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Modelling antimicrobial resistance 
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Infection control programs and antimicrobial stewardship have been proven effective in reducing 
the burden of diseases due to multidrug-resistant organisms, but quantifying the effect of each 
intervention is an open issue. For this aim, we propose a model to characterize the effect of 
interventions at single ward level. We adapted the Ross-Macdonald model to describe hospital cross-
transmission dynamics of carbapenem resistant Klebsiella pneumoniae (CRKP), considering healthcare 
workers as the vectors transmitting susceptible and resistant pathogens among admitted patients. 
The model parameters were estimated from a literature review, further adjusted to reproduce 
observed clinical outcomes, and validated using real life data from a 2-year study in a university 
hospital. The model has been further explored through extensive sensitivity analysis, in order to 
assess the relevance of single interventions as well as their synergistic effects. Our model has been 
shown to be an effective tool to describe and predict the impact of interventions in reducing the 
prevalence of CRKP colonisation and infection, and can be extended to other specific hospital and 
pathological scenarios to produce tailored estimates of the most effective strategies. 

Antimicrobial resistance (AMR) poses a worldwide public health concern that undermines the provision of 
effective treatments, leading to limited and more harmful therapeutic options and increased risk of death1. In 
2019, 1,27 million deaths have been attributed to AMR globally1. Notably, over 80% of newly approved antibiotic 
agents are developed from current classes where resistance mechanisms are well-established and rapid emer-
gence of resistance is foreseen, thus limiting their clinical benefit2. The constant increase of AMR results from 
an interplay of several drivers, ranging from human and animal antimicrobial misuse or overuse, healthcare 
transmission, suboptimal availability of diagnostics and vaccines3. The availability of surveillance data of AMR 
is a key component of antimicrobial stewardship (AMS) and infection prevention and control (IPC) policies, 
which have proved to be successful in decreasing resistance rates and improving patients’ outcomes4–8. The 
availability of large datasets and the development and introduction of new complex algorithms and computer 
implementable instructions (i.e. artificial intelligence and machine learning), can contribute to enhance surveil-
lance activities and consequently implement AMS programs by identifying targets for improvement and tailoring 
specific interventions9.

Mathematical models that estimate cross-transmission of multidrug-resistant (MDR) bacteria in the health-
care setting are important tools that further enforce AMR surveillance. The added value of these models is the 
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potential to predict the effectiveness of IPC and AMS programs, as a single intervention or as a bundle in reducing 
the rates of MDR pathogens10,11. Firstly conceptualized in the early decades of the XX century to study vector 
born disease and contagious epidemics12,13, evolutionary epidemiology models have progressively flourished 
from the 90s in the attempt to investigate the epidemiological changes in the bacterial populations, as well as 
the evolution and transmission of resistant strains14,15. In the last decades, cross-transmission models for MDR 
pathogens have been increasingly employed in the context of healthcare-associated infections (HAI), although 
with conflicting results11,16,17. Crucial issues to fit evolutionary model outcomes with reality are modelling the 
competition between resistant and susceptible strains and their coexistence (as they are not always mutually 
exclusive), co-colonization with other bacterial strains/species, presence of not colonised patients, active mul-
timodal policies and implementation of new IPC and/or AMS strategies. Consequently, shortcomings include 
availability of clear parameters such as information on asymptomatic carriage, timing of events (e.g. infection), 
transmission rates between compartments, heterogeneity in the host populations, strain typing and quantified 
impact of hand hygiene frequency, antibiotic consumption, and screening strategies18–20.

The primary objective of this study was to design and validate a mathematical transmission model able to 
predict the potential impact of several AMS and IPC strategies in reducing the prevalence and/or infection of 
target MDR bacteria within hospital setting. We considered a case study for carbapenem resistant Klebsiella 
Pneumoniae (CRKP) but the modelling framework can be extended to other pathogens. Few modelling studies 
have focused on CRKP transmission17,21,22. In these studies, drug-susceptible strains of KP are neglected, and 
only isolation, hand hygiene compliance and contact precautions are modelled to assess the impact of infection 
control measures. A recent study22 examined the impact of newly admitted colonized patients on the endemic 
prevalence of CRKP and evaluated the effect of antibiotic treatment on transmission, but no clinical data were 
used to estimate the associated parameters or to validate the model.

The second objective was to assess and compare the effect size of different pairs of AMS and IPC interventions. 
To address the major drawbacks reported above, we (i) considered three different compartments for patients 
without the target bacteria and with the susceptible or resistant strains, respectively, (ii) proposed and validated 
model parameterization from real clinical data, (iii) assessed the ability of the model to describe longitudinal 
point prevalence data, and iv) quantified the impact of different interventions, singularly and in combination, 
through sensitivity analysis.

Material and methods
The model was developed through a multistep approach. First, we carried out a scoping review of studies quanti-
fying the effect of IPC and AMS interventions on the prevalence and/or incidence of colonisation and/or infection 
due to the critical resistant bacteria of the WHO Pathogen Priority List (PPL) for research and discovery of new 
effective antibiotics23. Second, a modified Ross-Macdonald model12 was developed. The model was validated 
using epidemiological data prospectively collected during an intervention of AMS and IPC procedures (before 
and after study) implemented in a 1500-bed Italian teaching hospital24. Finally, we run through the model mul-
tiple scenarios of single or combined interventions to estimate their different impact on the prevalence of the 
target MDR bacterium.

Scoping review
To identify the most relevant interventions to be included in the model as described in literature, we considered 
systematic reviews published in English language from 01.01.2010 to 31.03.2021, focusing on AMS and IPC inter-
ventions to reduce incidence and/or prevalence of target pathogens. Search terms and forms for data collection 
are reported in Supplementary Tables 1 and 2. We searched information for methicillin-resistant Staphylococ-
cus aureus (MRSA), Vancomycin-resistant Enterococci (VRE), Carbapenem-resistant Enterobacterales (CRE), 
including CRKP, carbapenem-resistant Pseudomonas aeruginosa (CRPA) and Carbapenem- resistant Acinetobac-
ter baumannii (CRAB). Systematic reviews analysing the following single interventions, or a bundle including at 
least two of them, were considered: antibiotic cycling, audit and feedback, staff or patients cohorting, isolation 
(including pre-emptive), decolonisation, hand hygiene, environmental cleaning, active surveillance (e.g. universal 
screening, targeted screening or targeted and weekly screening).

Comments, reports, position papers, articles based on questionnaires or ethical implications, pure cost-
effectiveness analysis of interventions, national surveys, description of outbreaks, bacterial airborne or respiratory 
shedding as well as contamination during surgery procedures, environmental and/or clothes sampling prevalence, 
quality of care and satisfaction among isolated patients were excluded.

Transmission model
We based our transmission model on the Ross-Macdonald model for vector-borne diseases12. The mathematical 
model is a system of six differential equations, representing the dynamics of two populations, healthcare workers 
(HCWs) and patients (P), divided into three compartments based on their epidemiological state [un-colonized 
or free (F), colonized/infected by susceptible strains (S), and colonized/infected by resistant strains (R)]. We 
aggregated colonized and infected patients based on sample collection to increase the sample size. Furthermore, 
since the model focuses on the contamination/transmission dynamics, distinction between colonization and 
infection has a minor impact, although the model could be extended accordingly to data availability. Figure 1 
describes the HCW-patient transmission model and the possible effects of the target AMS and IPC interventions 
on the transmission dynamics.

The variable P represents the patient population, distinguished in uncolonized (PF) and colonized/infected 
by susceptible (PS) and resistant (PR) strains, while the variable H refers to the HCW population stratified analo-
gously (HF, HS or HR). The cohorting intervention aims at reducing the HCW-patient mixing (e.g. through patient 
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isolation or one-to-one nursing)16. In our model, in line with16, if the total number of HCWs is H, cohorting 
is equivalent to an effective number of HCWs equal to H(1− q) , where q is the fraction of HCWs assigned to 
cohorting. Since the model is linear with respect to the HCW variables, we simply rescale the initial condition 
accordingly: HF +HS +HR = H(1− q).

The equations can be written as:

As detailed in Table 1, some model parameters were retrieved from the literature or from the clinical data, 
and might differ in the pre- and post-intervention period (e.g. A); h and q parameters were fitted on longitudinal 
prevalence data. Values for clearance rates ωSF and ωRF,were the only based on assumptions (which in future use 
cases can be replaced by clinical or literature data ).

The set of differential equations describe the interactions between compartments by means of three main 
mechanisms:

(a) HCW-patient contacts: patients interact only with HCWs with a per capita contact rate (KH), which 
describes the number of contacts that a single HCW makes with one patient within one day. A HCW can con-
sequently become contaminated with a certain probability (γ parameter) depending on whether the patient was 
in the (PS) or (PR) state, thus becoming (HS) or (HR), respectively. On the other hand, if a HCW is contaminated, 
a (HS) → (PS) or (HR) → (PR) transmission can happen with a probability described by α. In addition, HCWs 
contamination is modulated by the term (1 − h) indicating the fraction of unprotected contacts (with h being 
the parameter associated to hand hygiene compliance). A protected contact not only prevents transmission of 
the pathogen, but also decontaminates the HCW, returning it to the HF compartment. The selection and trans-
mission of a resistant strain can be further influenced by the ward antibiotic pressure described by parameter A, 
which ultimately depends on the antibiotic consumption16. We reduced the contact rate (KH) for all the patients 
to implement the effect of patient isolation.

(b) Admission and discharge: patients enter the ward with a daily rate a. When admitted, a patient can be 
either colonized/infected by resistant strain with probability pR, colonized/infected by susceptible strains (pS) 
or uncolonized (pF = 1 − pS − pR). The average length of stay (LOS) is 1/d and it can be calculated from the data 
as the average over the three compartments weighted on the average fraction of users in each compartment. 
Estimates of prevalence at admission (Supplementary Table S5) were set to the same values for both pre- and 
post-intervention period, assuming that the level of resistance in the community did not change significatively 
over the 2 years of the study.

(c) Clearance of carriage state: patients infected by both susceptible and resistant strains return to the uncolo-
nized state with a rate respectively of (ωSF) and (ωRF). Similarly, HCWs can move to uncolonized state with a rate 
defined as (μH). Since no clinical data on clearance of carriage state were available, we set the decolonization rates 

δPF = −KHαAHRPF − KHαHSPF − dmeanPF + aPF + ωRFPR + ωSFPS

δPS = KHαHSPF − dmeanPS + aPS−ωSFPS

δPR = KHαAHRPF − dmeanPR + aPR−ωRFPR

δHF = −KHγ (1− h)HF(PS + PR)+ KHh(HS +HR)(PF + PS + PR)+ µH (HS +HR)

δHS = KHγ (1− h)HFPS − KHhHS(PF + PS + PR)−µHHS

δHR = KHγ (1− h)HFPR − KHhHR(PF + PS + PR)−µHHR

Figure 1.   Transmission model: the epidemiological state of a patient belongs to one of three different 
categories: free/not colonized from the target pathogen (PF), colonized/infected by susceptible strain (PS), 
colonized/infected by resistant strains (PR). Similarly, healthcare workers (HCWs) can be uncontaminated or 
contaminated with susceptible or resistant strains (HS and HR respectively).
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as those assumed by Blanquart18, that considers a slow-paced decolonization dynamics. Noteworthy, increasing 
the decolonization rate could be used to simulate an increase in the frequency of effective clearance interventions.

(d) Infection control interventions: we considered the effect of cohorting, isolation and pre-emptive isola-
tion, antibiotic consumption, hand hygiene, screening at admission (Table 2). Further information on how the 
interventions were parametrized is provided in Supplementary Table 3.

Model validation
For model validation, we used the results of an AMS programme (“Stewardship Antibiotica VErona”- SAVE)24. 
The AMS intervention was carried out in the cardiac surgery ward and consisted of a first monitoring phase, 
followed by the development of specific antibiotic therapy guidelines, and a second phase characterized by 
regular consultation and periodic audit and feedback reports. Data were retrieved during the pre-intervention 
period, from 26/02/2018 to 31/03/2019 March 2019 (weeks 1–57), and in the post-intervention period, from 
01/04/2019 to 03/05/2020 (weeks 58–114). SAVE data consisted of longitudinal prevalence time series at weekly 
resolution (details on the clinical setting and the intervention are in Supplementary Tables 4 and 5, and Sup-
plementary Fig. 1). The MDR bacteria chosen for model validation was CRKP. Cultures from surveillance and 
clinical activities were collected within 72 h upon admission and recorded on a weekly basis. More details on 
sample collection and definitions in Supplementary. Samples yielding negative results for both CRKP and CSKP 
were defined as “free”.

For model validation, we aimed at reproducing the longitudinal prevalence data in both pre- and post-inter-
vention periods. The SAVE data in the pre- and post- intervention periods provided both the input (parameters) 
and the output (prevalence data) to the model. Specifically, we used the model to reproduce the effect of reduced 

Table 1.   Description of the model parameters and the source of their values. Parameters value is reported 
both for the pre- and post-intervention periods. HCW health care workers, P patients, KP Klebsiella 
pneumoniae, LOS length of hospital stay, PF not colonized/free, PR colonized/infected by resistant strain, PS 
colonized/infected by susceptible strain.

Symbol Description Source Pre-intervention value Post-intervention value

H Number of HCWs during a time-shift Clinical data 17 17

KH
Per-capita contact rate (daily contacts per HCW per 
patient)

Calculated as a function of h17,37 (see Supplementary 
Table S3) 0.776 ± 0.008 0.964 ± 0.009

h Hand hygiene compliance Fitted on point prevalence time series 0.855 ± 0.008 0.868 ± 0.008

A(ε, ξ)
Increase in transmission probability by antibiotic 
consumption

Clinical data
Literature16,29 1.50 1.28

ε Treatment duration (LOS fraction) Clinical data 0.23 0.15

ξ Increased risk of acquiring resistance due to antibiotic 
pressure Literature29 3.15 2.94

d Average discharge rate (inverse of LOS) Clinical data 1/10.6 days−1 1/9.2 days−1

a Admission rate (new patients per day) Clinical data 3.4 per day 3.6 per day

pF PF fraction at admission Clinical data 0.969 –

pS PS fraction at admission Clinical data 0.025 –

pR PR fraction at admission Clinical data 0.006 –

μH Clearance rate for HCWs (inverse of contamination) Assuming contamination to last 1 h 24 days−1 –

γ Probability of KP contamination P → HCW per single 
contact Literature17 0.21 –

α Probability of KP transmission HCW→ P per single 
contact Literature21 0.45 –

q Fraction of HCWs allocated to cohorting Fitted on point prevalence time series 0.10 ± 0.07 0.10 ± 0.07

ωRF
Decolonization rate of PR (inverse of colonization 
duration) Literature18 1 month−1 –

ωSF
Decolonization rate of PS (inverse of colonization 
duration) Literature18 1 month−1 –

Table 2.   Interventions implemented in the model and their relation with model parameters.

Intervention Modellization Effect description

Cohorting16 H → (1 − q)H Decreased effective number of HCWs contributing to pathogen transmission

Isolation and pre-emptive isolation17 KH Lower contact rate

Antibiotic consumption policies16,29 A = 1 + ε(ξ − 1) More DOTs increase the risk of colonization by resistant strains

Hand hygiene17 h Hand-washing after a contact prevents HCW contamination

Screening at admission pR More accurate screening reduce the resistance prevalence at admission
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consumption of different antibiotic classes for which the days of treatment (DOT) pre- and post-intervention 
have been calculated (Supplementary Methods). Parameters not available from literature or SAVE data were fitted 
on the longitudinal data using the Levenberg–Marquardt algorithm and refined with likelihood maximization via 
Monte-Carlo Markov Chain through emcee (Python package lmfit)25. The parameters of the model are defined 
on a daily scale (e.g. number of admissions per day), while the point prevalence data were provided on a weekly 
scale. In order to compare model and data, the model output was sampled on a weekly scale.

Based on the values of the model parameters, multiple model outputs can be produced, some of which 
represent the interventions listed in Table 2. To quantify the variations of resistance prevalence as a function of 
the parameter values (sensitivity analysis) we ran the model with 3 different values for each parameter (varying 
it to 90%, 100% and 110% of their best estimate value), singularly and in pairs to estimate possible synergistic 
effects (amounting to 1806 simulations of the model). The predicted resistance prevalence was the result of an 
average over a period of 400 days.To quantify synergistic effects, we define the cooperation coefficient (CC) for 
each couple of parameters as:

where “R (pre)” is the baseline prevalence, “R(pi)”, “R(pj)” and “R(pi&pj)” represent the resistance prevalence 
when changing the first , the second and both parameters, respectively. According to this definition, a CC > 1 
implies that the coupled parameters have a synergistic effect as their combined effect is greater than the sum of 
the single effects. Before calculating CC, we combined the pairs of interventions in such a way that they both 
resulted in either a decrease (boosted interventions) or an increase (reduced interventions) in hospital resistance.

Results
Literature review
Out of 86 studies, 31 systematic reviews (SRs) were considered eligible for final inclusion (Supplementary Fig. 2). 
Twenty-three SRs (74%) were published in the last 5 years. Effectiveness of IPC and AMS interventions were 
considered separately in 18 (58%,) and 10 (32%) SRs respectively, while only 3 (9%) SRs considered the impact 
of both AMS and IPC on MDR bacteria ecology. When considering specific AMS and/or IPC interventions, 14 
SRs (45%) reported the measured impact of specific single policy (e.g. antibiotic cycling and decolonisation) on 
targeted pathogen (e.g. MRSA). Fourteen SRs (45%) provided a descriptive impact of interventions. Eighteen 
SRs (58%) assessed MDR variation by AMS and/or IPC, 14 of which were able to give specific information per 
single pathogen of interest. Nineteen (45%) SRs focused on at least one Gram-positive bacteria (18 on MRSA 
and 8 on VRE); 8 focused on at least one Gram-negative bacteria (6 on CRPA, 6 on CRAB, 2 on CRKP, and 3 on 
CRE). MRSA, VRE, CRPA, and CRAB were the most frequently analysed bacteria. Thirteen SRs (41%) considered 
other outcomes such as mortality (9/13; 69%), length of stay (8/13; 61%), cost saving (7/13; 53%), reduction in 
antibiotic prescription (5/13; 38%) and nephrotoxicity (1/13; 7%), C. difficile infection (7/13; 53%). Among them 
only 3 provided considerations on the impact of AMS and/or IPC on all the analysed outcomes. Five systematic 
reviews (16%) provided the effects of AMS and IPC interventions on CRKP or CRE incidence. Of those, two4,26 
provided quantifiable information on AMS and IPC impact on colonisation and/or infection of CRKP, and 
three6,27,28 returned general information on MDR bacteria without specifically addressing CRKP. Three out of five 
considered AMS and4,26,27 and IPC effectiveness6,26,27; only one returned quantifiable data on both AMS and IPC.

Supplementary Tables 6 and 7 summarize the characteristics of the SRs and the measured impact of IPC and 
AMS interventions on CRKP and CRE epidemiology.

Model
The pre-intervention period was characterized by a bed occupancy of 79%, an average prevalence of 7.0% and 
5.7% of resistant and susceptible strains, respectively (Supplementary Table 5). During the post-intervention 
period, the bed occupancy was slightly less (71%), with an average CRKP prevalence of 5.8% and an average 
CSKP prevalence of 5.4% (Supplementary Table 5). Between pre- and post-intervention periods, the prevalence 
of susceptible strains did not differ significatively (Mann Whitney U test p = 0.17), while the resistance prevalence 
displayed a p value of 0.054. Days of therapy (DOTs) per 1000 pd decreased from 231 in the pre-intervention 
period to 146 in the post-intervention. The dosage of the different antibiotic classes changed as in Supplementary 
Table S4b, with an average relative risk reduction of acquiring resistance varying from 3.15 to 2.94, according to 
the risks reported in literature29. Following the methods explained in Supplementary Table S3, the decrease in 
both DOTs and relative risk leads to an overall decrease in the transmission probability by antibiotic consump-
tion from APRE = 1.50 to APOST = 1.28.

Figure 2 shows the estimated percentage of CSKP and CRKP-positive patients over time as weekly point 
prevalence, both for real and model data.

The model predicts an average resistance prevalence of 7.1% and 5.2%, in fair agreement with the observed 
values (7.0% and 5.8%). The estimated values of hand hygiene compliance (h) and cohorting (q), which have 
been fitted both in the pre- and post-intervention periods, did not change significantly (qPRE = qPOST = 0,10 ± 0,07, 
hPRE = 0,855 ± 0,008 and hPOST = 0,868 ± 0,008), even if no constraints were applied to obtain these results. We 
could therefore assume that reduction of antibiotic consumption (A), the only variable that changed from pre- to 
post-intervention, was sufficient to explain the decrease in resistance prevalence.
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Sensitivity analysis
The effect of single interventions on CRKP prevalence over time were further analysed (Fig. 3, 4 and Supple-
mentary Fig. 3). Figure 3 shows the effects of a ± 10% change in single (Fig. 3a) and paired parameters (Fig. 3b, 
c) with respect to the pre-intervention values.

The most effective parameter is (h), related to hand hygiene compliance, which led to a 7% reduction in 
resistance prevalence if increased by 10%. In general, the results of parameters variation are not symmetric as 
shown in Fig. 3a.

Figure 2.   CRKP weekly point prevalence data and model estimates over time. Data is plotted both as raw data 
and as a moving average over 8 time points with the standard deviation as confidence interval (grey area). Model 
predictions are shown as a dashed red line.

Figure 3.   Simulation of the effect of (A) single interventions, (B) pairs of boosted interventions and (C) pairs 
of reduced interventions. The effects are estimated as difference in resistance prevalence (%) compared to the 
prevalence observed before intervention, calculated assuming an increase or decrease of 10% for each parameter. 
The color scale (centered at 0%) goes from decreased prevalence (blue) to increased prevalence (red). KH: per-
capita contact rate (daily contacts per HCW per patient); ε: treatment duration (LOS fraction); ξ: increased risk 
of acquiring resistance for antibiotic (AB) pressure; d: average discharge rate (inverse of LOS); pR: resistance 
prevalence at admission; h: hand hygiene compliance (probability of correct hand washing after contact); q: 
fraction of HCWs allocated to cohorting (removed from the population); ωSF: clearance rate of colonized by 
susceptible strains; ωRF: clearance rate of colonized by resistant strains.
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Regarding pairwise variation of parameters (Fig. 3b, c), when coupled with hand hygiene, none of the param-
eters could further decrease the resistance prevalence. Except hand hygiene intervention, the largest effects 
(about 5% reduction in resistance prevalence) were observed recombining the contact rate (KH)—a parameter 
influenced by isolation—with the discharge rate (d) or with the (ξ) parameter (risk of acquiring resistance due 
to antibiotic pressure).

We also investigated which pair of interventions have the most synergistic effect (Fig. 4).
A value of CC = 1.38 was observed when both cohorting (q) and screening at admission (pR) were increased, 

and CC = 1.37 when screening at admission (pR) was increased together with a higher clearance rate of CSKP 
colonization ( ωSF ). However, in both cases, the overall reduction in resistance prevalence is about ten times lower 
than the one obtained for hand hygiene intervention alone (−0.8% and −0.5% in Fig. 3b versus −6.9% in Fig. 3a). 
By contrast, the maximum synergistic effect causing an increase in resistance prevalence was observed when (i) 
the treatment duration (ε) was increased together with an increase of the resistance risk (ξ) (CC = 1.54) or with 
a decrease of the clearance rate of resistant colonization ( ωRF ) (CC = 1.48), or (ii) when the length of stay (d) 
together with a lower level of patient isolation (KH) were combined (CC = 1.49). Once again, we observed that 
the combined effects were lower than just reducing hand hygiene compliance alone (respectively, an increase of 
4.7%, 3.3% or 15.2% in prevalence in Fig. 3c compared to the 29.6% increase due to reduction of hand hygiene 
compliance in Fig. 3a).

Discussion
Major AMS goals are the optimization of patients’ care, which implicitly includes appropriateness of antimicro-
bial therapy and avoidance of unintended consequences, containment of healthcare costs, as well as education 
of frontline prescribers. In the context of AMS, information technology has been used to make guidance docu-
ments more accessible, to assess quality indicators, to measure antibiotic consumption, to predict infections and 
resistance30–32. Many guidelines are available, even though not all the recommendations are always applicable 
due to limited infrastructures, personnel, budget and adequate technical and diagnostic resources33–35. The aim 
of this study was to create a model to assess the impact of different AMS and IPC interventions in different epi-
demiological scenarios, in order to provide a practical advice on which interventions could be prioritized in an 
AMS programme, considering both the hospital setting and the local resources.

This study addressed AMS through a mathematical model developed using literature data and calibrated with 
real data on effectiveness of an advanced AMS and IPC programme implemented in a setting with a high rate 
of antimicrobial resistant infections24. Three crucial issues, that could lead to a lower reliability of mathematical 
models in real life scenarios, were considered. Firstly, models may miss to consider drug-susceptible and drug-
resistant strains separately18, thus we considered three different populations: uncolonized, and colonized/infected 
by both susceptible and resistant strains. Since the frequency of susceptible-resistant transitions and within host 
susceptible-resistance coexistence are usually unknown or not measurable18, we did not explicitly model these 
events. Thus, the simultaneous presence of patients colonized by resistant or susceptible strains is mainly due to 
the influx of both types from the community outside the hospital. Secondly, multiple models simulate the effect 
of an increased resistance risk10 or bacterial transmissivity [16], but do not provide a mechanistic interpretation 
of the parameters change due to the implementation of AMS or IPC interventions. We overcame this limit by 
providing a rational link between all the parameters of the model and literature/clinical data (gel consumption, 
DOTs, increased risk). Finally, models may lack external validation on longitudinal epidemiological data, thus 

Figure 4.   Cooperation coefficient of paired parameters in case of their implementation (A) and reduction 
(B). The color scale (centered at CC = 1) goes from uncooperative effect (blue) to cooperative effect (red). KH: 
per-capita contact rate (daily contacts per HCW per patient); ε: treatment duration (LOS fraction); ξ: increased 
risk of acquiring resistance for antibiotic (AB) pressure; d: average discharge rate (inverse of LOS); pR: resistance 
prevalence at admission; h: hand hygiene compliance (probability of correct hand washing after contact); q: 
fraction of HCWs allocated to cohorting (removed from the population) ; ωSF: clearance rate of colonized by 
susceptible strains; ωRF: clearance rate of colonized by resistant strains.
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we used available data on resistance prevalence from a longitudinal study to validate the model in a real inter-
vention scenario.

The model was fed with clinical and literature data, fitting the missing parameters on the longitudinal time 
series of point prevalence of our target ward. We then validated the model describing the changes in resistance 
prevalence in a real case study based on the decrease of antibiotic consumption. We showed that the restriction 
in antibiotic consumption, imposed to the model accordingly to the observed DOTs, was able to reproduce the 
point prevalence data. Even if some unobserved parameters (hand hygiene compliance and cohorting) have been 
fitted to the data, they did not change significantly from pre- to post-intervention, suggesting that the change 
in the model outputs were due only to the intervention on antibiotic prescription and no significant overfitting 
data occurred.

To further understand the impact on transmission of AMS interventions, we run a sensitivity analysis to 
evaluate which interventions (implemented singularly or in combination) could mostly affect the resistance 
prevalence in our setting. Hand hygiene compliance resulted the most relevant intervention influencing the 
resistance prevalence, followed by the contact rate and discharge rate. None of the combinations considered in 
the sensitivity analysis overcame the effectiveness of hand hygiene compliance alone in reducing the resistance 
prevalence. Nonetheless, an effect of around 5% was achieved by pairing the contact rate with the discharge rate 
or with the increased risk of acquiring resistance due to antibiotic pressure. This prediction can be of practical use 
when other interventions cannot be implemented in a specific setting. Other synergistic effects were observed: 
for example, prolonged antibiotic treatment together with higher resistance risk produced an increase in resist-
ance prevalence 4.7%. We remark that an increase of the discharge rate of colonized patients might potentially 
increase pathogen transmission in the community, however the risk of an increased prevalence in that setting 
could be partially mitigated by the loss of carrier status over time.

Taken all together, these results can have relevant implications on clinical practice. In the perspective of 
starting or implementing an AMS programme, by providing the required data of the target ward, the model can 
produce tailored estimates on the most effective strategies for a specific setting.

We acknowledge that our work may have some limitations. Environmental contribution and patient-to-patient 
transmission were not modelled. Data used for validation are reasonably stationary and do not show significant 
trends (thus they represent an endemic infection condition), so that we could not validate the ability of the 
model to describe an emerging outbreak. Given the low numbers of infected patients, the choice of a stochastic 
approach could have been more informative in terms of model variability36, but for the sensitivity analysis we 
performed, considering all the model parameter variations singularly and in pairs, the computational burden to 
evaluate the confidence interval for each scenario would have been unfeasible. We suggest for future studies to 
apply downstream stochastic simulations once a limited list of scenarios of interest has been identified for the 
specific use case. Furthermore, our clinical data combined samples of both colonization and infection cases thus 
possibly over-estimating the percentage of resistant pathogens at admission, as it’s more likely that a microbiologi-
cal sample could have been collected from a patient with a suspected infection. Additionally, in our model the 
effect of antibiotic pressure on selecting resistance is implemented as a multiplicative factor in the transmission 
probability, as in Austin et al.16. A possible extension would be to consider mechanisms for CRKP to develop 
endogenously (e.g. co-resistance), for example by including a transition from the PS to the PR compartment. 
Finally, our data included 8 weeks of the initial SARS-CoV-2 pandemic period, which may have added confound-
ing facots, but we did not observe significant changes in screening strategies or clinical specimen collections.

Future directions of this work should focus on testing the model in different hospital settings, including 
high-risk wards (e.g. transplants or haematologic units) and further validate the effect of other interventions, 
singularly or in combination. Such predictions could be used as supporting material for the implementation of 
stewardship programmes. Moreover, if data were available, the model could be further expanded to represent 
more detailed clinical aspects, such as the stratification of patients into infected and colonized groups. In the 
present study, the analysis and parametrization has been presented for CRKP, but the modelling framework can 
be applied to other MDR pathogens by an appropriate choice of the parameter values. In that case, parameters 
like probability of bacterial transmission from patients to HCWs (α) and vice-versa (γ), the increased risk of 
acquiring resistance for antibiotic pressure (ξ) and eventually the time frequency of active decolonization (ω) (the 
latter not considered for CRKP) should be modified accordingly. If available, pathogen genotyping data could 
provide information on evolution/transfer of specific genetic determinants. A further step to add complexity to 
the model can be the simulation of screening procedures and patient flow between hospital wards, together with 
predictions of hospital costs required by implementing a particular intervention. The aforementioned framework 
would contribute to pursuing a model increasingly reflecting real life scenarios, and with a predicting ability 
encountering the practical demands of stewardship or infection control programmes.

Data availability
The clinical data utilized for model validation have been shared in an aggregated fashion within the main docu-
ment and the Supplementary Information file.

Code availability
The code related to the model implementation and sensitivity analysis is shared at https://​github.​com/​FraDu​
razzi/​MARTHE.

Received: 14 March 2023; Accepted: 11 September 2023

https://github.com/FraDurazzi/MARTHE
https://github.com/FraDurazzi/MARTHE


9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:15803  | https://doi.org/10.1038/s41598-023-42511-5

www.nature.com/scientificreports/

References
	 1.	 Murray, C. J. et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 399, 629–655 (2022).
	 2.	 2021 Antibacterial Agents in Clinical and Preclinical Development: An Overview and Analysis. https://​www.​who.​int/​publi​catio​ns-​

detail-​redir​ect/​97892​40047​655.
	 3.	 Holmes, A. H. et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 387, 176–187 (2016).
	 4.	 Baur, D. et al. Effect of antibiotic stewardship on the incidence of infection and colonisation with antibiotic-resistant bacteria and 

Clostridium difficile infection: A systematic review and meta-analysis. Lancet Infect. Dis. 17, 990–1001 (2017).
	 5.	 Hagel, S. et al. Effectiveness of a hospital-wide infection control programme on the incidence of healthcare-associated infections 

and associated severe sepsis and septic shock: A prospective interventional study. Clin. Microbiol. Infect. 25, 462–468 (2019).
	 6.	 Tomczyk, S. et al. Control of carbapenem-resistant Enterobacteriaceae, Acinetobacter baumannii, and Pseudomonas aeruginosa in 

healthcare facilities: A systematic review and reanalysis of quasi-experimental studies. Clin. Infect. Dis. 68, 873–884 (2019).
	 7.	 Tacconelli, E. et al. Surveillance for control of antimicrobial resistance. Lancet Infect. Dis. 18, e99–e106 (2018).
	 8.	 Álvarez-Marín, R. et al. Do specific antimicrobial stewardship interventions have an impact on carbapenem resistance in Gram-

negative bacilli? A multicentre quasi-experimental ecological study: Time-trend analysis and characterization of carbapenemases. 
J. Antimicrob. Chemother. 76, 1928–1936 (2021).

	 9.	 Birkegård, A. C., Halasa, T., Toft, N., Folkesson, A. & Græsbøll, K. Send more data: A systematic review of mathematical models 
of antimicrobial resistance. Antimicrob. Resist. Infect. Control 7, 117 (2018).

	10.	 Almagor, J. et al. The impact of antibiotic use on transmission of resistant bacteria in hospitals: Insights from an agent-based model. 
PLoS ONE 13, e0197111 (2018).

	11.	 Grundmann, H., Hori, S., Winter, B., Tami, A. & Austin, D. J. Risk factors for the transmission of methicillin-resistant Staphylococ-
cus aureus in an adult intensive care unit: Fitting a model to the data. J. Infect. Dis. 185, 481–488 (2002).

	12.	 Smith, D. L. et al. Ross, Macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens. PLoS Pathog. 
8, e1002588 (2012).

	13.	 A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character 115, 700–721 
(1927).

	14.	 Spicknall, I. H., Foxman, B., Marrs, C. F. & Eisenberg, J. N. S. A modeling framework for the evolution and spread of antibiotic 
resistance: Literature review and model categorization. Am. J. Epidemiol. 178, 508–520 (2013).

	15.	 Lipsitch, M. & Levin, B. R. The population dynamics of antimicrobial chemotherapy. Antimicrob. Agents Chemother. 41, 363–373 
(1997).

	16.	 Austin, D. J., Bonten, M. J. M., Weinstein, R. A., Slaughter, S. & Anderson, R. M. Vancomycin-resistant enterococci in intensive-
care hospital settings: Transmission dynamics, persistence, and the impact of infection control programs. Proc. Natl. Acad. Sci. 
96, 6908–6913 (1999).

	17.	 Sypsa, V. et al. Transmission dynamics of carbapenemase-producing Klebsiella pneumoniae and anticipated impact of infection 
control strategies in a surgical unit. PLoS ONE 7, e41068 (2012).

	18.	 Blanquart, F. Evolutionary epidemiology models to predict the dynamics of antibiotic resistance. Evol. Appl. 12, 365–383 (2019).
	19.	 Shapiro, J. T. et al. Metapopulation ecology links antibiotic resistance, consumption, and patient transfers in a network of hospital 

wards. Elife 9, e54795 (2020).
	20.	 van Kleef, E., Robotham, J. V., Jit, M., Deeny, S. R. & Edmunds, W. J. Modelling the transmission of healthcare associated infections: 

A systematic review. BMC Infect. Dis. 13, 294 (2013).
	21.	 de DalBen, M. F. et al. A model-based strategy to control the spread of carbapenem-resistant Enterobacteriaceae: Simulate and 

implement. Infect. Control Hosp. Epidemiol. 37, 1315–1322 (2016).
	22.	 Changruenngam, S., Modchang, C. & Bicout, D. J. Modelling of the transmission dynamics of carbapenem-resistant Klebsiella 

pneumoniae in hospitals and design of control strategies. Sci. Rep. 12, 3805 (2022).
	23.	 Tacconelli, E. et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria 

and tuberculosis. Lancet Infect. Dis. 18, 318–327 (2018).
	24.	 Carrara, E. et al. How to ‘SAVE’ antibiotics: Effectiveness and sustainability of a new model of antibiotic stewardship intervention 

in the internal medicine area. Int. J. Antimicrob. Agents https://​doi.​org/​10.​1016/j.​ijant​imicag.​2022.​106672 (2022).
	25.	 Newville, M., Stensitzki, T., Allen, D. B. & Ingargiola, A. LMFIT: Non-Linear Least-Square Minimization and Curve-Fitting for 

Python. https://​doi.​org/​10.​5281/​ZENODO.​11813 (2014).
	26.	 Teerawattanapong, N. et al. Prevention and control of multidrug-resistant Gram-negative bacteria in adult intensive care units: A 

systematic review and network meta-analysis. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 64, S51–S60 (2017).
	27.	 zur Wiesch, P. A., Kouyos, R., Abel, S., Viechtbauer, W. & Bonhoeffer, S. Cycling empirical antibiotic therapy in hospitals: Meta-

analysis and models. PLOS Pathog. 10, e1004225 (2014).
	28.	 Kim, H. Y. et al. The effects of chlorhexidine gluconate bathing on health care-associated infection in intensive care units: A meta-

analysis. J. Crit. Care 32, 126–137 (2016).
	29.	 Li, J., Li, Y., Song, N. & Chen, Y. Risk factors for carbapenem-resistant Klebsiella pneumoniae infection: A meta-analysis. J. Glob. 

Antimicrob. Resist. 21, 306–313 (2020).
	30.	 Forrest, G. N. et al. Use of electronic health records and clinical decision support systems for antimicrobial stewardship. Clin. 

Infect. Dis. 59, S122–S133 (2014).
	31.	 Behnke, M. et al. Information technology aspects of large-scale implementation of automated surveillance of healthcare-associated 

infections. Clin. Microbiol. Infect. 27, S29–S39 (2021).
	32.	 King, A. et al. Investigating the ways in which health information technology can promote antimicrobial stewardship: A conceptual 

overview. J. R. Soc. Med. 110, 320–329 (2017).
	33.	 Davey, P. et al. Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane Database Syst. Rev. 2017, 

3543 (2017).
	34.	 Pezzani, M. D. et al. White paper: Bridging the gap between human and animal surveillance data, antibiotic policy and stewardship 

in the hospital sector—Practical guidance from the JPIAMR ARCH and COMBACTE-MAGNET EPI-Net networks. J. Antimicrob. 
Chemother. 75, ii20–ii32 (2020).

	35.	 Schuts, E. C. et al. Current evidence on hospital antimicrobial stewardship objectives: A systematic review and meta-analysis. 
Lancet Infect. Dis. 16, 847–856 (2016).

	36.	 Cooper, B. S., Medley, G. F. & Scott, G. M. Preliminary analysis of the transmission dynamics of nosocomial infections: Stochastic 
and management effects. J. Hosp. Infect. 43, 131–147 (1999).

	37.	 Cohen, B., Hyman, S., Rosenberg, L. & Larson, E. Frequency of patient contact with health care personnel and visitors: Implica-
tions for infection prevention. Jt. Commun. J. Qual. Patient Saf. 38, 560–565 (2012).

Acknowledgements
This project has been partially supported by: (1) ECRAID-Base project has received funding from the European 
Union’s Horizon 2020 research and innovation programme under grant agreement No. 965313. COMBACTE-
MAGNET project received support from the Innovative Medicines Initiative Joint Undertaking under grant 

https://www.who.int/publications-detail-redirect/9789240047655
https://www.who.int/publications-detail-redirect/9789240047655
https://doi.org/10.1016/j.ijantimicag.2022.106672
https://doi.org/10.5281/ZENODO.11813


10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:15803  | https://doi.org/10.1038/s41598-023-42511-5

www.nature.com/scientificreports/

agreement No. 115737 which is composed of financial contribution from the European Union Seventh Frame-
work Programme (FP7/2007-2013) and EFPIA companies in kind contribution. (2) European Union Horizon 
2020 research and innovation programme under grant agreement No. 874735 “Versatile emerging infectious 
disease observatory—forecasting, nowcasting and tracking in a changing world (VEO)”.

Author contributions
F.D. implemented the mathematical model, performed data analysis and sensitivity analysis. M.D.P., F.A., O.S., 
E.T. provided clinical expertise, data and guidance for the model design. O.S. and L.M.C. executed the literature 
review. L.B. contributed to the SAVE project and provided data regarding antibiotic consumption. F.O. partici-
pated in the SAVE project and provided clinical expertise. E.C. coordinated the SAVE project. F.D., M.D.P., F.A., 
O.S., D.R., E.T. designed the model and adapted it to available data. All authors wrote the paper.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​023-​42511-5.

Correspondence and requests for materials should be addressed to D.R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023, corrected publication 2024

https://doi.org/10.1038/s41598-023-42511-5
https://doi.org/10.1038/s41598-023-42511-5
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Modelling antimicrobial resistance transmission to guide personalized antimicrobial stewardship interventions and infection control policies in healthcare setting: a pilot study
	Material and methods
	Scoping review
	Transmission model
	Model validation

	Results
	Literature review
	Model
	Sensitivity analysis

	Discussion
	References
	Acknowledgements


