Concise [43],
Multi-resBind [41] and PrismNet [51]. For each experiment, a set
of high-confidence peaks was obtained by processing the narrow-
peaks BED files as follows. First, peaks of both replicates are
intersected with transcripts of GENCODE (Version 42) to remove
all peaks outside of transcript regions. The remaining peaks of
both replicates are then intersected and peaks which are present
in only one replicate are discarded. For each peak, we define the
base at its 5’ end as the single-nucleotide site of crosslinking
between RBP and RNA, as suggested by Dominguez et al. [21]. To
reduce the computational burden of the benchmark analysis and
to select a set of high-quality cross-linked sites, we select at most
the top 20 000 peaks with highest signal fold-change over the size-
matched input (SMInput) for each experiment.

iONMF (PAR-CLIP, iCLIP, CLIP, HITS-CLIP)
The iONMF dataset was established by Stražar et al. [61] and has
since been used by a number of methods for training and evalu-
ation, including iDeep [35], iDeepS [30], DeepRAM [49], DeepRKE
[25], kDeepBind [62], HOCNNLB [63], DeepA-RBPBS [64] and MSC-
GRU [65]. It consists of cross-linked sites extracted from 31 CLIP-
seq experiments for 19 RBPs and, in contrast to the ENCODE and
Mukherjee et al. [39] datasets, it includes data derived from differ-
ent CLIP-seq protocols, including PAR-CLIP [15], iCLIP [6] and HITS-
CLIP [66]. The authors retrieved counts data from the iCount [67]
and DoRiNA [68] database and selected, for each experiment, the
top 100 000 nucleotide positions with the highest cDNA counts.
For positions with a distance of <15, only the position with the
highest cRNA count was considered while all other positions were
ignored, as suggested by König et al. [6]. The authors then sampled
at most 10 000 cross-linked sites for each experiment in order
to reduce processing time. We obtain train and test sets of the
iONMF dataset from github.com/mstrazar/iONMF. After merging
of both sets, we discard all negative samples defined as part of the
iONMF study to obtain the final set of positive cross-linked sites
and perform no further processing.

Mukherjee et al. (PAR-CLIP)
This dataset is a subset of 59 PAR-CLIP experiments in the HEK293
cell line, aggregated from different studies and processed by
Mukherjee et al. [39]. It was first used by Ghanbari et al. [40] for
training and evaluation of DeepRiPe. Variable-length PARalyzer
[69] peak regions in BED format were obtained for each PAR-
CLIP experiment and peaks were centered to a single nucleotide
‘pseudo-crosslink’ position, in order to homogenize binding sites
with the other datasets. Following Ghanbari et al. [40], we did
not lift over genomic positions from GRCh37 to GRCh38, but
instead used genome and GENCODE [70] versions for the GRCh37
assembly for all downstream processing of this dataset.

Protein–RNA interaction prediction methods
Among the 37 methods compiled in Table 1, we selected 10 deep
learning methods for benchmarking, spanning a wide variety of
model architectures and input modalities. As a point of reference
for the performance of deep learning methods when compared to
traditional machine learning approaches, we included GraphProt

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad307#supplementary-data
http://github.com/mstrazar/iONMF
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[20], a shallow learning method based on SVM. Generally, meth-
ods were trained with hyperparameters specified in the original
publications and otherwise default parameters, unless otherwise
noted in the method specific paragraphs. For methods which set
a side a validation set and monitor the validation loss for the
purpose of early stopping, a uniform training/validation split of
80/20 was used, as this represents the majority split ratio among
methods. Thus, models were trained for different number of
epochs, according to the author’s recommendations or the early-
stopping criteria.

GraphProt (Steffen et al. 2014)
GraphProt [20] makes use of a SVM together with string and
graph kernels to incorporate both sequence and predicted sec-
ondary structure information for classification of a given RNA
sequence as bound/unbound. Specifically, during training, Graph-
Prot selects CLIP-seq peaks of at most 75nt in size, which are
extended by 15nt up-and down-stream to yield the model’s view-
point. To improve the quality of secondary structure predictions,
the viewpoint is further extended by 150nt up-and down-stream,
followed by prediction of the minimum free energy structure via
RNAshapes [24]. Prior to feature extraction from the secondary
structure graph via an extension of the NSPD kernel [71], addi-
tional information on the type of substructures (e.g. stem or
hairpin-loop) is added via a hypergraph. Finally, SVM classifica-
tion is performed on the basis of extracted sequence and graph
features. Note that, as samples in our benchmark dataset are
represented by single-nucleotide positions in the transcriptome as
a way to homogenize preprocessing across datasets, we extended
each sample upstream and downstream to the maximum allowed
length of 75 + 15 nt to create the sample’s viewpoint. This is
followed by a bi-directional viewpoint extension of 150 nt for
structure prediction. As GraphProt is an SVM classifier, it does
not output positive-class probabilities. To compute auROC per-
formance scores, the classification margin of each test sample
(i.e. the distance of the sample to the decision boundary) is used
instead.

iDeepS (Pan et al. 2018)
iDeepS [30] takes as input an RNA sequence of 101nt and inte-
grates both sequences and predicted secondary structure infor-
mation via a bi-modal neural network architecture. The minimum
free-energy secondary structure is predicted with RNAshapes [24]
to yield a 6-symbol structure alphabet, indicating whether a given
position in the input sequence resides in a stem (S), multiloop (M),
hairpin (H), internal loop (I), dangling end (T) or dangling start
(F). Sequence and structure are one-hot encoded and scanned
independently by a single CNN layer. Feature maps of both CNN
layers are merged and subsequently scanned by a bi-directional
LSTM. Finally, the output feature map is passed through a one-
unit linear layer with sigmoid activation, to predict the binding
probability of the RBP on a given input sequence.

Pysster (Budach et al. 2018)
Pysster [28] is a Python framework for creating CNN models
for genomic sequence-based classification and regression tasks.
While Pysster may incorporate additional input features, such
as secondary structure or genomic region information, Budach
et al. [72] showed that high protein–RNA interaction prediction
performance can be achieved using models trained on RNA-
sequence alone. Pysster [28] takes as input a 400nt window and
scans the one-hot encoded RNA sequence via a stack of three
convolutional layers. The resulting feature maps then serves as

input to a stack of two fully-connected layers. In contrast to
other methods, Pysster defines two types of negatives, with one
half being sampled uniformly from regions with no overlapping
binding sites of the given RBP and the other half being sampled
from binding sites of other RBPs in order to combat CLIP-seq
specific cross-linking bias. The final output layer then consists of
three units (one for the positive class and two for both negative
classes) and a softmax activation, assigning predicted probabil-
ities to the three classes. Note that in order to make Pysster
predictions comparable to other classification methods, only two
(positive and negative) output classes were used in this study and
Pysster models were trained on just one type of negative samples.
Pysster was originally trained using early-stopping by monitoring
the validation loss on a 85/15 train/validation split for up to 200
epochs with a patience of 15. To harmonize the training/validation
split ratio with other methods that employ early-stopping, we
instead used a split ratio of 80/20. Following Budach et al. [72],
Pysster was trained using 3 CNN layers, each with 150 filters and a
kernel size of 18 and otherwise default parameters. For training of
Pysster with 101nt inputs, the kernel size was slightly reduced to
14, in order to avoid negative dimension sizes during convolution,
as Pysster uses valid padding.

DeepRAM (Trabelsi et al. 2019)
DeepRAM [49] is a tool for building flexible deep learning archi-
tectures for binary classification of RNA and DNA sequences.
Evaluated against both protein–DNA and protein–RNA interaction
prediction datasets, the authors compared several common archi-
tectures, including combinations of convolutional, recurrent and
embedding layers with respect to their predictive performance on
the protein–RNA interaction prediction task. For this benchmark,
we selected the best performing architecture, termed ECBLSTM,
which consists of an RNA sequence 3-mer embedding, followed
by a convolutional and bi-directional LSTM layer. As the authors
evaluated their ECBLSTM model on the iONMF dataset (Stražar
et al. [61]) with a sequence length of 101nt, we generated inputs of
similar length across all benchmark datasets. DeepRAM first per-
forms hyperparameter selection by training 40 models and evalu-
ating their performance on 3-fold cross-validation, before select-
ing the best performing hyperparameters for training of a final
model. As training 40 models across all benchmark datasets was
computationally infeasible, we reduced the number of sampled
hyperparameters to 5 during the benchmarking of deepRAM’s
ECBLSTM architecture. Further, the authors additionally train 5
models using the best hyperparameter configuration on the full
set of samples and return the model with the lowest training loss
as the final model. This is not expected to significantly impact
generalization performance, we omitted this step by training only
a single model on the optimal hyperparameter configuration, in
order to further improve the runtime of deepRAM. Besides those
changes, deepRAM was trained as described by Trabelsi et al. [49].

DeepRiPe (Ghanbari et al. 2020)
DeepRiPe [40] is a multi-label classifier which operates on two
input modalities, sequence and genomic annotation, with the
latter consisting of a mapping of each position in the input RNA
sequence to one of four genomic regions, CDS, intron, 3’ UTR and
5’ UTR. Sequence and genomic region inputs are one-hot encoded,
before being processed independently by a convolutional layer.
The feature maps of both layers are subsequently concatenated
and processed by a CNN or GRU layer, before being passed to
a fully connected and output layer for classification. DeepRiPe
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is trained on non-overlapping windows from the human tran-
scriptome, which are labeled with one or more RBPs. Crucially,
this alleviates the need for defining negative samples explicitly
during training, as windows which are positives for a set of RBPs
serve as negatives for the rest. DeepRiPe bins RBPs based on the
number of observed binding sites in the corresponding PAR-CLIP
or eCLIP experiment and trains multiple models, one for each
bin. Further, input sizes of 50nt and 150nt are used for PAR-CLIP
and eCLIP samples, respectively. Here, we instead train a single
DeepRiPe model with a RNA sequence input size of 150nt and
250nt for the genomic region input, for each of the three datasets,
to make processing consistent across datasets. In contrast to the
authors, we also did not remove experiments with less than 1000
binding sites, to enable direct comparison with other methods.
The authors trained models on 80% of the training data, while 10%
were used for validation and testing, respectively. Here, a 80/20
train/validation split was performed on our generated training
samples (Section 3.3.1, Transcript-Level Training/Test Splitting)
and models were trained for at most 40 epochs and early stopping
with a patience of 5.

DeepCLIP (Gronning et al. 2020)
DeepCLIP [50] is a sequence-only classifier, which first one-hot
encodes an input RNA sequence, before applying a convolutional
layer as a motif extractor. The resulting feature map is subse-
quently fed into a bi-directional LSTM layer to perform binary
classification of RNA sequences. Notably, in addition to classifi-
cation, DeepCLIP yields a single-nucleotide binding profile along
the input sequence, separating it from the majority of tools for
protein–RNA interaction prediction, which usually exclusively
perform binary classification of a given input sequence. Similar to
GraphProt [20] and RNAProt [42], DeepCLIP takes variable-length
input sequence and was evaluated on binding site regions of 12–
75nt. In this benchmark, all inputs were length-normalized to
a 75nt window centered around the RBP-binding site. Further,
the authors trained DeepCLIP for a varying number of epochs
together with early stopping, depending on the size of the given
training dataset. As no specific guidelines for determining the
maximum number of training epochs as well as the early stopping
patience are provided by the authors, the most prominent choice
of max_epochs = 200 and patience = 20 from the publication
[50] is used for benchmarking DeepCLIP in this study. Again, we
harmonized the training/validation split ratio with other methods
that employ early-stopping by choosing a split ratio of 80/20.

PrismNet (Sun et al. 2021)
PrismNet [51] is the first method to incorporate RNA sequence
and experimental structure data measured with in vivo click
selective 2’-hydroxylacylation and profiling experiment (icSHAPE)
[38] to predict RBP binding. icSHAPE assigns reactivity scores at
transcriptome-wide level and nucleotide resolution. These scores
range between 0 and 1, with the lower scores indicating less
reactivity and therefore likely representing paired positions. Sun
et al. generated icSHAPE data for seven different cell lines, includ-
ing HepG2, K562 and HEK293, covering both the ENCODE and
Mukherjee datasets. The input to the model is a one-hot encoding
of a 101nt input RNA sequence, to which the secondary structure
icSHAPE-score vector is appended. The concatenated input is fed
into a neural network consisting of a squeeze-and-excitation (SE)
module and multiple convolutional layers with residual connec-
tions. A fully-connected layer then performs the final binary clas-
sification of the input to bound/unbound. We obtained icSHAPE
data from Sun et al. [51], lifting over coordinates from GRCh38
to GRCh37 for the Mukherjee and iONMF datasets, using UCSC’s

LiftOver tool. As no matching icSHAPE was available for the U266
cell line in the iONMF dataset, icSHAPE vectors were defaulted to
−1.0, to indicate missing values. As only two experiments were
affected (IDs 19 and 20), benchmark evaluation results are not
expected to be affected significantly. Training was performed for
200 epochs using early stopping with a patience of 20 and a
training/validation split of 80/20.

MultiRBP (Karin et al. 2021)
MultiRBP [34] is trained on RNAcompete [73] and subsequently
evaluated on eCLIP data. It can be trained on sequence as well as
structure, but was demonstrated to performed best when being
trained only on the former with an input sequence length of
75 nucleotides. Similar to DeepRiPe [40] and Multi-resBind [41],
MultiRBP is a multi-task model which predicts binding affinities
for multiple RBPs at once. The CNN-based architecture involves
two different branches with varying filter size, which are con-
catenated just before the output layer, in analogy to ThermoNet
[74]. Both include global max-pooling, fully-connected layers and
convolutional layers with kernels of varying size. Most notably,
since training is done on in vitro data, the model is trained on
predicting scalar-binding intensities rather than binary labels
and evaluated on in vivo classification without adaptation of the
model output. Here, we trained MultiRBP without changing the
implementation of the model apart from the size of the output
vector, in order to match the amount of RBPs in the three datasets.
Data was preprocessed in analogy to DeepRiPe, but with an input
size of 75nt. As described by the authors, training was performed
for 78 epochs without early stopping on a validation set.

RNAProt (Uhl et al. 2021)
RNAProt [42] is a toolkit for RBP-binding sites prediction, integrat-
ing a set of utilities from training-dataset generation to reporting
statistics and visual information such as logos of extracted motifs.
The model is based on RNNs and in its basic configuration takes
as input a 81nt RNA sequence, allowing the user to optionally
provide additional features, including secondary structure infor-
mation, conservation scores, exon-intron annotation, transcript
region and repeat region annotation. Here we used the default
architecture variant (RNN–GRU) and trained the model with a
configuration that was performing best according to the bench-
mark provided by the authors. This configuration makes use of
sequence, exon–intron annotation and phyloP [75] and phast-
Cons [76] conservation scores computed on alignments of 100
vertebrates. Following the authors, the model was trained for a
maximum of 200 epochs, with early stopping set at 30, and a train-
validation split of 80/20.

BERT-RBP (Yamada et al. 2021)
BERT-RBP [59] is a sequence-based model that makes use of
DNABERT [60], a large nucleotide language model pre-trained
on the human genome, which is fine-tuned to perform protein–
RNA interaction binary classification. With over 100 million train-
able parameters, BERT-RBP represents the largest model evalu-
ated in this benchmark. Given a 101nt input RNA sequence, the
sequence is first tokenized into overlapping 3-mer nucleotides.
Tokens are embedded and then fed into a 12 layer transformer
encoder. The final encoding of the CLS token, prepended to the
RNA sequence input, is then passed to a classifier, in order to pre-
dict binding/non-binding. Following instructions in the authors
Supplementary Table S1, BERT-RBP was trained for 5 epochs. Ini-
tial training and evaluation of BERT-RBP with default parameters
showed high instability during training (Supplementary Figure 2).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad307#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad307#supplementary-data
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After consulting Yamada et al. [59], BERT-RBP was retrained BERT-
RBP with an updated set of hyperparameters, namely an increased
batch size of 256, a lower learning rate of 2e−5 and an increased
number of epochs of 20. To prevent the model from over-fitting
due to an increased number of epochs, we performed a train-
validation split of 80/20 and added the –evaluate_during_training
–early_stop 2 flags to training runs, as suggested by the authors.
Main results on BERT-RBP are obtained from training runs on this
modified set of parameters.

Multi-resBind (Zhao et al. 2021)
Multi-resBind [41], similarly to DeepRiPe, trains a multi-task
model on CLIP data, but uses a deeper architecture, adding more
convolutional layers and residual skip connections. The model
was trained on all possible combinations of sequence, structure
and region features, but performed best with only 150nt long
sequence and region features as a concatenated input vector.
We used the exact same preprocessing routine as in DeepRiPe
with the exception that we extracted region features with a size
of 150 rather than 250. This was done since Multi-resBind, as
opposed to DeepRiPe, is a single input model and requires all input
features to have the same size. Further steps were done like in the
publication, training the model for 40 epochs and evaluating the
one with the best validation loss. As done for DeepRiPe, we trained
one model on the entire dataset rather 3 different ones as done in
the paper in order to keep the training consistent across methods.

Benchmark design
Transcript-level training/test splitting
Machine-and Deep-Learning methods require training-and test-
sets for the parameter learning and subsequent estimation of
the model generalization performance. Crucially, those sets must
not intersect in order to avoid over-estimation of the model per-
formance. To this end, several methods randomly split binding
sites into training- and test-sets, which may violate the empty-
intersection requirement, as peak callers such as CLIPper [77]
or PARalyzer [69] can produce overlapping peak regions. Conse-
quently, randomly splitting binding sites into training- and test-
sets may lead to over-estimation of model performance.

To ensure that training- and test-sets do not intersect, we
employ a transcript-level approach by first dividing human coding
and non-coding transcripts into equally-sized, non-overlapping
sets and subsequently assigning binding sites to each set. Tran-
script regions were gathered from GENCODE Version 42, for both
the GRCh38 and GRCh37 assemblies, and transcripts overlap-
ping on the same strand were merged and subsequently split
into 5 equally-sized sets. Binding sites of each experiment are
then intersected with merged transcripts, thus assigning them
to one of the 5 sets, such that each set contains roughly 20% of
an experiment’s binding sites. While binding sites directly serve
as positive-class instances, negative-class instances for a given
set were generated exclusively using (merged) transcripts within
the set (as described in Section 3.3.2, Generation of Negative-
Class Samples), in order to prevent data-leakage between sets.
Evaluation of generalization performance was then performed
on the first set, while training was performed on the union of
samples of the remaining sets. Notably, this approach allows for a
5-fold cross-validation evaluation of methods, which was omitted
due to the computational burden associated with training and
evaluation of a large number of deep learning models.

Generation of negative-class samples
Machine learning methods for binary classification require
both positive and negative sample instances. However, through

CLIP-seq experiments, only positive (i.e. cross-linking) events are
observed explicitly, while negatives (i.e. no cross-linking) events
need to be defined implicitly, for instance via the absence of
observed binding. Several methods, including DeepBind [29],
iDeepS [30] and PrismNet [51], sample negatives uniformly from
transcriptome regions not overlapping with observed binding
sites. This assumes that under absence of an RBP-specific
binding features, identifying cross-linked positions is equally
(un-)likely across all transcriptome positions. Some studies,
including RNAProt [42] and DeepCLIP [50], refine this approach
by restricting sampling of negatives to transcripts harboring at
least one observed binding site. This ensures that the negatives
are derived from transcripts expressed in the experimental cell
type and therefore present as a binding partner for the RBP of
interest at the time of the experiment, constraining the previous
assumption. Recent studies suggest that CLIP-seq experiments
suffer from several technical biases, such as background signal,
highly abundant RNA, enhanced photoreactivity of uridines
or library contamination with RNA fragments of other RBPs
[13, 14, 78]. Models trained with negative instances sampled
uniformly from unbound regions of (expressed) transcripts are
prone to incorporate these biases in their learned function, as
CLIP-seq biases are expected to be predominantly present in
positive instances. Thus, these models may only partially predict
true protein–RNA interaction and performance estimates may
therefore be overly optimistic.

To combat this, different strategies have been developed in
order to prevent models from learning uninformative biases.
For instance, Pysster [28] supplements its set of negatives with
cross-linked sites of other RBPs, while DeepRiPe [40], a multi-task
method, eliminates the need of explicit negatives altogether, as
the positive-class instance of one RBP may serve as a negative-
class instance of another RBP during model training. To compare
the performance of different methods in an unbiased and fair
manner, we employed the same negative sample-generation
strategy for all methods. Throughout this study, methods are
trained and evaluated using two negative-class generation
strategies. We construct a set of negatives for each experiment
by uniformly sampling positions from transcripts overlapping
with at least one binding site of the protein of interest, hereafter
referred to as negative-1. A second set of negatives is constructed
by sampling from binding sites of other RBPs experimentally
assessed in a given dataset. This ensures that CLIP-seq biases are
equally present in the positive and negative set, which renders
CLIP-seq biases uninformative with respect to positive/negative
class separation and thus prevents learning of CLIP-seq biases
during model training. This negative set, consisting of positives
of other RBPs, is hereafter referred to as negative-2. To prevent
sequences from being present in both the negative and positive
set, for instance due to co-binding of RBPs, we only sample
positives of other RBPs which do not overlap with positives of
the target RBP. For both strategies, negatives were generated at a
ratio of 1:1 with respect to the number of positive-class instances
for each experiment and training and evaluation of all methods
was performed separately on both sets of negatives.

Generating method inputs
Unless otherwise noted (Section 3.2, Protein-RNA Interaction Pre-
diction Methods), we construct method inputs as described by the
respective authors.

Performance evaluation metrics
Method classification performances are reported as the area
under the receiver operating curve (AUROC) and precision-recall
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Figure 2. Results from the Benchmark. (A and B) Distribution of auROC values of trained models, across datasets, under the negative-1 (A) and negative-2
(B) sampling schemes. Multi-label models are absent from negative-1 setting due to not handling such negative samples. (C) Comparison of auROCs
from models trained under the two schemes of negative control sampling. (D and E) Comparison of the classification performance of the modified
multi-label methods (enabling negative-1 classification) with the original method, pairing classification results for each RBP, for DeepRiPe in (D) and
Multi-resBind (E).

curve (AUPR) as well as the F1 score. As we are benchmarking
a wide range of classifiers, including single- and multi-task
classifiers, a drawback of the auPR and F1 score metrics is that
their baseline performance, i.e. the expected performance of a
uninformative random classifier, is subject to the class frequency.
These metrics set multi-label classifiers (such as DeepRiPe [40],
MultiRBP [34] and Multi-resBind [41]) at a disadvantage, as the
frequency of a given label l is among n samples is 1

n

∑n
i I(yi = l)

(where I is an indicator function) and thus much lower than the
positive class frequency of 0.5 in the binary case. Therefore, to
evaluate the discriminative power of methods in an unbiased
manner, AUROC scores were used as the primary evaluation
metric in this study.

RESULTS AND DISCUSSION
We trained a total of 4902 models across a matrix of 313 CLIP-seq
experiments and 11 methods in each of the two (negative-1 and
negative-2) settings. This includes one shallow learning, 2 and 3
CNN-based and RNN-based binary classification models, respec-
tively, as well as 3 CNN-based multi-task methods (Figure 1).

Deep learning outperforms shallow learning
methods
Figure 2a shows the AUROC of binary classification methods for
models trained on positive and negative-1 samples. Performance
of multi-task models (DeepRiPe, Multi-resBind and MultiRBP) is

not displayed here, as these methods are trained without univer-
sal negative sequences by design. We observed no convergence
in 1 deepRAM and 89 BERT-RBP models during training, leading
to misbehavior during inference (predicting a single score for all
samples) or random baseline performance (Supplementary Figure
2). These models were removed from the downstream evaluation.
Following suggestions from Yamada et al. [59], we modified BERT-
RBP hyperparameters before re-training it on all datasets (Meth-
ods). Note that all BERT-RBP performances in Figure 2 are reported
with respect to the modified BERT-RBP models. Consequently, we
disregard evaluation results of BERT-RBP in subsequent analysis.
GraphProt, the only evaluated shallow learning method, showed
the lowest performance with a mean auROC of 0.8211, followed by
DeepRAM (0.8697), DeepCLIP (0.8733), BERT-RBP (0.8927), iDeepS
(0.8932), PrismNet (0.9015), Pysster (0.9190), while RNAProt yielded
the highest performance (0.9419) among binary classification
methods (Table 3). Figure 2B shows auROC performance in the
negative-2 setting. Here, multi-task methods are included, as by
design the positives of one RBP may serve as negatives for another.
We observe a strong decrease in performance for binary classifica-
tion method compared to the negative-1 setting (Figure 2C), with
a mean AUROC decrease of –0.0815 (BERT-RBP), –0.0760 (Prism-
Net), –0.0693 (Pysster), –0.0668 (DeepRAM), –0.0652 (DeepCLIP), –
0.0647 (iDeepS) and –0.0850 (RNAProt) As outlined in Section 3.3.2
(Generation of Negative-Class Samples), we hypothesize that this
may be due to CLIP-seq experimental biases, which, in case of
the negative-1 setting, are exclusively present in the positive

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad307#supplementary-data
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Table 3. Performance of methods as measured by the average
AUROC from each of the negative-control settings

Method Mean AUROC
negative-1

Mean AUROC
negative-2

Delta
AUROC

BERT-RBP 0.8927 0.8112 –0.0815
Pysster-101 0.9003 0.8311 –0.0692
PRISMNet 0.9015 0.8255 –0.0760
Pysster 0.9190 0.8497 –0.0693
DeepRAM 0.8697 0.8029 –0.0668
DeepCLIP 0.8733 0.8081 –0.0652
iDeepS 0.8932 0.8285 –0.0647
RNAProt-Extended 0.9419 0.8569 –0.0850
GraphProt 0.8211 0.7756 –0.0455
DeepRiPe 0.9103 0.8774 –0.0329
Multi-resBind 0.9174 0.8825 –0.0349
MultiRBP NA 0.7937 NA

sample set, thus serving as a feature for class discrimination. In
the negative-2 setting, biases are expected to be equally present
in positive and negative samples, making the classification task
more challenging. Interestingly, we observe that RNAProt shows
the greatest drop performance when moving from the negative-
1 to negative-2 setting. This may be explained by conservation
scores (an auxiliary input of RNAProt) being higher for bind-
ing sites of the target RBP compared to random transcriptome
sequences (negative-1), while being large similar to binding sites
of other RBPs (negative-2).

Multi-task outperform binary methods in the
negative-2 setting
Except MultiRBP [34], multi-task models outperform binary classi-
fication models, with average AUROC of 0.8774 and 0.8825 across
datasets for DeepRiPe [40] and Multi-resBind [41], respectively.
Strikingly, both DeepRiPe and Multi-resBind outperform Pysster,
the best binary classification method, by a margin of 0.0277 for
DeepRiPe and 0.00328 for Multi-resBind in AUROC performance
on the negative-2 setting. The comparably lower performance of
MultiRBP (average auROC of 0.7937) may be explained by the fact
that this method was initially trained and optimized on in vitro
RNAcompete data and trained for a fixed number of 78 epochs.
Training with the same number of epochs on in vivo datasets
with a varying number of experiments lead to a considerable
degree of over-fitting, as unlike DeepRiPe and Multi-resBind, no
early-stopping procedures were used. In addition, MultiRBP oper-
ates on a considerably smaller input size of 75nt, compared to
150nt in case of DeepRiPe and Multi-resBind, which may further
impact performance. Given the higher performance of binary
classification models in the negative-1 setting compared to the
negative-2 setting, we speculated that a similar trend may be
observed when adding negative-1 to the training of multi-task
methods. To this end, we retrained DeepRiPe and Multi-resBind
with an additional negative-1 label, by intersecting input tiles with
negative-1 sample locations and retaining only those tiles which
exclusively overlapped with negative-1 samples (Sections 3.2.5,
DeepRiPe and 3.2.11, Multi-resBind). Indeed, Figure 2D and 2E
show that addition of a universal negative label increases per-
formance of both DeepRiPe and Multi-resBind by and average
of 0.0329 and 0.0349, respectively. Note that even with addition
of negative-1 labels, multi-task performances are not directly
comparable to the binary classification negative-1 setting, as the
later makes exclusive use of negative-1 samples for the negative
class, which is not the case for multi-task models.

Sequence conservation and exon/intron
information boosts performance
Given that RNAProt showed considerably higher performance
than other binary models, we investigated whether this is due to
the unique use of conservation scores ( in terms of PhyloP and
phastCons scores) and exon/intron annotations as auxiliary input.
To this end, we removed all auxiliary inputs from RNAProt and
re-trained it on sequence inputs only. Indeed, we observe a large
drop in performance in the negative-1 (AUROC of 0.8857, drop of
0.056, Figure 3A) and negative-2 (AUROC of 8111, drop of 0.0457,
Figure 3B) settings, confirming that RNAProt’s auxiliary inputs
improve performance significantly.

Input size matters
Given that Pysster performed best among binary classification
methods, we investigated the impact of Pysster-specific model
properties. We next performed a closer evaluation of the second
most performative model, Pysster, which does not rely on any
auxiliary inputs beyond RNA sequence. A distinctive feature of
Pysster is its large input size of 400nt, while other methods
such a PrismNet, iDeepS and deepRAM operate on a significantly
smaller input size of 101nt. To test whether input size is the
driver of Pysster’s high performance, we re-trained Pysster across
all datasets on an input size of 101nt. Indeed, reducing Pysster’s
input size to 101nt lead to a considerable drop of performance
(Figure 3C and 3D), such that it now performs on-par with other
deep learning binary classification methods such as PrismNet.
This effect is maintained when training and evaluating models in
the negative-2 setting. Here, we hypothesize that this could due
to long-range effects that govern binding of proteins to RNA, such
that models benefit from large input windows around potential
binding sites. However, low resolution of called peaks across CLIP-
seq experiments may also explain this effect, as this could lead to
some binding sites not being contained in the model inputs, with
an increase in input size alleviating this effect.

Effects of RNA structure as auxiliary input
Given that methods which utilize predicted or experimentally
determined RNA structure as auxiliary input did not show a
higher performance over sequence-only methods (Figure 2A and
B), we investigated in more detail whether RNA structure lead
to an increase in performance for individual RBPs. To this end,
we compared the performance of structure-aware deep learning
methods (iDeepS [30] and PrismNet [51]) with the mean perfor-
mance of three sequence-only methods (Pysster [28], DeepCLIP
[50] and DeepRAM [49]). Note that we used Pysster models trained
on 101nt sequence inputs in order to remove any input-size
related effects, as iDeepS, PrismNet and deepRAM were trained
of sequences of size 101nt. Figure 3E and G depicts the difference
in performance between iDeepS and PrismNet and sequence-only
binary classification methods, respectively. While structure does
not improve performance for a majority of RBPs, the figures show
several outliers for which performance of sequence and struc-
ture based methods is elevated above sequence-only methods,
including. Examples of RBPs that appear to benefit from struc-
ture information include EWSR1, PUS1 and CAPRIN1 for which
higher performance is observed both for iDeepS and PrismNet.
To evaluate whether similar structure-sensitive RBPs show an
elevated performance for across both sequence+structure tools,
we tested whether the top-10% of RBPs with the highest increase
in performance in one tool are enriched in the top-10% of RBPs in
the other. Among the 31 top-10% models, 13 were shared between
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Figure 3. Exploration of methods’ design choice. (A and B) Comparison of RNAProt vs ‘RNAProt-seqonly’ version where the additional sequence
conservation scores and exon-intron annotations are not used, in the negative-1 setting (A) and negative-2 setting (B). (A–D) Comparison of Pysster
vs ‘Pysster-101’ version where the sequence length of input is reduced from 400 to 101 nucleotides, in the negative-1 setting (A, C) and negative-2 setting
(B, D). PRISMNet models are included in both for comparison. (C–F) Comparison of the average AUROC per RBP from models learning from sequence
only (DeepCLIP, DeepRAM, Pysster-101) against AUROCs from iDeepS, a model learning from both sequence and predicted structure. Colored are the
top 10% RBPs models showing a greater AUROC from models learning from both modalities under the negative-1 setting (C, E). The same models are
colored in the negative-2 setting (D, F) for comparison. (E–H) Same set of plots, here comparing the average AUROC per RBP from models learning from
sequence only against AUROCs from PRISMNet, a method learning from both sequence and in vivo measured structure. Colored are the top 10% RBPs
models showing a greater AUROC from models learning from both modalities under the negative-1 setting (E, G). The same models are colored in the
negative-2 setting (F, H) for comparison.

iDeepS and PrismNet in the negative-1 setting. A subsequent one-
sided hypergeometric test showed that this enrichment is highly
significant (P = 5.9×10−8). For the negative-2 setting, we observed
a slightly smaller, albeit significant, overlap of 8/31 (P = 1.6×10−3).
We next investigated whether similar structure-sensitive RBPs are
recovered in both negative settings. As before, we compute the
overlap of top-10% RBPs between the negative-1 and negative-2
setting and estimate the significance of this overlap via a one-
sided hypergeometric test. For PrismNet, we observe an overlap
of 13/30 (P = 5.9 × 10−8) RBPs, while for iDeepS we observe
6/31 (P = 2.7 × 10−2). We further investigated whether structure-
sensitive RBPs are consistent across eCLIP datasets by selecting
and comparing performance trends across a set of 73 intersecting
RBPs between both ENCODE cell types (HepG2 and K562). For
those RBPs, we computed the delta-AUROC (difference in perfor-
mance between sequence and sequence+structure models) and
evaluated whether the delta-auROC is consistent for RBPs across
cell types. Supplementary Figure 1 shows the correlation delta-
auROC scores for both negative sets and across iDeepS and Prism-
Net. A moderate to high correlation, ranging from Spearman’s
rho of 0.282 (negative-1, iDeepS) to 0.679 (negative-1, PrismNet)
could be observed across the four settings, with PrismNet showing
considerably higher correlation across cell types than iDeepS in
the negative-1 setting, while showing a slightly lower correlation
in the negative-2 setting. Interestingly, while PrismNet shows a
strong drop in correlation when moving from the negative-1 to the
negative-2 setting, iDeepS shows a marginal correlation increase.

This confirms that structure-sensitive RBPs are consistent across
eCLIP datasets of two cell types. The fact that predicted and exper-
imentally measured RNA structure appears to be less informa-
tive for the negative-2 (compared to the negative-1) setting sug-
gests that structural features primarily improve discrimination
between protein-bound and unbound sites (negative-1), but not
between sites bound by two or more different proteins (negative-
2). Indeed, the majority of RBPs preferentially bind to single-
stranded RNA [12], while Gosai et al. [79] further demonstrated
anti-correlation between RBP binding and RNA structure in vivo.
Thus, RNA structure may encode universal properties of RBP-
binding sites, rather than RBP-specific information.

Method performance is correlated across
CLIP-seq experiments
We next investigated how training and evaluation data affects
predictive performance across methods. Figure 4A depicts the
AUROC performance of each method across all CLIP-seq exper-
iment as a function of the median performance of methods for
the given experiment. One can observe that the performance
per method across experiments correlates strongly with their
median AUROC across methods. Notably, the variance in AUROC
across methods is greater for experiments with overall lower
performance as compared to high-performing experiments (bot-
tom half versus top half - Levene statistics = 394.77; P-value
< 1.139e-82). This effect is pronounced for the negative-2 set-
ting (Figure 4B), which shows a strong linear correlation between

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad307#supplementary-data
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Figure 4. Influence of input modalities. (A and B) Stability of models’ performance per RBP across single-label architectures. Each point is a model for an
RBP and a method, plotted against the RBP’s median AUROC across methods, in the negative-1 (A) and negative-2 (B) settings. (C) Correlation between
model performance and dataset size, over the range of dataset sizes from ENCODE. Models are grouped per training dataset bin size (bin size = 2000). Dots
represent the median AUROC of models per bin, for each method. Error bar: 25–75% interquartile. (D) Comparison of AUROCs for 73 RBPs evaluated in
two different cell-types from the ENCODE dataset. Models are paired on the RBP names, while the AUROCs are computed on sequences derived from the
same-cell type used for training. (E and F) Comparison of auROCs for 73 RBPs evaluated in two different cell-types from the ENCODE dataset, comparing
the performance on same-cell-type evaluation (x-axis) against the performance from cross-cell-type evaluation (y-axis) for K562-trained models (E) and
HepG2-trained models (F). Red line: random performance. (G) Comparison of auROCs for 17 RBPs matched between Mukherjee’s PAR-CLIP and ENCODE
eCLIP experiments. Models are paired on the RBP names, while the auROCs are computed on sequences derived from the same experimental-protocol
used for training. (H and I) Comparison of AUROCs for 17 RBPs matched between Mukherjee’s PAR-CLIP and ENCODE eCLIP experiments, comparing
the performance on same-protocol evaluation (x-axis) against the performance from cross-protocol evaluation (y-axis) for ENCODE trained models (H)
and PAR-CLIP trained models (I). Red line: random performance.

a method’s performance and the median performance across
methods for an experiment. This is likely due to different training
set sizes across experiments, which vary greatly and have a
significant effect on model performance (Figure 4C). As expected,
we measured a significant positive correlation of training set size
and model performance for both the ENCODE and the PAR-CLIP
datasets (ENCODE: Spearman r = 0.396, P < 1.829 × 10−84 ; PAR-
CLIP: r = 0.196, P < 1.345 × 10−5), while the iONMF dataset
was excluded, as it has the same training set sizes across all
experiments.

Models partially learn cell type specific binding
The ENCODE dataset consists of 223 eCLIP experiments across two
cell lines, HepG2 (103) and K562 (120), with 73 RBPs being covered
by both cell lines. Figure 4D compares the performance of Deep-
CLIP, iDeepS, PrismNet and Pysster models across RBPs covered by
both ENCODE cell lines. Models did not perform better in one cell
line over the other and this effect is consistent over negative-1
and negative-2 samples. We next turned to the question whether
models trained on one cell type are applicable (i.e. retain high
prediction performance) on another. This is crucial, as a key
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use case of computational methods for protein–RNA interaction
prediction is the imputation of missing binding information on
transcripts not present in the experimental condition, such as
unexpressed transcripts. To this end, we selected RBPs covered by
both HepG2 and K562 eCLIP experiments and performed cross-
predictions, such that models trained on the HepG2 cell line
were evaluated on hold-out data from the K562 cell line and vice
versa. Figure 4E and F shows the cross-cell-line performance of
model training on the HepG2 and K562 cell lines, respectively. We
observed a performance drop of 4% and 7% for negative-1 and
negative-2, respectively, indicating that machine learning models
may learn cell-type-specific binding feature, which only partially
generalize to other cell types (Supplementary Figure 3a). While
in some cases, models fall to or even below the random baseline
AUROC performance of 0.5 (red line), high performing models
generally appear to yield high performance even in a cross-cell-
line evaluation setting. This may suggest that RBPs with clearly
defined binding motifs (i.e. RBPs with stable binding preferences)
are easy to predict, even across cell types or that models trained
on high-quality data tend to perform well both within and across
cell-type prediction, or both.

Models learn strong protocol-specific biases
We next evaluated whether model performance is subject to
the underlying CLIP-seq experimental protocol. To this end, we
compared model performances for models trained on RBPs repre-
sented by both ENCODE eCLIP and PAR-CLIP experiments from the
Mukherjee et al. [39] dataset. While performance differs between
protocols for selected RBPs, there appears to be no general trend of
better performance on data from one protocol over the other, as
shown in Figure 4G. In analogy to our cross-cell-line evaluation,
we next evaluated the extent to which models trained on data
from one CLIP-seq protocol generalize to data from another proto-
col. Performance dropped significantly (average drop of 24% and
22% for negative-1 and negative-2, respectively; Supplementary
Figure 3b) when evaluating trained model on data obtained from
a different CLIP-seq protocol, as can be seen in Figure 4H and I for
ENCODE and PAR-CLIP models, respectively. We note that besides
protocol, ENCODE and Mukherjee et al. make use of different peak
callers (CLIPper and PARalizer, respectively), which may impact
the final set of binding sites significantly. Further analysis of
the impact of peak callers are necessary in order to disentangle
the effects of protocol and peak callers on performance drops
observed here.

Limitations and future directions
While we sought to benchmark methods in a systematic and
unbiased manner, some caveats exist. Several methods employ
a hyperparameter search to obtain the optimal set of hyperpa-
rameters for a given dataset. As we evaluated methods across a
large and diverse set of CLIP-seq experiments, including different
protocols and cell lines, additional tuning of hyperparameters
was not feasibly, as it would imply the training of tens of thou-
sands of models. Nevertheless, it is important to note that the
original method’s hyperparameters may not perfectly translate
to our benchmark data. Further, while most methods monitor the
validation loss for the purpose of early stopping, some (GraphProt,
MultiRBP and DeepRAM) instead suggest a default number of
training epochs. If calibrated wrongly, this can lead to over-or
under-fitting and thus reduce the methods performance. A key
finding of this study is that input modalities appear to be more
important for good model performance than the deep learning
architecture. For instance, we do not find a notable difference

between RNN and CNN architectures. Future studies may further
probe the effects of model architecture in a more controlled
setting, for instance by keeping the model parameters and input
modalities constant.

The goal of this benchmark is to establish an evaluation
framework for protein–RNA interaction prediction and to aid
researchers in choosing the state-of-the-art method. To achieve
this, methods are compared with respect to their classification
performance, however, in practice researchers may be interest
in tasks beyond the classification of individual sequences. For
instance, methods may be utilized to score the impact of sequence
variants on RBP-binding or to identify all binding sites across a
transcript via a sliding-window approach. While likely correlated,
maximizing performance on the RBP-binding classification
task maybe not maximize performance for those tasks. As a
future direction, we envision to expand the this benchmarking
framework to probe methods performances on such auxiliary
tasks. Several methods provide outputs beyond classification
labels. For instance, GraphProt and DeepCLIP provide pseuo-
nucleotide-resolution predictions as additional output modalities.
On the other hand, PrismNet and RNAProt require icSHAPE and
sequence conservation information as input modalities, which
may not be available for all sequences. Thus, additional output
and input modalities may influence the choice of method in
practice, beyond classification performance.

CONCLUSION
In this study, we evaluate 11 in vivo protein–RNA interaction
prediction methods across 313 CLIP-seq datasets with respect to
their classification performance on a large cohort of CLIP-seq
datasets. Our study revealed that among benchmarked methods,
no particular deep learning architecture, such as CNN or RNN,
represents a major advantage over others. However, our results
showed that sequence conservation information and exon/intro
annotation, as well as the size of the RNA input has a strong
effect on model performance and that multi-task generally out-
perform single-task methods. We further explored two generation
schemes for negative class samples and demonstrated that sam-
pling negatives from unbound regions generally leads to higher
performance, possibly due to incorporation of CLIP-seq biases as
discriminative features. We demonstrated that predicted and in
vivo secondary structure might improve model performance for
some RBPs, while this effect is subject to the chosen negative
samples and is diminished in case negatives are sampled from
binding sites of other RBPs. Cross-evaluation results showed that
models partially learned cell-type specific RBP-binding, while pre-
diction across protocols leads to a strong decrease in performance,
which may be attributed to protocol-specific biases or the use
of different peak callers. We believe that this study will guide
the development of future methods in the field of computational
modeling of protein–RNA interaction by serving as a reference for
method design in regards to architecture, input modalities and
generation of negative controls.

Key Points

• A variety of deep learning methods have been developed
in the past years to learn and predict protein–RNA inter-
action

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad307#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad307#supplementary-data
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• We designed a benchmark framework that unifies pre-
processing, control sampling and train/test splitting of
CLIP-seq datasets to enable unbiased comparison of 11
methods

• We show that multi-task models dominate single-task
models and demonstrate that sequence conservation
scores and exon/intron annotations boost performance
considerably

• Cross-evaluations and comparison of negative-sampling
schemes suggest that models may learn varying lev-
els of protocol- and cell-type specific biases, leading to
decreased performance during cross-prediction
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43. Avsec ž, Barekatain M, Cheng J, Gagneur J. Modeling positional
effects of regulatory sequences with spline transformations
increases prediction accuracy of deep neural networks. Bioinfor-
matics 2018; 34(8):1261–9.

44. Ray D, Kazan H, Cook KB, et al. A compendium of RNA-binding
motifs for decoding gene regulation. Nature 2013; 499(7457):
172–7.

45. Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the
sequence specificities of DNA-and RNA-binding proteins by
deep learning. Nat Biotechnol 2015; 33(8):831–8.

46. Pan X, Yan J. Attention based convolutional neural net-
work for predicting rna-protein binding sites. arXiv preprint
arXiv:1712.02270. 2017.

47. Pan X, Shen H-B. Predicting RNA–protein binding sites and
motifs through combining local and global deep convolutional
neural networks. Bioinformatics 2018; 34(20):3427–36.

48. Pan X, Fan Y-X, Jia J, Shen H-B. Identifying RNA-binding proteins
using multi-label deep learning. Sci China Inform Sci 2019; 62(1):
1–3.

49. Trabelsi A, Chaabane M, Ben-Hur A. Comprehensive evalua-
tion of deep learning architectures for prediction of DNA/RNA
sequence binding specificities. Bioinformatics 2019; 35(14): i269–
77.

50. Grønning AGB, Doktor TK, Larsen SJ, et al. Deepclip: predicting
the effect of mutations on protein–RNA binding with deep learn-
ing. Nucleic Acids Res 2020; 48(13):7099–118.

51. Sun L, Kui X, Huang W, et al. Predicting dynamic cellular protein–
RNA interactions by deep learning using in vivo RNA structures.
Cell Res 2021; 31(5):495–516.

52. Hu J, Shen L, and Sun G. Squeeze-and-excitation networks. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 7132–41, 2018.

53. Koo PK, Majdandzic A, Ploenzke M, et al. Global importance
analysis: an interpretability method to quantify importance of
genomic features in deep neural networks. PLoS Comput Biol 2021;
17(5): e1008925.

54. Sharma NK, Gupta S, Kumar A, et al. Rbpspot: learning on appro-
priate contextual information for rbp binding sites discovery.
Iscience 2021; 24(12): 103381.

55. Pan X, Shen H-B. Learning distributed representations of RNA
sequences and its application for predicting RNA-protein bind-
ing sites with a convolutional neural network. Neurocomputing
2018; 305:51–8.

56. Mikolov T, Chen K, Corrado G, Dean J. Efficient estima-
tion of word representations in vector space. arXiv preprint.
arXiv:1301.3781. 2013.

57. Devlin J, Chang M-W, Lee K, Toutanova K. Bert: pre-training
of deep bidirectional transformers for language understanding.
arXiv preprint. arXiv:1810.04805. 2018.

58. Lin Z, Akin H, Rao R, et al. Evolutionary-scale prediction of atomic
level protein structure with a language model. bioRxiv 2022;
2022–07.

59. Yamada K, Hamada M. Prediction of RNA–protein interactions
using a nucleotide language model. Bioinformatics Adv 2022; 2(1):
vbac023.

60. Ji Y, Zhou Z, Liu H, Davuluri RV. Dnabert: pre-trained bidi-
rectional encoder representations from transformers model
for DNA-language in genome. Bioinformatics 2021; 37(15):
2112–20.
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