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Abstract
We introduce HumanBrainAtlas, an initiative to construct a highly detailed, open-access atlas of the living human brain that 
combines high-resolution in vivo MR imaging and detailed segmentations previously possible only in histological prepara-
tions. Here, we present and evaluate the first step of this initiative: a comprehensive dataset of two healthy male volunteers 
reconstructed to a 0.25 mm isotropic resolution for T1w, T2w, and DWI contrasts. Multiple high-resolution acquisitions were 
collected for each contrast and each participant, followed by averaging using symmetric group-wise normalisation (Advanced 
Normalisation Tools). The resulting image quality permits structural parcellations rivalling histology-based atlases, while 
maintaining the advantages of in vivo MRI. For example, components of the thalamus, hypothalamus, and hippocampus are 
often impossible to identify using standard MRI protocols—can be identified within the present data. Our data are virtually 
distortion free, fully 3D, and compatible with the existing in vivo Neuroimaging analysis tools. The dataset is suitable for 
teaching and is publicly available via our website (hba.neura.edu.au), which also provides data processing scripts. Instead 
of focusing on coordinates in an averaged brain space, our approach focuses on providing an example segmentation at great 
detail in the high-quality individual brain. This serves as an illustration on what features contrasts and relations can be used 
to interpret MRI datasets, in research, clinical, and education settings.
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Introduction

The investigation of human brain anatomy has a long his-
tory, and for most of this time has exclusively relied on the 
study of post-mortem brains. Today, clinicians and many 

neuroscientists use Magnetic Resonance Imaging (MRI) to 
acquire images from living human brains, hence the need to 
identify brain anatomy in these images. There are a number 
of projects aiming to provide assistance with brain anatomy, 
such as the BRAIN Initiative (Underwood 2013), the Human 
Connectome Project (HCP) (Van Essen et al. 2013), the Big 
Brain (Amunts et al. 2013; Amunts and Zilles 2015), Brain-
netome (Jiang 2013), the scalable Brain Atlas (Bakker et al. 
2015), and the Allen Brain Atlas (Hawrylycz et al. 2012; 
Sunkin et al. 2013). While these approaches are powerful, 
there are still major needs faced by contemporary clinicians 
and researchers not addressed, principally anatomical resolu-
tion. For example, population-bases atlases, by their nature, 
average out and warp many MR images to a best fit, result-
ing in loss of detail. As a result, population-based atlases 
of the human brain typically identify about 50 structures, a 
handicap for those interested in identifying small structures 
in an individual brain. Histology-based atlases are more 
comprehensive, identifying as many as 800 structures (Mai 
et al. 2016a), but histology is limited—by its very nature, 
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it is post-mortem and the tissue appearance is significantly 
different from in vivo MR images.

Technological advances have progressively improved 
the quality and spatial resolution of MRI, including the use 
of specifically tailored MRI acquisition techniques (MR 
sequences and protocols), e.g., 3D acquisitions using small, 
isotropic voxels (Suddarth and Johnson 1991) which was 
enabled by the use of higher magnetic field strength (Budde 
et al. 2014; Pohmann et al. 2016; Ugurbil 2012) and multi-
channel array coils (Roemer et al. 1990)—all measures that 
improve the signal-to-noise ratio (SNR) dramatically. MRI 
techniques permit acquisition protocols that provide satis-
factory anatomical detail from in vivo scans of control sub-
jects, using widely available clinical hardware (Busse et al. 
2006; Marques et al. 2010). Advancements now allow levels 
of resolution that have been previously thought unattain-
able––recent work demonstrating a high degree of structural 
information by combining the right acquisition protocols 
with suitable image processing (Avants et al. 2010, 2011; 
Janke et al. 2016; Lusebrink et al. 2021). Despite this pro-
gress, anatomical delineations of small structures are often 
inadequate in both cortex and subcortex, with many delinea-
tions restricted to gross neuroanatomy, or when detailed they 
are parochial, covering only segments of the brain (Iglesias 
et al. 2018; Sone et al. 2016; Winterburn et al. 2013).

While efforts have been made to develop methods for 
reliable atlas segmentations using minimal, or AI-assisted 
user input (Diaz-Pinto et al. 2022; Luo et al. 2021; Zhang 
et al. 2021), time-intensive manual segmentations on high-
quality templates are still considered by many to be the 
‘Gold Standard’ for downstream medical imaging process-
ing (Bauer et al. 2013). Atlases not only provide spatial prior 
probabilities for many segmentation algorithms, but also a 
reference point for clinical research studies (Ashburner and 
Friston 2009; Ashburner et al. 1998; Avants et al. 2010; 
Awate et al. 2006; Eickhoff et al. 2018; Van Leemput et al. 
2003; Wang et al. 2013). When aligning to stereotaxic space, 
the choice of atlas is often driven by use-case similarities to 
contrast, field strength, or population characteristics. While 
there is a push to generate appropriate matching conditional 
atlases to user input via (for example) machine learning 
(Balakrishnan et al. 2019; Dalca et al. 2019a, b; Hoffmann 
et al. 2021; Hoopes et al. 2021) or through larger multi-site 
cohort studies (Fillmore et al. 2015; Richards et al. 2016), 
there is still a great need for accurate delineations of ana-
tomical landmarks in in vivo atlases that are of high quality 
and of similar shape and intensity characteristics as in vivo 
data inputs.

In summary, there is a need for a new, comprehensive, 
and stereotaxically accurate map of the human brain for 
in vivo neuroimaging applications. The HumanBrainAt-
las (HBA) addresses these limitations, combining the ana-
tomical resolution of histology with in vivo MRI to remove 

handicaps each technique possesses. In doing so, it will 
elevate the detail of MRI segmentations to the level of his-
tology. It closes the gap between existing population-based 
efforts and histology by focusing on the individual instead 
of the population. Leveraging high-quality individual data 
also shifts the primary aim. While population-based atlases 
provide a set of coordinates indicating the likely position of 
structures in some standard space, our approach provides 
a detailed reference on the anatomical organisation. It pro-
vides relative locations shapes and layouts of structures; it 
illustrates structure contrasts in in vivo MR images, thereby 
linking post-mortem techniques to in vivo MRI.

To this end, HBA renders two living subjects in a ultra-
high-resolution MRI of 250 microns voxel grid. As in the 
histological atlas of Mai et al. (2016a, b), we aim to define 
approximately 800 structures, providing similar accuracy 
for science and clinical practice, but within the much more 
ubiquitous and clinically relevant space of in vivo MRI. 
Our ambition is to link the field of post-mortem anatomy to 
in vivo MRI. For this goal, we present herein high-resolution 
MRI data at 7 T (T1w and T2w) and 3 T (DWI). The gen-
eral approach was to collect repeated images at maximum 
permissible resolution and average these individual, grainy 
images at even greater resolution to construct a super-reso-
lution average of individual brains, bringing the neuroana-
tomical resolution of histology to the world of MRI. The 
datasets, post-processing protocols, and ongoing progress of 
delineations are made available for open access through our 
website hba.neura.edu.au and https://​osf.​io/​ckh5t/.

The aim of this manuscript is to introduce the resource, 
how it was constructed and to demonstrate the utility of the 
data acquired for the purpose to support delineation rivalling 
the detail of histological atlases.

Methods

Subjects

Two male subjects were scanned extensively (up to 20 ses-
sions) for this project. Both were healthy and with no history 
of neurological or psychiatric conditions. While some scan-
ning parameters differed between subjects, for the most part, 
each subject underwent a similar set of scanning protocols. 
At the time of scanning, Subject 1 was 45 and Subject 2 was 
30 years old.

Scanning acquisition parameters

T1w, T2w, and Proton Density (PD) images were acquired 
on a Siemens 7 T MAGNETOM at the Centre for Advanced 
Imaging using a 32-channel head coil across multiple ses-
sions (up to 12 per subject). Diffusion Weighted Imaging 

https://osf.io/ckh5t/
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(DWI) data were acquired on a Philips 3 T Ingenia CX at the 
NeuRA Imaging Centre using a 32-channel head coil, again 
across multiple sessions (up to 10 per subject). More specific 
details for each protocol are listed below.

T1w

Three different T1w protocols were used, here called 
MP2RAGE, Dutch and FLAWS. All three are based on the 
Siemens WIP 944 (a two-inversion MP2RAGE sequence), 
but using different parameters. The idea being that each 
sequence will be advantageous for slightly different regions, 
and the resulting average will benefit from each. The exact 
scan protocols can be found in the supplementary materi-
als. Briefly, the parameters are: (a) MP2RAGE Protocol: 
Voxel size 0.4 mm isotropic, TR = 4300 ms, TE = 1.8 ms, 
TI1 = 700  ms, TI2 = 2370  ms, FA1 = 4˚, FA2 = 5˚, 
GRAPPA = 2, Echo spacing 5.4 ms, Bandwidth 590 Hz/
Px, and the denoised (UNIDEN) image was used; (b) 
Dutch Protocol (Fracasso et al. 2016): Voxel size = 0.5 mm 
isotropic, TR = 6000 ms, TE = 3.18 ms, TI1 = 1200 ms, 
TI2 = 4790 ms, GRAPPA = 3, FA1 = 8˚, FA2 = 9˚, Band-
width = 630 Hz/Px, the PD corrected Inv1 image was used; 
and (c) FLAWS Protocol: Voxel size 0.6 mm isotropic, 
TR = 5000 ms, TE = 1.49 ms, TI1 = 620 ms, TI2 = 1450 ms, 
FA1 = 4˚, FA2 = 8˚,GRAPPA = 3 partial Fourier 6/8 Band-
width = 630 Hz/Px, and the PD corrected Inv2 image was 
used.

We trialled a number of different scanning protocols, 
continuously optimising them. For some trialled sequences, 
the results were not used for the averaged datasets pre-
sented here. For other sequences, their data were included 
into the averages, even as they proved somewhat less effec-
tive than other sequences. Specifically, the sequence called 
MP2RAGE revealed the most detail and structure (see 
Fig. S6). Nevertheless, the data provided from the Dutch 
and FLAWS scans were integrated and improved the T1w 
average.

T2w

T2w images were collected with a 3D TSE sequence 
(SPACE) using the Siemens WIP692; again, detailed param-
eters can be found in the supplementary materials. Briefly, 
TR = 1330 ms, TE = 118 ms, GRAPPA 3, SPAIR fat sup-
pression, 384 slices, FOV 256 × 256 × 154 mm, Matrix size 
640 × 640, resolution 0.4 mm isotropic, Bandwidth = 521 Hz/
Px.

Proton density (PD)

In each session, one proton density (PD) scan was col-
lected, Voxel size 1 mm isotropic, TR = 6.0 ms, TE = 3.0 ms, 

GRAPPA = 2. This PD was used to correct for intensity 
inhomogeneities present in T1w scans for the same sessions 
(Van de Moortele et al 2009).

Diffusion‑weighted imaging (DWI)

DWI data were acquired on a 3 T Phillips Achieva CX, at 
the NeuRA Imaging Facility in Randwick, Australia using 
a diffusion weighted (DTW) echo planar imaging (EPI) 
sequence. Native scan resolution was 1.25 mm isotropic, 
field of view (FOV) 240 × 200 × 147.5 mm, 118 slices, 32 
directions, 4 b-factor averages, B-val = 1000, TE = 60 ms, 
TR = 26.5 s, SENSE = 3, SPIR (Spectral Saturation with 
Inversion Recovery) fat saturation. Fat shift direction was 
A to P, inverse blip scans were collected for distortion cor-
rection and the total scan time was 52 min. Ten scans were 
acquired with one scan per session to ensure maximum sub-
ject compliance with minimal motion.

Data analysis

T1w and T2w pre‑template preprocessing

Each T1w scan type (MP2RAGE, Dutch, Flaws) was pre-
processed independently through the following steps.

(1)	 Applying the ImageMath command from the ANTs 
toolbox to truncate the luminance intensities of each 
scan with 0 as the lower quantile and 0.999 as the upper 
quantile.

(2)	 Using the robustfov script from FSL to reduce file size 
by removing unnecessary parts of the scan (neck, nose, 
etc.).

(3)	 Upsampling (b-spline interpolation) the voxel size 
to 0.25 mm isotropic to ensure that voxel sizes were 
uniform across different scan protocols and modali-
ties. This decreases the effect of blurring caused by 
‘reslicing’ or ‘resampling’ and allows some degree of 
super-resolution by integrating information over mul-
tiple frames (Farsiu et al. 2004; Manjón et al. 2010; 
Tsai 1984; Van Reeth et al. 2012) to increase detail. A 
voxel resolution of 0.25 mm also provides the benefit 
of allowing extraction of slice images at 0.5 mm inter-
val for the segmentation process without any additional 
resampling.

(4)	 Skull stripping was undertaken to improve alignment by 
removing parts of each scan that did not include cortex. 
We also conducted skull stripping due to the large file 
size of our raw scans (~ 1–2 Gb), because skull strip-
ping decreased file size considerably (~ 300 Mb), by 
removing noise outside of the brain. For this, we used 
HD-BET to create a brain mask for each scan (Isensee 
et al. 2019). To avoid this mask removing brain areas 
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with low signal (e.g., temporal cortex), we also created 
a skull stripped variant with the brain mask inflated by 
3 mm. Accurate skull stripping is critical and results 
were carefully inspected. When the skull strip was inac-
curate for a specific scan, an accurate skull strip mask 
from another dataset was used. For this, the two data-
sets were aligned, and when this alignment was suc-
cessful, the accurate mask was transformed. Remaining 
inaccuracies in skull stripping were manually corrected 
using the ITKSnap software.

(5)	 Ensuring all the dimensions of each scan was 1024. As 
in Step 3, this was used to ensure uniform dimensions 
across different scan protocols and modalities. With 
background being zero values, this did not increase file 
size because the files were saved in a zipped format 
(nii.gz).

(6)	 Proton density correction: We used the method pro-
posed by Van de Moortele et al. (2009) to correct for 
luminance inhomogeneities in our T1w images. Pro-
ton density images were collected during the same 
scan session for each T1w image, and the T1w images 
acquired using the ‘Dutch’ and the ‘FLAWS’ protocol 
were divided by the aligned Proton Density image. This 
yielded images with much reduced inhomogeneities 
and high grey/white contrast.

(7)	 All T1w and all T2w images were then aligned using 
FLIRT and a linear average was generated using the 
fslmerge command with the –t flag and then averaged 
using fslmaths. This created one unbiased linear aver-
age for each for T1w and T2w set of scans, avoiding 
influence by the order in which the scans were col-
lected. This linear average was used as a starting point 
for symmetric group-wise template generation.

Template generation

Symmetric group-wise normalisation was conducted using 
Advanced Normalisation Tools (ANTs), specifically using 
the antsMultivariateTemplateConstruction.sh script. This 
employed a cross correlation similarity metric and a Greedy 
SyN transformation model for non-linear registration. We 
used 20 × 15 × 5 as the maximum number of steps in each 
registration, the gradient was 0.1, and the total number of 
iterations was 3. These parameter settings were based of the 
settings used by Lüsebrink et al. (2017).

Dutch, FLAWS, and MP2RAGE were all integrated into a 
single fit for a T1w template, but each modality (T1w, T2w, 
and DWI) was processed separately and aligned afterwards 
using ANTs non-linear registration. A non-linear alignment 
was chosen after the results of affine alignments between tem-
plates were found to be good, but still marginally suboptimal. 
This was specifically noticeable in the computed ColorT1T2, 
which we observed to be sharper after non-linear alignment. 

Supplementary Figures S1 and S2 show a simplified flowchart 
of the data processing pipeline. For comparing the different 
T1w scan protocols, we fit additional models for each scan 
type. These are compared in Supplementary Fig. S7.

Diffusion‑weighted imaging (DWI)

DWI data were analyzed using MRtrix 3.0.2 (Tournier et al. 
2019) and ANTs. First, each scan was up-sampled using sinc 
interpolation by a factor of 2 × 2 in the inplane direction (to 
0.625 mm × 0.625 mm × 1.25 mm) and then preprocessed 
using the dwifslpreproc script providing top-up distortion 
correction and eddy_cuda correction (Andersson and Soti-
ropoulos 2016; Jenkinson et al. 2012) with the eddy options 
“–slm = linear”. Then, the preprocessed data were upscaled 
across slices, again by a factor of 2, so the final output had an 
isotropic resolution of 0.625 mm. This upsampling strategy 
was chosen to increase the spatial detail through averaging 
repeated acquisitions. Doubling the across slice resolution 
is incompatible with eddy correction, and hence, only the 
inplane direction can be up-sampled before eddy correction. 
For each of the ten up-sampled preprocessed DWI datasets, 
a mean DWI image, an FAC (Fractional Anisotropy Colour) 
image, as well as an FOD (Fibre Orientation Distribution, 
dwi2fod) using dhollander algorithm (Tournier et al. 2019) 
were calculated.

Subsequently, the ten mean DWI images were aligned 
using the ANTs MultivariateTemplateConstruction.sh 
script, with a template resolution of 0.5 mm. This resulted 
in a high-resolution high-quality mean DWI image, essen-
tially displaying a T2*w contrast with good image contrast 
and detail. The transforms estimated from this were then 
applied to the 10 FAC images and the 10 FOD images (via 
10 ID images) using the mrtransform function from MRtrix. 
This ensured that the FOD vectors were transformed cor-
rectly (using the option -reorient_fod yes). FAC images and 
FOD were then averaged in the DWI template space using 
mrcalc. This intermediate 0.5 mm space was used to save 
RAM and compute resources, but being compatible to the 
0.25 mm overall template. Also averaging 10 FOD images 
at 0.25 mm would have required above 128 GB of RAM. 
Then, all DWI data were transformed into the final template 
space (0.25 mm) using ANTs for the FAC and mean image 
and ID files and mrtransform for the FOD. Finally, from the 
average FOD, a DEC (direction encoded colour) image was 
calculated using the T1w template for panchromatic sharp-
ening (fod2dec -contrast, Dhollander et al. 2015).

Template alignments, multi‑contrast images, 
and final contrasts

Great care was taken to achieve optimal alignment of these 
different image modalities, overcoming the slight distortions 
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in each. We computed multi-contrast images, to validate the 
accuracy of these alignments, where alignment inaccuracies 
would introduce blur into these multi-contrast images. First, 
the image “ColorT1T2” was calculated from the T1w and 
T2w by manipulating the RGB (red, green, blue) channels 
of the image (Table 1). The red channel of the image was 
calculated as T1w/T2w (using Matlab). This was thresh-
olded at the 96th percentile, because the division resulted in 
some extremely large values in the background. The green 
channel of the image is the T1w and the blue channel is 
the T2w image. This colour scheme was chosen, because 
it highlights some blood vessels in red, greatly simplifying 
the discrimination of blood vessels and nerve fibres in the 
manual segmentation.

The second multi-contrast image is called DEC_T1 and 
it combines the T1w and DWI data. Specifically, it is the 
output of the fod2dec function encoded image derived from 
the FOD.

Detailed documentation of the processing scripts

We provide a detailed “How to” like description of the data 
processing online.

(1)	 WITHOUT an input template: https://​hackmd.​io/​
DQbUc​5lJQ_​u9qCy​d3Q3k​SA

(2)	 WITH an input template: https://​hackmd.​io/​qKZtb​
fpSTn​GzSeb​iQW3K​fQ

(3)	 Using SLURM to run ANTs on the ‘Massive’ platform 
(massive.org.au): https://​hackmd.​io/​b5Yql​tBPRg​qxXl8​
3ZVbj​cQ

(4)	 DWI data: https://​hackmd.​io/​0W2D1​db_​QROG_​
HU9Vv4-​JA

Delineation of neuroanatomy

For each 0.5 mm, a set of three orthogonal planes were 
extracted: coronal, sagittal, and axial (horizontal). For 
each plane, a series of images were compiled per voxel 

step, from each of their respected ranges; i.e., for coronal, 
from 65 mm before the anterior commissure (− 65AC) to 
80 mm after the anterior commissure (+ 80AC). These 
MR slice images are analogous to histological sections, 
allowing direct and practical comparisons with existing 
delineated histology slices.

With these series of images, across all contrasts, a set of 
four ‘virtual’ fiduciary marks were placed in the four cor-
ners of the image; these ensure that, as we delineate through 
the series, we are always on the same side aspect ratio and 
alignment. The T1w contrast of each voxel step was overlaid 
with 0.05 mm drafting film (Flat and Rotary Co., Ltd.) to 
permit superimposition of contrasts, where in conference 
with co-authors, the signatures of structures are identified 
and then drawn.

For some delineated structures, some apparently strong 
signals are still insufficient to fully delineate. For example, 
the external globus pallidus (EGP), is marked by a the black 
positivity in T2w, which in isolation can appear to delineate 
the EGP unambiguously; however, on investigation of the 
corresponding DEC image, the green directional informa-
tion of the internal capsule (ic) distinguishes the medial and 
dorsal edges of the EGP more clearly. Further, some of the 
delineations were impossible to make purely from the MRI 
contrasts, i.e., the basal nucleus (B), where the T2 contrast 
assists in identifying its ventral most boundary, but no other 
contrast can complete it, and we had to rely inferences from 
histology to draw the remaining boundaries. The cortex of 
this map is based on the comprehensive histological cortical 
maps from Mai et al. (2016a, b).

Once satisfied with each voxel step/slice, we move to the 
next, and repeat the process until the range is complete and 
then repeat it again for each orthogonal plane. Albeit, this 
is not done in complete serialisation, following a structure, 
or small set of structures, across orthogonal planes is more 
efficient and accurate. These tracings are then digitised using 
Adobe software (Adobe Inc., 2019 Adobe Suite). At this 
digitisation step, a final sweep through the diagrams is done 
to harmonize delineations from level to level.

Table 1   Summary of the MRI scans included in the HumanBrainAtlas project

Name Derived from scans Description

T1w 7 T MP2RAGE, DUTCH, FLAWS T1-weighted scan. The main reference contrast, derived by averaging all T1w scans of 
sufficient quality

T2w 7 T 3D TSE sequence (SPACE) T2-weighted scans
DWI_average 3 T SPIR EPI Average of the distortion-corrected EPI images, mostly used for aligning the DWI data to 

the T2w (and hence the T1w) image
FAC 3 T SPIR EPI For every DWI scan, an FAC image was calculated. These ten FACs were aligned with the 

T2w and averaged
DEC_T1 T1w, 3 T SPIR EPI Direction-encoded fractional anisotropy reconstructed from the FOD (fod2dec -contrast)
ColorT1T2 T1w and T2w A derived image combining the T1w and T2w contrast—helpful for segmentation and 

highlighting of blood vessels

https://hackmd.io/DQbUc5lJQ_u9qCyd3Q3kSA
https://hackmd.io/DQbUc5lJQ_u9qCyd3Q3kSA
https://hackmd.io/qKZtbfpSTnGzSebiQW3KfQ
https://hackmd.io/qKZtbfpSTnGzSebiQW3KfQ
https://hackmd.io/b5YqltBPRgqxXl83ZVbjcQ
https://hackmd.io/b5YqltBPRgqxXl83ZVbjcQ
https://hackmd.io/0W2D1db_QROG_HU9Vv4-JA
https://hackmd.io/0W2D1db_QROG_HU9Vv4-JA
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Results

Averaging multiple acquisitions through the ANTs multivar-
iate template fitting resulted in significant quality improve-
ment—from grainy high-noise single acquisition images to 
a satisfactory average within an individual subject (Fig. 1).

Our results also demonstrate fine detail in our final 
images, detail unavailable in the initial scans. They also 
highlight the importance of high resolution for imaging 
structural details, for example in the hippocampus (Fig. 2). 
Attempting to discern hippocampal subfields at 1  mm 
involves risky guessing (Wisse et al. 2021), even in excellent 
data as those in Fig. 2. In contrast, at 0.25 mm resolution, the 
subfields are clearly discernible in T1w images.

Our results also demonstrate the ability of post-pro-
cessing to reveal structural detail finer than the acquisition 

resolution. Figure 3 shows the resolution gain achieved by 
the super-resolved processing for the FAC data. DWI was 
acquired at 1.25 mm isotropic; while this is a high-resolution 
for DWI, it is low compared to our T1w and T2w protocols. 
Comparing the acquisition resolution (top left) and with the 
high-resolution average in 0.5 mm3 (top right) demonstrates 
the detail that is achievable through our post-processing.

Having demonstrated that our analysis pipeline improves 
the available resolution, the next relevant question is whether 
the structural information revealed is sufficient to support 
accurate and comprehensive delineations of brain structures. 
Figure 4 displays a set of axial sections through the dataset. 
Figure 5 focuses on the axial plane through the AC–PC line 
(z = 0) on which we delineate 52 structures, for example the 
substructures of the globus pallidus and its flanking struc-
tures the putamen and the internal capsule. Visible are the 
thalamic substructures such as the ventral anterior nucleus, 
lateral thalamic nuclei, the medial geniculate nucleus, and 
the pulvinar. Posterior to the thalamus can be seen the hip-
pocampal sub-regions—dentate gyrus, CA1, subiculum, 
and pre- and parasubiculum. A detailed segmentation of a 
coronal section of the hippocampus can be seen in Supple-
mentary Fig. S3.

Finally, we asked how such MRI delineations compare to 
delineations in the histology-based atlas of Mai et al. (2016a, 
b). Figure 6 shows a comparison at the level of the anterior 
commissure, demonstrating a level of delineations compa-
rable to the gold standard documents.

To demonstrate the basis for these delineations, Fig. 7 
shows a ‘zoomed in’ section and we will discuss ten struc-
tures. Each one demonstrates a link between MRI and histol-
ogy, anatomy, dissections, and/or function, presented as a 
sample of the scope of referencing material used throughout 
the rest of the atlas. Figure 7 only shows the facilitating 
power of the DEC_T1 contrast, albeit the other contrasts are 
also used in the identifications and are shown in Supl. Figs. 
S3, S4 and S5. (1) The internal carotid artery (ictd) is best 
delineated by its bright white appearance in T1w and near 
black appearance in T2w (Huk and Gademann 1984). Blood 
vessels, depending on flow, do not always appear with the 
same signature in T1 and T2, but they appear vivid red in 
the ColorT1T2 contrast, hence a good mnemonic and a good 
distinction from nerves. (2) The corpus callosum (cc) is best 
identified by its fibre direction, predominantly appearing as 
vivid red, betraying the mediolateral direction of fibres, with 
brushes of blue laterally (Shah et al. 2021). (3) The cingu-
late bundle (cg) is identified in Fig. 7 by the vivid-green 
colour, signifying an anterior–posterior direction of fibres 
in the DEC_T1, but it also stands out as a darker grey in the 
T2w. (4) The superior longitudinal fasciculus, dorsal (slf I) 
and (5) superior longitudinal fasciculus, central (slf II), are 
both rather difficult to identify using only histology or T1w 
and T2w, but in the DEC_T1 contrast, thanks to directional 

Fig. 1   From single acquisition to high-resolution and quality aver-
age. The left panel shows the denoised and skull stripped (UNIDEN) 
image of a single MP2RAGE acquisition, while the right shows the 
average T1w image in 0.25 mm resolution. The left image shows con-
siderable detail; this detail is masked by strong grain (noise). On the 
other hand, the images on the right are virtually noise-free and even 
small contrast variations can be relied on to reveal meaningful struc-
tural detail
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information, the superior longitudinal fasciculus bundles 
are identifiable. Directional information reveals their bor-
ders where blue identifies a dorsal–ventral direction of 

fibres, into the superior frontal gyrus (slf I) and green, ante-
rior–posterior (slf II), into the medial frontal gyrus (Janelle 
et al. 2022). (6) The inferior longitudinal fasciculus (ilf) is 

Fig. 2   The importance of resolution in segmenting the hippocampus. The left column shows the dataset at 1 mm resolution, while the right col-
umn shows the exact same data at its original resolution of 0.25 mm

Fig. 3   Sagittal plane showing 
the cerebellar dentate nucleus 
across a selection of contrasts. 
The first panel (top left) shows 
the FAC sampled at the scan-
ning resolution of 1.25 mm. 
Note that the dentate can be 
clearly seen in both the T1w 
and the high-resolution FAC 
example, but most clearly in 
DEC_T1. This demonstrates 
the superior detail revealed in 
the right FAC image (red: LR 
axis or vice versa, blue IS axis, 
green AP axis, the same colour 
coding applies to all FAC or 
DEC_T1 images)
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similarly difficult to identify on low-resolution FAC con-
trasts and even via myelin stains; however, in the DEC_T1 
contrast, it is seen as a vivid-green. This colour accurately 
reflects the direction of fibres in the inferior longitudinal 
fasciculus anterior–posterior and is further validated by 
functional studies (Herbet et al. 2018). The inferior longitu-
dinal fasciculus is also delimited by its separation from the 

limitans claustrum (LiCl) and ventral claustrum (VCl). (7) 
The uncinate fasciculus (unc) also presents as vivid green on 
the medial portion of and blue on its lateral. This correlates 
with its direction of fibres at AC =  + 0. The uncinate fascicu-
lus is distinguished form the inferior longitudinal fasciculus, 
by the subtle shift to a darker grey in T1w and a subtle shift 
to brighter in the T2w, while the fibre orientation is identical 

Fig. 4   Horizontal sections from 
Subject 1. Each column displays 
a different contrast: T1w, T2w, 
DEC_T1, and ColorT1T2, and 
for each row, the z position 
relative to the AC-PC plane is 
labelled on the left. Note the 
excellent contrast, structure 
resolution, and sharpness
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to its neighbour the VCL (Bhatia et al. 2017). (8) The exter-
nal globus pallidus (EGP) is recognisable by its signature 
dark black in T2w (Zhang et al. 2007), but also visualised 
by its mottled appearance in the DEC_T1, distinguishable 
from its surrounding structures. (9) The compart insular 
claustrum (CoCl) is separated from the ventral claustrum 
(VCl) by a colour shift from turquoise-green to lime-green, 
corroborated by hodological and histology studies of the 
area (Watson et al. 2017). Finally, (10) the fornix (f) is a 
structure less consistent in its directionality as it travels from 
the midline of the brain underneath the corpus callosum to 
the hypothalamus, here as it is specifically the ‘columns of 

the fornix’, it is identified by its dorsoventral fibres in blue 
at the midline.

It is the combination of histological, dissectional, and 
functional knowledge, as well as the information granted by 
the MRI contrasts that permit us to delineate the structures 
of the striatum and thalamus in Fig. 7. In other words, it 
is not purely the MRI contrasts that guide the delineations 
of structures in this atlas, but an explicit linking between 
histology and MRI generating a near-post-mortem detail of 
the living human brain. The features described in these ten 
anatomical examples from the HBA illustrate a logic that 
is applicable to the rest of the structures of the brain. Other 

Fig. 5   Atlas example from an axial (horizontal) section through the AC–PC line. Fifty three structures are identified, but we would like to point 
out that colours in the FAC suggest that additional subdivisions are possible, not currently undertaken
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human brain atlases offer different features complimenting 
and informing the present work (Ding et al. 2017; Hawrylycz 
et al. 2012; Sjostedt et al. 2015, 2020; Sunkin et al. 2013).

The final point to note that homology is the key in determin-
ing these ten labels, as well as almost every other structures 
identified throughout the brain. The human brain is almost 
entirely homologous across mammals and to some degree 
birds. Homologies, a structure being the same on one animal 
as it is in another, permit comparative anatomy between spe-
cies. Homologies assist scientists to construct animal models 
of disease to test hypotheses that are inspired by human con-
siderations on experimental animals and then related back to 
the human. As a result, we have lent on other animal brain 
atlases to inform our delineations. In particular, primate brains 
show virtually no structure unique in one, or absent in another 
species, this holds true when comparing human to marmoset 
monkey. With this in mind, the Atlas of the Marmoset, Rhesus 
(Hartig et al. 2021; Paxinos et al. 2009), Rat (Paxinos and 
Ashwell 2018; Paxinos et al. 2015, 2021; Paxinos and Wat-
son 2014), Mouse (Franklin and Paxinos 2019; Paxinos et al. 
2020), and even the Chick (Puelles et al. 2019), are all used to 
better inform structure delineation in the human brain.

Discussion

Amongst the most important resources in neuroscience are 
atlases to navigate the brain. We have acquired magnetic 
resonance imaging data for the living human of quality that 
permits detailed segmentations. Provided here are these 
data (https://​hba.​neura.​edu.​au/​data-​sets and https://​osf.​io/​
ckh5t/) which will serve as the basis for an MRI atlas of the 
in vivo human brain, a dataset with sufficient resolution and 
contrast to support delineations rivalling histology-based 
atlases. This is shown in the detailed delineations from this 
dataset for a coronal and horizontal slice through the ante-
rior commissure, with the DEC_T1 providing additional 
connectional information that are typically unavailable in 
histological sections. HumanBrainAtlas can meet current 
requirements of a modern atlas, offering the identification 
of structures in a format familiar to researchers and clini-
cians—in vivo MRI.

By averaging multiple low SNR images, we produced 
sharp virtually noise-free images (Shaw et al. 2019), with-
out the need for additional in scanner hardware. This was 
achieved through sophisticated post-processing, increased 

Fig. 6   Coronal slices at the level of the anterior commissure (y = 0). 
A The T1w contrast and B the DEC_T1 contrast, both with delinea-
tions overlayed. C The corresponding section from Mai et al. (2016a, 
b) as reference for a comprehensive histology-derived atlas (C is 

reproduced with permission and is exempt from Creative Commons 
License). Also see Fig. 7 showing a zoomed in section justifying the 
delineations

https://hba.neura.edu.au/data-sets
https://osf.io/ckh5t/
https://osf.io/ckh5t/
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availability of powerful computation hardware, and image 
analysis software, notably the ANTs, FSL, and MRtrix pack-
ages. Averaging multiple acquisitions, as employed in this 
project, is a viable approach to improve image quality and 
resolution. However, it is costly, and returns diminish with 
increasing numbers of acquisitions. Our work prioritised 
quality, opting for large numbers of repeats; while necessary, 
feasible, and desirable for this small number of subjects, one 
could argue that this is unfeasible for most applications. It 
would be worthwhile to determine what data quality could 
be achieved using a less-intensive measurement regime. As 
repeated measurements provide more and more diminishing 
returns, a smaller number of scans such as four or five rep-
etitions, even relying exclusively on 3 T and slightly lower 
resolution would only result in modest losses of image qual-
ity. Presumably, acquiring quality MRI will become easier 
in the next 5 years, for example T1w and T2w at 0.5 mm or 

DWI data at 1 mm in reasonable scanning times. In the sup-
plementary materials, we provide downsampled examples 
of Fig. 7 (Suppl. Fig. S3, S4 and S5), and this illustrates 
the combination of lower resolution MRI data, informed by 
high-resolution segmentation. The images, segmentations, 
and analysis scripts from the HumanBrainAtlas will facili-
tate the analysis and interpretation and of such future data.

Our DWI-derived images (FAC and DEC_T1) demon-
strate that averaging repeated acquisitions in an up-sampled 
space can provide higher resolution than the native scan-
ning resolution. The detail and quality of the FAC images at 
post-averaged resolution of 0.5 is noticeably superior (Fig. 3 
top right) than the scanning resolution of 1.25 mm (Fig. 3, 
top left). This demonstrates that averaging multiple low-
resolution images with small misalignments and distortions 
can be used to construct an average image with a resolution 
higher than that of the acquisition. Presumably, the efficacy 
of this approach rests on the number of images available for 
averaging. This super-resolution effect was most pronounced 
in the DWI data, because a ‘single’ DWI is an average of 
multiple images (33) and we averaged multiple DWI acquisi-
tions (10). We suggest that a similarly strong effect could be 
achieved for functional MRI, which is also reliant on many 
repeated acquisitions, e.g., as demonstrated by Bollmann 
et al. (2017).

Resolution advantages of our T1w and T2w datasets 
resulting from our supersampled approach are much less 
obvious. The template resolution of 0.25 mm was chosen 
for several reasons, the two most important are (1) the small 
voxel size of the target space reduces the blurring that occurs 
from resampling a moved image. (2) A 0.25 mm template 
allows convenient and lossless sampling of discrete slices 
at 0.5 mm intervals for delineation. Our comparison of tem-
plate reconstruction at 0.25 mm and 0.4 mm using identical 
parameters and inputs showed that the 0.25 mm template is 
sharper than the 0.4 mm template (Fig. S7). In their review 
on super-sampling, van Reeth et al. (2012) argue that new 
information can added by shifting an object in the scanner 
but only a small amount of information. Our observations 
confirm that for the T1w and T2w data, but we note that 
these benefits are additive. Difficult to say is whether the 
superior sharpness of our 0.25 mm over the 0.4 mm template 
is due to less blurring or super-resolution.

Techniques that do not damage the sample, such as 
in vivo MRI, offer advantages over histological approaches, 
specifically that the images and planes are aligned between 
contrast modalities. In histology, different stained sections 
are usually no better then 20 microns apart. Each histol-
ogy section suffers from distortions unique to each. Histol-
ogy, as any other post-mortem technique, also suffers from 
fixation shrinkage and warping. In the MR images provided 
here, each contrast is at every voxel step, with voxel steps 

Fig. 7   Zoom in on B of Fig.  6, highlighting the detail and contrast 
information even at high magnification, supporting the delineations 
provided. Legend as in Fig. 6. See also Supplementary Figs. S3, S4, 
and S5 for different contrasts and lower resolutions
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analogous to tissue sections in this context, and with negli-
gible distortions. Therefore, where histology requires new 
sections of tissue to compare the cytoarchitecture of the 
thalamus across different stains, MRI does not. Further, in 
histology comparing coronal and axial sections, it requires 
a new specimen—again, MRI does not. These fundamental 
advantages of MRI were previously insufficient to overcome 
the resolution disadvantage. Histological preparations still 
offer significantly higher resolution (< 1 micron); while the 
present resolution MRI is still only 250 microns; however, 
this no longer offsets the disadvantages for a whole brain 
atlas using in vivo MRI. Instead, the advantage of resolu-
tion in histology can only be leveraged in magnified views 
of small structures; as such, it is most suitable for research 
investigating neuroanatomy in small sub-regions of the 
brain.

Brain atlas templates are fundamental for neuroscience, 
being often the template in which other research is placed. 
Atlases can link theories of different fields. Readers assume 
that delineation were not constructed without input from 
theory, but with a comprehensive linking of literature and 
data. This allows the reader to understand more than just the 
anatomy for example the hippocampus, but also its molecu-
lar and cognitive relevance, and how it sits within a system. 
To link a molecular study in the mouse hippocampus region 
CA1 to a clinical study within the human, the most accurate 
and translatable definitions are required.

We argue that the dataset presented herein and made 
available for open access satisfies the needs outlined in the 
introduction: enabling a high-resolution atlas, free from tis-
sue degradations (inevitable in post-mortem material) and in 
a contrast that is immediately familiar to the user of in vivo 
MRI. The forthcoming atlas, for which we present two sam-
ple pages here, but share more online, will be of value for 
researchers interested in human or animal nervous systems, 
clinicians interested in homologies or accurate interventions, 
and certainly educators. The field is indebted to histology 
atlases of human (Broadmann 1909; Büttner-Ennever et al. 
2014; Economo and Koskinas 1925; Mai et al. 2016a, b; 
Nieuwenhuys et al. 1978; Talairach and Tournoux 1998), but 
we argue the future should rely on in vivo MRI.
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