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Abstract

Meta-analysis using individual participant data (IPD) is an important methodology in intervention 

research because it (a) increases accuracy and precision of estimates, (b) allows researchers to 

investigate mediators and moderators of treatment effects, and (c) makes use of extant data. IPD 

meta-analysis can be conducted either via a one-step approach that uses data from all studies 

simultaneously, or a two-step approach, which aggregates data for each study and then combines 

them in a traditional meta-analysis model. Unfortunately, there are no evidence-based guidelines 

for how best to approach IPD meta-analysis for count outcomes with many zeroes, such as alcohol 

use. We used simulation to compare the performance of four hurdle models (3 one-step and 1 

two-step models) for zero-inflated count IPD, under realistic data conditions. Overall, all models 

yielded adequate coverage and bias for the treatment effect in the count portion of the model, 

across all data conditions. However, in the zero portion, the treatment effect was underestimated 

in most models and data conditions, especially when there were fewer studies. The performance 

of both one- and two-step approaches depended on the formulation of the treatment effects, 

suggesting a need to carefully consider model assumptions and specifications when using IPD.
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Introduction

Meta-analysis using individual participant data (IPD) is an important methodology in 

intervention research because it (a) increases accuracy and precision of estimates, (b) allows 

for the examination of covariates without potential ecological inference bias (Debray et 

al., 2015), and (c) leverages extant data. In particular, the meta-analysis of IPD affords 

greater flexibility than traditional, aggregate data meta-analysis to account for differences in 

participants, intervention approaches, study designs, and outcome measures across studies. 

IPD meta-analysis and aggregate data meta-analysis often produce comparable results when 

considering the average effect across multiple studies, such as an overall treatment effect 

size (Tierney et al., 2020). However, IPD meta-analysis is preferable to aggregate data 

meta-analysis as the use of participant-level data allows for a consistent statistical model 

across all studies as well as the ability to more flexibly tailor the model to a variety of 

outcome types, such as dichotomous (i.e., binary event) or count outcome variables. Thus, 

the analysis of IPD better ensures that the overall findings are based on a consistent set 

of statistical assumptions. Hence, IPD meta-analysis has long been considered the “gold 

standard” in meta-analysis (Sutton & Higgins, 2008).

The best practices for IPD meta-analyses with count outcomes are an area of ongoing 

research with a lack of guidance based on rigorous empirical data (e.g., simulation study). 

Count outcomes are commonly encountered in social behavioral research, with outcome 

examples including alcohol use quantity, number of sexual risk behaviors, and number 

of suicide-related behaviors. The Poisson and negative binomial (NB) models and their 

derivatives are commonly used for such outcomes. One assumption of the Poisson model is 

that the variability (i.e., dispersion) of the outcome is equal to the mean. The NB model 

extends the Poisson by incorporating a dispersion parameter, which can accommodate 

situations where the variability of the outcome is higher than the mean (i.e., overdispersion). 

In addition, count outcomes often exhibit a greater frequency of zero outcomes than would 

be expected by either the Poisson or NB models. Ignoring zero inflation in the outcome 

(called “zero-inflation bias”; Zhou et al., 2021) could lead to biased results and subsequently 

incorrect inference (Perumean-Chaney et al., 2013), although biased estimates may be 

corrected mathematically in some situations using summary-level data (see Zhou et al., 

2021). Outcomes with excessive zeroes can be accommodated by modeling the outcome in 

two parts: (1) the probability of zero drinking and (2) the number of drinks when drinking is 

non-zero. Count outcomes where zero responses are kept separate from the non-zero portion 

of the distribution are known as hurdle models (Atkins et al., 2013; Atkins & Gallop, 2007). 

Hurdle models can be implemented in Mplus (Muthén & Muthén, 1998-2022) and R (R 

Core Team, 2022) and have been used in recent applied research (e.g., Huh et al., 2015, 

2019; Wood et al., 2010).
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An alternative to the hurdle model is a zero-inflated model, a type of mixture model that 

distinguishes between two types of zeroes: (a) zero counts, which would correspond with 

drinkers who happened not to drink during the period of interest, and (b) “excess zeroes” 

beyond what would be predicted by an ordinary count distribution, which would correspond 

with alcohol abstainers who never drink. Despite the theoretical difference in how they 

consider zeroes, hurdle models and zero-inflated models produce highly similar estimates in 

practice (Atkins et al., 2013). Thus, the present paper focuses on the hurdle model approach 

due to its simpler interpretation with respect to zeroes.

Hurdle NB models can be applied to IPD meta-analysis to accommodate count outcomes 

with excessive zeroes and over-dispersion using either a one-step or two-step meta-analysis 

approach (Simmonds et al., 2005, 2011). In a “one-step” or “one-stage” approach, 

participant-level data from different studies are examined simultaneously in a single model. 

Using a single model allows researchers to explicitly address the data structure, such as 

clustering within studies and participant-level missing data. Furthermore, the one-step IPD 

meta-analysis methods use a more exact likelihood specification compared to the two-step 

methods. For example, individual-level moderators and mediators of treatment effects can be 

directly modeled in a one-step analysis, but not in a two-step analysis. However, one-step 

IPD meta-analysis methods can be computationally intensive and challenging to implement 

(Burke et al., 2017). A second approach to IPD meta-analysis, which has been the most 

common (Simmonds et al., 2015), is a “two-step” or “two-stage” approach in which 

participant-level data are first aggregated to the study level (e.g., study-specific estimates 

of the treatment effect). These study-level data are then combined using traditional meta-

analytic methods to estimate the overall effect and between-study heterogeneity.

In the context of count outcomes, different sample populations can produce markedly 

different outcome distributions (see Mun et al., 2022), which has implications with respect 

to the choice of a one- or two-step analysis. For example, when an alcohol intervention 

study focuses on a broad population of individuals, the outcome distribution may have 

a disproportionate frequency of zeroes due to the presence of alcohol abstainers and 

occasional non-drinkers. In contrast, studies of higher-risk individuals, such as heavy 

drinkers, may have outcome distributions consisting of mostly non-zero responses with 

very few zero responses (i.e., zero drinks). When one or more studies have few or no zero 

responses, a two-step approach using hurdle models in the first step of meta-analysis may 

be difficult or impossible because those studies will not produce a treatment effect with 

respect to zero drinking that can be combined in the second-step analysis. One-step models 

using multilevel modeling have greater flexibility to accommodate treatment effects that 

are missing by design, which we detail in the “One-step IPD Meta-analysis” section. In 

contrast, there can be data situations where a two-step meta-analysis may provide flexibility, 

for example, when underlying distributions differ by study (see Mun et al., 2022).

Although the advantages of a one-step approach over a two-step approach are clear in 

principle, it is not clear empirically when the two approaches produce the same answer 

(Kontopantelis, 2018) and under what circumstances the two approaches will diverge (Burke 

et al., 2017). The few studies that have examined this question suggest that one- and two-

step approaches provide a similar answer when focused on the overall effect (i.e., treatment 
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effects) for continuous outcomes (Kontopantelis, 2018; Lin & Zeng, 2010; Mathew & 

Nordström, 2010) or binary outcomes (Cheng et al., 2019; Debray et al., 2012; Lin & Zeng, 

2010; Stewart et al., 2012). Chen, Liu, Min, and Zhang (2020) demonstrated via numerical 

studies and actual data analysis that both continuous and binary outcomes obtained from 

summary statistics can be as efficient as IPD. However, they also noted a loss of efficiency 

(6–20%) with a two-step approach when sample size was not sufficient. To the best of our 

knowledge, no studies have evaluated the relative performance of one- vs. two-step IPD 

meta-analysis approaches for count data with excess zeroes.

If one- and two-step IPD approaches generate comparable results, a two-step approach to 

IPD meta-analysis may have an important advantage over a one-step approach because 

estimating the overall effect does not require raw data. Aggregate data can be derived for 

each study by the original investigators, which can be shared for the second-step synthesis. 

Although it is increasingly common to share IPD, data availability remains a barrier to 

IPD meta-analysis. If aggregate data derived under a common model can be combined 

in the second-step meta-analysis without bias or loss of power, compared with one-step 

IPD meta-analysis, two-step IPD meta-analysis can be counted on when data availability 

may be limited. However, if one- vs. two-step IPD meta-analysis approaches have different 

statistical performance outcomes, it is also important to know under which data conditions 

different results emerge.

The current study was also motivated by the practical constraints encountered in one-step 

IPD meta-analysis. IPD from multiple independent trials tend to come from heterogeneous 

study designs, which produce an unbalanced design when pooled, resulting in estimation 

challenges (Huh et al., 2019). The fact that IPD can be analyzed in multiple ways within 

the one-step IPD meta-analysis approach, compared to the two-step IPD meta-analysis 

approach, also raises an open question of whether meta-analysis outcomes are sensitive to 

different modeling assumptions. The present study addresses this gap in the literature by 

comparing the performance of four different modeling strategies for one-step and two-step 

IPD meta-analysis in the context of count data with varying degrees of excess zeroes. More 

specifically, we compare the bias and coverage of the intervention estimates from one- 

and two-step IPD meta-analysis approaches using the multilevel hurdle NB model via a 

Monte Carlo simulation under realistic conditions when synthesizing data across behavioral 

intervention studies.

IPD Meta-Analysis Models for Count Data with Excess Zeroes

This section introduces four statistical models for IPD meta-analysis for count data with 

excess zeroes. The two most common modeling approaches for count data with excess 

zeroes are zero-inflated count models (i.e., zero-inflated Poisson or zero-inflated NB) and 

hurdle models, which are both two-part approaches consisting of a binary logistic and 

a count regression sub-model. An advantage of hurdle models compared to zero-inflated 

models is that they are easier to interpret and estimate because of the clear distinction 

between zeroes and non-zero counts. In the current study, the four models for IPD meta-

analysis are based on hurdle models in which the outcome is modeled in two parts: (a) 

a logistic regression examining the likelihood of a zero outcome vs. a non-zero outcome 
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and (b) a zero-truncated count regression examining the mean parameter for non-zero count 

outcomes.

One-step IPD Meta-Analysis

We first detail three approaches for one-step IPD meta-analysis in which the study-specific 

treatment effects and the overall effect of treatment across studies are estimated in a single, 

simultaneous analysis. Model 1 is a conventional, multilevel model in which study is defined 

at the highest level (i.e., cluster) of the model and one or more dummy-coded predictor 

variables for treatment assignment predicting intervention outcome, the effect of which 

can vary by study. Model 1 is ideal when studies are preplanned with the same design, 

such as having the same number of study arms (e.g., all two-arm trials). Model 2 is a 

reformulation of Model 1 that excludes the fixed effect for treatment and accommodates 

differences in the number of treatment groups (see Huh et al., 2015, 2019) by (1) using 

unique randomized groups at the highest level of the multilevel model (MLM), instead 

of study, and (2) estimating treatment effects by computing the posterior distribution of 

the difference between each treatment group and its corresponding control group within 

studies. Finally, Model 3 is an extension of Model 2 that includes an additional fixed effect 

for treatment. Later in the “Simulation Design” section, Model 1 will serve as the data 

generating model and the gold standard against which three other models will be compared, 

assuming a balanced number of treatment arms (i.e., two) across studies.

Model 1: MLM with study at the highest level and study-specific treatment 
effects.—A conventional strategy for estimating treatment effects across multiple studies 

is via a two- or three-level MLM, where study is defined at the highest level of the model 

and participants are nested within studies. If the data are structured such that each participant 

is associated with a single observation (e.g., one follow-up assessment per participant), a 

two-level model may be sufficient where participants (level 1) are nested within study (level 

2). However, if the data consist of multiple follow-up observations nested within participant, 

a three-level model is a logical choice, where repeated observations (level 1) are nested 

within participant (level 2), and participants are nested within study (level 3). To derive 

study-specific treatment effects as well as an overall estimate of treatment effect, a varying 

intercept coefficient can be defined for each study in combination with a varying treatment 

slope (for a two-arm design) to account for variation in the treatment effect across studies.

When modeling a count outcome with excess zeroes, such as drinking quantity, a multilevel 

hurdle model can be conducted that treats the outcome as a mixture of two parts: (1) 

the probability of no drinks vs. any drinks, which can be modeled via logistic regression, 

and (2) the number of drinks when drinking is non-zero, which can be modeled using a 

zero-truncated count regression, such as the Poisson or NB models. For the present study, 

we consider the zero-truncated NB model, which includes an additional overdispersion 

parameter to accommodate situations where the variance of drinking, when it is non-zero, is 

greater than would be predicted by the Poisson model. This situation, where the variance of 

a variable is greater than its mean, is relatively common in studies with alcohol outcomes 

data and, more broadly, in behavioral intervention and prevention studies.
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The logistic portion of the hurdle model (Equation 1a) examines whether an individual 

participant from a specific study did not drink at a particular assessment point. Here, the 

subscript (B) identifies regression coefficients from the logistic sub-model, and I is an 

indicator function whose value is equal to one if the condition inside the parentheses is true 

and zero otherwise. Let Pr DRINKSt > 0, is = 0  be the probability of individual i in study s not 

drinking at assessment t, and Pr DRINKSt > 0, is ≥ 1  be the probability of individual i in study s 

drinking one or more drinks at assessment t.

log Pr DRINKSt > 0, is = 0
Pr DRINKSt > 0, is ≥ 1 = b0 B + b1 B TREATMENTis +

b2 B I DRINKSt = 0, is = 0 + b3 B DRINKSt = 0, is +

u0s B + u1s B TREATMENTis + r0i B .

(1a)

Let E DRINKSt > 0, is|DRINKSt > 0, is ≥ 1  be the expected number of drinks, when drinking, 

which was one or greater for individual i in study s at assessment t in Equation 1b. To 

constrain predictions to positive counts greater than or equal to one, the outcome is modeled 

as the natural logarithm of the expected number of drinks (i.e., log link function) as follows:

log E DRINKSt > 0, is DRINKSt > 0, is ≥ 1 = b0 C + b1 C TREATMENTis +
b2 C I DRINKSt = 0, is = 0 + b3 C DRINKSt = 0, is +

u0s C + u1s C TREATMENTis + r0i C ,

(1b)

where (C) identifies regression coefficients from the zero-truncated NB sub-model.

The non-varying regression coefficients b1 B  and b1 C  quantify the covariate-adjusted average 

difference in post-baseline drinking between participants who received treatment compared 

to control participants. Covariates for baseline drinking are incorporated into both the 

logistic (Equation 1a) and zero-truncated NB (Equation 1b) models to adjust for baseline 

drinking. Baseline drinking, DRINKSt = 0,  is, was divided into two related covariates to account 

for: (1) no drinking vs. any drinking and (2) the number of drinks at baseline including 

zeroes. These two covariates are the third and fourth terms on the right-hand side of 

Equations 1a and 1b. Consequently, individuals who did not drink at baseline have non-zero 

b2 B  and b2 C  terms (i.e., the association between not drinking vs. drinking at baseline 

and postbaseline drinking), while b3 B  and b3 C  are zeroed out in Equations 1a and 1b, 

respectively, because they are multiplied by zero when the number of baseline drinks is 

equal to zero. However, individuals who drank at baseline are represented by non-zero b3 B

and b3 C  terms, while b2 B  and b2 C  are zeroed out in Equations 1a and 1b when the number of 

baseline drinks is non-zero.

Model 1 is a logical formulation of an MLM for one-step IPD meta-analysis. However, 

its disadvantages include greater complexity involving study-specific random intercepts and 
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treatment slopes, which may lead to greater non-convergence during estimation. Specifically, 

non-convergence in estimation may be more likely when extending the model to include 

three-arm or four-arm trials where most studies are two-arm trials (e.g., a treatment group 

and a control group). In such situations, any study with just two groups will have missing 

data for the third and fourth intervention groups, when all of these studies are synthesized 

together. In addition, with more than one treatment type, it is likely that not all combinations 

of treatments would have been “directly” evaluated “head to head” in all studies. This 

results in rank deficiency because of insufficient study-level data to estimate the variance-

covariance matrices of the study-specific random coefficients (i.e., for u0s B , u1s B ; and u0s C , 

u1s C ) (see Huh et al., 2019 for a detailed explanation).

In summary, Model 1 is ideal if there is no study-level missing data in treatment groups. 

However, when analyzing IPD from studies with different treatment arms, the estimation 

difficulties of Model 1 under this common data situation point to the need for alternative 

modeling strategies. The next approach, which was first implemented by Huh et al. (2015), 

is a simpler alternative to Model 1 in that it only uses a varying intercept to model treatment 

effects, and circumvents the challenge described above when treatment arms across studies 

are unbalanced and not directly estimable.

Model 2: MLM with study-by-treatment combinations at the highest level.—
To accommodate “missing” study-by-treatment combinations, a single varying intercept 

parameter representing unique study-by-treatment combinations can be specified, as detailed 

by Huh et al. (2019), each of which represents a unique randomized group. Model 2 is a 

one-step MLM with a random intercept for a unique study-by-treatment arm combination, 

where the treatment effects are calculated as post-estimation contrasts of the random 

intercept between groups within studies. Model 2 can be implemented using a Bayesian 

approach to produce a full joint posterior distribution for the random effects (i.e., study-

by-treatment effects), which makes computing the posterior distribution of the difference 

between each treatment group and its corresponding control group straightforward (see 

“Estimation Considerations” later).

The multilevel hurdle NB model that incorporates a varying intercept coefficient for unique 

randomized groups (i.e., study-by-treatment arm combinations) can be seen in Equations 

2a and 2b. The logistic portion of the hurdle model (Equation 2a) estimates whether 

an individual participant belonging to a specific randomized group did not drink (at a 

particular assessment point). Let Pr DRINKSt > 0, ig = 0  be the probability of individual i in 

randomized group g not drinking at assessment t, and Pr DRINKSt > 0, ig ≥ 1  be the probability 

of individual i in randomized group g drinking one or more drinks at assessment t. The 

randomized groups identified by the subscript g represent the active treatment and control 

comparison groups across all studies. For example, five two-arm studies, each with one 

treatment arm and one control arm, would translate to a total of 10 randomized groups. To 

constrain predictions to range from 0 to 1, the outcome is modeled as the natural logarithm 

of the odds (i.e., logit link function) of the probability of not drinking vs. any drinking, as 

follows:
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log Pr DRINKSt > 0, ig = 0
Pr DRINKSt > 0, ig ≥ 1 = b0 B + b1 B I DRINKSt = 0, ig = 0 +

b2 B DRINKSt = 0, ig +

u0g B + r0i B ,

(2a)

where (B) identifies regression coefficients from the logistic model. The zero-truncated NB 

portion of the hurdle model (Equation 2b) models occasions where drinking did occur, for 

individual i in randomized group g at assessment t, as follows:

log E DRINKSt > 0, ig DRINKSt > 0, ig ≥ 1 = b0 C + b1 C I DRINKSt = 0, ig = 0 +
b2 C DRINKSt = 0, ig +

u0g C + r0i C ,

(2b)

where (C) identifies regression coefficients from the zero-truncated NB model. To control 

for baseline drinking, the covariates, I DRINKSt = 0, ig = 0  and DRINKSt = 0, ig, are included in 

Equations 2a and 2b, as in Model 1. Similarly, the non-varying regression coefficients 

associated with the covariates for baseline drinking quantify the effect of (1) not drinking vs. 

drinking (b1 B , b1 C ), and (2) the number of drinks when drinking (b2 B , b2 C ), on the average 

drinking outcome across all randomized groups.

The group-level varying coefficients u0g B  and u0g C  in the logistic and zero-truncated NB 

sub-models, respectively, quantify the extent to which each randomized group (i.e., control 

or intervention group across studies) differs from the covariate-adjusted average drinking 

outcome across all groups.

Model 3: An extension of Model 2 with an additional fixed treatment effect.
—Model 3 is a modification of Model 2 that incorporates a fixed effect for treatment 

arm, such that the overall treatment effect is directly estimated as a parameter, rather than 

indirectly derived as post estimation contrasts within studies from the varying intercept 

terms (i.e., random intercepts) of the unique randomized groups as in Model 2. The 

multilevel hurdle NB model that incorporates a fixed effect for treatment in combination 

with varying intercept coefficients for unique randomized groups (i.e., study-by-treatment 

arm combinations) is described in Equations 3a and 3b.

log Pr DRINKSt > 0, ig = 0
Pr DRINKSt > 0, ig ≥ 1 = b0 B + b1 B TREATMENTig +

b2 B I DRINKSt = 0, ig = 0 + b3 B DRINKSt = 0, ig +

u0g B + r0i B ,  and

(3a)
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log E DRINKSt > 0, ig DRINKSt > 0, ig ≥ 1 = b0 C + b1 C TREATMENTig +
b2 C I DRINKSt = 0, ig = 0 + b3 C DRINKSt = 0, ig +

u0g C + r0i C ,

(3b)

where the subscripts have the same interpretation as Equations 2a and 2b. The non-varying 

treatment coefficients b1 B  and b1 C  in the logistic and zero-truncated NB models, respectively, 

quantify the average covariate-adjusted difference in the average drinking outcome across 

groups for participants randomized to a treatment group (i.e., TREATMENTig = 1) vs. a 

control group.

In Model 3, the group-level varying coefficients u0g B  and u0g C  quantify the extent to 

which each randomized group differs from the (1) treatment- and (2) covariate-adjusted 

average drinking outcome. Thus, when a randomized group corresponds with a control 

condition (i.e., TREATMENTig = 0), u0g B  and u0g C  quantify the extent to which that specific 

control group differs from the average covariate-adjusted drinking outcome across all 

control participants. Similarly, when a randomized group corresponds with an intervention 

condition, u0g B  and u0g C  quantify the extent to which a specific intervention group differs 

from the average covariate-adjusted drinking outcome in the intervention group.

Two-step IPD Meta-analysis

Next, we describe a two-step IPD meta-analysis approach to a hurdle model. A two-step 

approach may be computationally more straightforward for larger-scale IPD meta-analyses 

involving a larger sample of studies (e.g., 20 or more) or a larger number of covariates, 

especially when using zero-altered count models, which can be more computationally 

demanding to estimate using a one-step approach. Also, because the second step of a 

two-step IPD meta-analysis is functionally equivalent to a conventional meta-analysis, this 

approach may be useful as a means of incorporating aggregate data in a meta-analysis that 

were identically analyzed (e.g., zero-inflated Poisson) by the original investigators. The 

application of a hurdle model in the first step of the IPD meta-analysis produces two sets 

of treatment effect estimates, which can be synthesized in the second step using a bivariate 

meta-analysis, where each study contributes two outcomes, corresponding to the treatment 

effect in the logistic and zero-truncated portions of the hurdle model.

Model 4: Two-step bivariate random-effects meta-analysis.—In the first-step 

analysis, a multilevel hurdle NB is estimated for each study (Equations 4a and 4b) to 

simultaneously derive a study-specific treatment effect on (a) the probability of zero 

drinking, and (b) the quantity of drinking when non-zero. The first step of the analysis 

produces (a) a log odds ratio and (b) a log rate ratio for each study, corresponding to the 

logistic and zero-truncated NB portions of the hurdle model, respectively.

Huh et al. Page 9

Multivariate Behav Res. Author manuscript; available in PMC 2024 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



log Pr DRINKSt > 0, i = 0
Pr DRINKSt > 0, i ≥ 1 = b0 B + b1 B TREATMENTi +

b2 B I DRINKSt = 0, i = 0 + b3 B DRINKSt = 0, i + r0i B ,

(4a)

and

log E DRINKSti |DRINKSti ≥ 1 = b0 C + b1 C TREATMENTi +
b2 B I DRINKSt = 0, i = 0 + b3 B DRINKSt = 0, i + r0i C

(4b)

All subscripts are previously defined. Note that there are no subscripts g or s in Equations 4a 

or 4b to indicate that the model is estimated separately. The first-step analysis in Equations 

4a and 4b is repeated separately and sequentially for each study, and the study-specific 

treatment effects and corresponding variance estimates are subsequently extracted and 

carried forward to the second-step analysis.

In the second-step analysis, the study-specific treatment effect estimates are collated as 

a vector of covariate-adjusted treatment effect estimates (b1s B  and b1s C , where s indexes 

the study) and evaluated in a bivariate random-effects meta-analysis model (Equation 4c) 

to estimate a pooled, overall treatment effect. We note that it is possible to combine 

the entire set of coefficients (i.e., also including b0s B , b2s B , b3s B , b0s C , b2s C , and b3s C ). 

However, this is challenging to estimate and rarely done in practice. Thus, we opted for 

a bivariate meta-analysis model that focuses on only the treatment effects for simplicity. 

Hence, subscript 1 can be dropped. We kept subscript 1 in Equation 4c to identify the two 

vectors of point estimates for study-specific treatment effects from the first-step analysis but 

dropped it from the population parameters in Equations 4c and 4d. Equation 4c for level-1 

study-specific population parameters and Equation 4d for level-2 hyperparameters can be 

shown as follows:

b1s B

b1s C
    N

θs B

θs C
,  

σs B
2 ρ B, C σs B σs C

ρ B, C σs B σs C σs C
2

(4c)

and

θs B

θs C
    N

μ B

μ C
,  

τ B
2 ρ B, C τ B τ C

ρ B, C τ B τ C τ C
2 .

(4d)

Equation 4c indicates how study-specific estimates are derived from the level-1 population 

mean vector and covariance matrix for study s, where the parameters θs B  and θs C  are the 

study-specific treatment effects on (a) not drinking and (b) the mean quantity of drinking 
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when non-zero, respectively, and σs B
2  and σs C

2  are the corresponding study-specific variances 

of the treatment effects. Equation 4d shows how the level-1 population parameters (left) 

are drawn from the level-2 hyperparameters (right), where μ B  and μ C  are the overall mean 

hyperparameters, τ B
2  and τ C

2  are the corresponding between-study variance hyperparameters, 

and ρ B, C  is the correlation between the treatment effects on (a) the probability of not 

drinking and (b) the mean quantity of drinking when non-zero, respectively (c.f., Jiao et al., 

2020; Mun et al., 2016).

Estimation Considerations

Models 1 to 4 can be estimated using either restricted maximum likelihood (REML) or 

Markov Chain Monte Carlo (MCMC) sampling via a Bayesian approach. MCMC is a 

simulation-based approach that samples parameter values from a probability distribution 

known as the “posterior distribution.”

Model 2 was specified as a 3-level MLM with study arm-specific effects to accommodate 

heterogeneity in the number of study arms. The treatment effects for each study can be 

calculated as the difference between the intercept terms for a specific treatment group and 

the corresponding control group, within each study. Model 2 uses a Bayesian approach 

to MLM estimation because the posterior distributions for the treatment effects can be 

constructed by computing the difference between draws from the posterior distributions of 

the treatment intercept and the control intercept. This new posterior distribution can be used 

to compute point estimates (e.g., means) and interval estimates for each treatment effect.

For Model 3, the modified version of Model 2, a Bayesian approach was also used. 

However, because the overall treatment effect was directly modeled as a non-varying slope 

coefficient, rather than computed as a difference between varying intercept terms within 

studies, the posterior distribution of the non-varying coefficient for treatment was used to 

characterize the point estimate (i.e., mean) and variability of the treatment effect.

For Model 4, the two-step approach, each study was separately and sequentially analyzed in 

the first-step analysis with a 2-level MLM using a Bayesian approach. In the second step of 

the analysis, the treatment effects on (a) the probability of not drinking and (b) the number 

of drinks, with their corresponding variability, were analyzed in a bivariate aggregate data 

meta-analysis, also using a Bayesian approach.

Prior specification for Bayesian models.—A key feature of Bayesian models is the 

specification of “prior” distributions for all modeled parameters. When estimated using 

a Bayesian approach, the multilevel hurdle NB models shown in Equations 1 through 4 

require prior distributions for (1) the non-varying intercept and slope coefficients for the 

covariates in each model (i.e., treatment condition and baseline drinking), (2) the varying 

intercept and slope coefficients (Equations 1a and 1b only), and (3) the over-dispersion 

parameter in the zero-truncated NB sub-models (Equations 1b, 2b, 3b, and 4b).

We used “weakly informative” priors for all the models presented, which improve posterior 

sampling while yielding comparable results to those obtained with ML-based approaches, 

where the estimates are driven entirely by data (Gelman et al., 2017). For non-varying 
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regression coefficients, we used a normal prior with a mean of 0 and an SD of 1, which 

Gelman, Lee, and Guo (2015) recommend as a default prior for regression models. For the 

SD of the varying intercepts and slopes, we used corresponding half-normal distributions 

with a mean of 0 and an SD of 1. For the over-dispersion parameter of the count portion of 

the hurdle models, we used a weakly informative gamma distribution with shape and rate 

parameters of 0.01. This combination of priors was chosen as it maximized convergence 

across simulation conditions (Range = 97 to 100%), while producing results driven primarily 

by the data.

For the second step of Model 4, the bivariate meta-analysis of the study-specific treatment 

effects, we used a normal distribution with a mean of 0 and an SD of 1 as the prior 

for the overall treatment effect in the logistic and zero-truncated NB sub-models. The 

corresponding half-normal distributions with a mean of 0 and an SD of 1 were used for 

the SD of the overall treatment effect estimate. For the correlation parameter between 

the study-treatment effects produced by logistic and zero-truncated count sub-models, we 

used a Lewandowski-Kurowicka-Joe distribution (Lewandowski et al., 2009) with a scalar 

parameter of 1, which is equivalent to a uniform distribution over the range of possible 

correlation values.

Simulation Design

The simulation study consisted of Models 1–4 utilizing multilevel hurdle NB modeling, 

with each applied to 27 data conditions (three study sample sizes, three rates of zero in 

the outcome, and three within-study sample sizes), for a total of 27 × 4 (= 108) simulation 

conditions.

We simulated the outcome based on a two-part, multilevel hurdle NB model, described in 

Model 1. The 27 data conditions consisted of combinations of (a) study-level samples of 5, 

10, or 25 studies, (b) within-study samples of 100, 200, or 500, and (c) proportion of zeroes 

of 5%, 10%, or 25%. These data conditions were selected to reflect sample sizes commonly 

encountered in alcohol research and behavioral intervention research more broadly.

A total of 100 simulated replication data sets were generated for each of the 27 data 

conditions for each of the four models, resulting in 10,800 simulated data sets. The effect 

sizes of the treatment effects as well as other parameters for the data generation were based 

on an IPD meta-analysis of Project INTEGRATE (Mun et al., 2015) data using Model 1. 

Model 1 was chosen as the reference (i.e., true) model as it reflects the most conventional 

strategy for a one-step IPD meta-analysis, where study is defined as a clustering variable in 

combination with a study-specific treatment effect (i.e., a varying coefficient for treatment). 

Deriving simulation parameters from real data improves the generalizability of subsequent 

simulation findings (Burton et al., 2006). The true values used to produce the simulated 

data are summarized in Table 1. See also the Sensitivity Analysis section for results when 

different true values were used.

We calculated the bias and coverage of the treatment effect estimates produced by each 

of the four IPD meta-analysis models. The bias and coverage were evaluated separately 
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for the logistic and zero-truncated NB sub-models of each IPD meta-analysis method (i.e., 

the effects of treatment vs. control on the probability of zero drinking and the amount 

of drinking when non-zero). The bias is the difference between the point estimate of the 

treatment effect and the true value, which was calculated across replications in each of the 

108 simulation conditions to ascertain the average bias and its 95% credible interval (CI). 

The coverage is the percentage of replications in each simulation condition in which the true 

value for the treatment effect was within the estimated 95% CI. A coverage between 92.5 

and 97.5% is considered optimal, per Bradley’s (1978) criterion of robustness, with values 

below 92.5% considered problematic due to increased likelihood of Type I error (i.e., the 

probability of a false positive).

Simulation Results

A comprehensive summary of all simulation estimates plotted in Figures 1 to 3, along 

with additional details on estimation time and rate of non-convergence for each simulation 

condition, are available online as an interactive R Shiny app (https://ipdmeta.shinyapps.io/

IPD_Rshiny/).

Figure 1 summarizes the raw bias of the treatment effect estimates across the four models by 

(a) logistic vs. zero-truncated count sub-model, (b) number of studies, (c) sample size within 

study, and (d) proportion of zeroes in the outcome. The mean bias of the zero-truncated 

count estimates of treatment effect (see solid symbols) were within rounding error of zero 

for Models 1–4 across all data conditions. In contrast, there was a more pronounced bias 

in the logistic estimates of treatment effect (i.e., predicting no drinking vs. any drinking; 

see hollow symbols). The bias in the logistic portion was most pronounced in the smallest 

sample conditions (i.e., 5 studies and 100 participants per study), particularly with few 

zeroes (i.e., 5%). Additionally, there was more variability in the estimates of treatment effect 

in the logistic portion across all models and conditions, which was reflected by the much 

wider CIs. The logistic treatment effect estimates produced from the true model (Model 1) 

were generally within rounding error, as reflected by raw biases close to zero. However, 

Models 2–4 tended to underestimate the magnitude of the true treatment effect of OR = 1.15 

in the logistic portion, with the greatest underestimation occurring in the smallest sample 

size condition with the fewest zeroes (i.e., 5 studies, 100 participants per study, 5% zeroes), 

at OR = 1.01 for Model 2, OR = 1.02 for Model 3, and OR =1.03 for Model 4. When there 

was a small-to-modest number of studies (k = 5 or 10) and/or participants within study (N = 

100 or 200), the two-step method produced more precise treatment effects with respect to no 

drinking (vs. drinking) than the one-step approaches, as evidenced by narrower 95% CIs for 

the raw bias across data conditions. However, those estimates were biased towards smaller 

treatment effects than the true model (Model 1).

Figure 2 summarizes the coverage of the treatment effect estimates. The coverage of Model 

3 was acceptable across all data conditions, ranging from 98% to 100% across both hurdle 

sub-models. The coverages of Models 1 and 4 were also acceptable across most data 

conditions, including the true model (Model 1; Range = [92%, 100%]) and the two-step 

model (Model 4; Range = [91%, 100%]). The coverage of Model 2, which contains less 

information than Model 1 (i.e., fewer parameters to model the treatment effects), ranged 
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from 85% to 100% for the logistic estimates and 74% to 96% for the zero-truncated 

count estimates of treatment effect. There was under-coverage of the zero-truncated count 

estimates of treatment effect from Model 2 at moderate to large within-study sample sizes 

(N = 200 or 500), with lower coverage at larger within-study sample sizes. However, 

the logistic estimates of treatment effect from Model 2 were generally acceptable, except 

for some under-coverage at the largest within-study sample size of 500, across the three 

study-level sample sizes of 5, 10, and 25.

Notably, the coverage of the treatment effects on drinking severity in Model 2 was poorer 

as the number of participants within each study increased. One potential explanation is 

that the treatment effects in Model 2 were calculated entirely from group-specific effects 

that were shrunken towards the overall (population) mean, resulting in greater shrinkage 

at larger sample size conditions, compared with Model 1. A second explanation is that 

the variance of the treatment effects on no drinking was underestimated in Model 2 due 

to the negative correlation between the random intercept and slope terms used in the data 

generating model (see Table 1). In other words, in studies where the average probability 

of not drinking was greater, the treatment effect on the probability of not drinking was 

smaller, reflecting typical data. In Model 2, the study-level varying intercept and slope terms 

from Model 1 (i.e., the data generating model) are collapsed into a single varying-intercept 

parameter representing unique randomized groups, from which the treatment effects are 

derived. Mathematically, the intercepts u0g B  and u0g C  from Model 2 correspond with the 

sum of correlated terms in Model 1, specifically u0g B ≈ u0s B + b1 B + u1s B TREATMENTis

and u0g C ≈ u0s C + b1 C + u1s C TREATMENTis, respectively. Because the variance of a sum of 

correlated terms is equal to the sum of their variance of each plus two times their covariance, 

a negative covariance could result in the variance of the treatment effect produced by Model 

2 being underestimated.

With respect to model run time, the median durations for Models 1 to 4 were 4.5 hours, 

1.8 hours, 2.0 hours, and 0.7 hours, respectively. Model 1 with N = 500 across 25 studies 

took the longest to run (25–26 hours). The convergence rates for Models 1 to 4 across all 

simulation replications were 99.8%, 100%, 100%, and 98.2%, respectively.

Sensitivity Analysis

Since the simulation results presented focused on a single treatment effect on the probability 

of zero drinking (OR = 1.15; logistic sub-model) and the quantity of drinking when non-

zero (RR = 0.99; zero-truncated count sub-model) derived from an analysis of Project 

INTEGRATE (see Table 1 for all simulation parameters), we conducted an additional 

sensitivity analysis under larger treatment effect sizes of OR = 2.01 and RR = 0.50 (i.e., 

log OR = 0.70 and log RR = −0.70) with a subset of the data conditions. This sensitivity 

analysis focused on an IPD sample size of 10 studies, 200 participants per study, and two 

observations per participant at each of the zero outcome rate conditions (5%, 10%, and 

25%).

Figure 3 summarizes the raw bias and coverage under the original treatment effects (Figures 

3a and 3b, top) for the logistic and zero-truncated count sub-models (OR = 1.15 and 
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RR = 0.99, respectively) and larger treatment effects (Figures 3a and 3b, bottom; OR = 

2.01 and RR = 0.50, respectively). The bias (Figure 3a) and coverage (Figure 3b) of the 

zero-truncated count estimates were acceptable and comparable across all models under 

the larger treatment effects. However, the logistic estimates (hollow symbols in the bottom 

half of Figure 3a) of Models 2–4 were underestimated under the larger treatment effect 

condition, which was more pronounced in Models 3 and 4. The coverage of the treatment 

effect estimates produced by the one-step methods was similar when the effect sizes were 

increased. The coverage of Model 2 tended to be lower, and that of Model 3 tended to be 

higher than 95%. However, the logistic estimates of treatment effect in Model 4 (hollow 

symbols in the bottom row of Figure 3b) had lower coverage under the larger effect size 

(Range = [65%, 75%]), with a larger proportion of 95% CIs not including the true value 

(i.e., OR = 2.01).

Discussion

Meta-analysis is an essential tool for evaluating the effectiveness of intervention approaches 

across multiple studies with greater accuracy and precision than single studies. IPD meta-

analysis offers potential advantages over traditional meta-analysis in the ability to produce 

estimates of treatment effect that more properly account for count outcomes with large 

numbers of zeroes, which are commonplace in social behavioral and health-related research. 

Zero-altered outcome variables can arise when examining the frequency of a behavior, 

such as alcohol consumption (e.g., number of drinks consumed), suicide-related behaviors 

(e.g., number of suicide attempts), and sexual activity (e.g., number of condom-protected 

sex acts), among others. Count outcomes observed in social behavioral and health-related 

research frequently contain a large stack of zeroes, beyond the frequency that would be 

accounted for by traditional count modeling approaches such as Poisson or NB regression.

The key challenge of IPD meta-analysis is developing an analytic strategy that accurately 

reflects the characteristics of each study’s design and outcome measures while maintaining 

a consistent analytic approach across studies that may differ with respect to participant 

characteristics, number of treatments tested, timing of assessments, and outcome measures. 

If the original studies reported outcomes from an analysis that appropriately reflected 

outcome distributions, these outcomes could easily be combined in a traditional meta-

analysis. Many of the analytic decisions detailed in this study, such as how to accommodate 

zero-altered count data in a longitudinal analysis, are also relevant to investigators in 

the context of single-study analysis. Having explained the rationale for original study 

investigators, we note that many advanced, more appropriate models have only recently 

emerged. Therefore, there is a need to validly combine data from original trials that used 

methods that are not ideal from the current methodological perspective. IPD meta-analysis 

offers flexibility, yet it can be confusing to navigate through modeling options.

The present study compared four different formulations of an IPD meta-analysis utilizing 

multilevel hurdle NB modeling to synthesize treatment effects under various data conditions 

commonly encountered in social behavioral research. The two-step approach generally 

produced unbiased treatment effect estimates with acceptable coverage when the true effect 

size was small to modest (OR or RR < 1.15). However, the two-step approach tended 
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to underestimate the treatment effect on the probability of no drinking (i.e., the logistic 

sub-model) when the true treatment effect was not small (OR = 2.01).

As expected, Model 1, the one-step approach used as the data generating model, performed 

the best across data situations. However, the key drawbacks of Model 1 are that it can only 

accommodate a balanced design where all studies had the same treatment conditions and a 

substantially greater estimation time.

To permit an IPD meta-analysis where studies evaluated different numbers or types of 

treatments, we evaluated two alternative one-step approaches, Models 2 and 3, which were 

capable of accommodating unbalanced designs across studies. We found that Model 3 

produced more accurate estimates of treatment effect and corresponding intervals than 

Model 2, especially for the count sub-models. Specifically, Model 3 directly represented 

treatment assignment as a predictor in the model, which resulted in more accurately 

estimated credible intervals for the treatment effects (i.e., improved coverage of the true 

effect).

A pattern in the findings across the various hurdle model-based meta-analysis approaches 

was that the logistic estimates tended to be more biased than the corresponding truncated 

count model estimates. This performance discrepancy may exist because the logistic portion 

of the hurdle model contains less information due to the dichotomous nature of the outcome. 

The degree of bias in the logistic estimates was compounded when the between- and within-

study sample sizes were small to modest (i.e., five studies and/or 200 or fewer participants 

per study). For the truncated count model part, all four models yielded similar results.

Models 2–4 simplify the estimation of the treatment effects, compared with Model 1, the 

true model. For example, Model 2 represents the treatment effect with two fewer parameters 

by dropping the fixed slope coefficient of treatment and simplifying the clustered design by 

modeling study-by-treatment arm combinations as a single random intercept term. Model 

3 reintroduces the fixed effect of treatment in Model 1, but retains Model 2’s simplified 

manner of accounting for clustering. In Model 4, the studies are analyzed separately and 

sequentially, the results of which are carried forward into a bivariate meta-analysis. That 

two-step procedure also leads to information loss, as several parameters are not carried over 

to the second step of Model 4, including coefficients for the covariate effects and participant-

level variance parameters. Model 4 had a sizable bias and a low coverage for the logistic 

sub-model in the large effect size condition, especially when zero rate was small. Previous 

simulation research has shown poorer performance of logistic sub-models in the context of 

zero-inflated Poisson models (Zhou et al., 2023) and more generally in longitudinal analysis 

(Kim et al., 2020), although this observation warrants further investigation.

Limitations and Future Directions

It is important to consider the limitations of the present study. First, this simulation focused 

on a specific approach for modeling count data with many zeroes: hurdle NB regression. 

However, there are other approaches to zero-altered outcome data, including traditional 

zero-inflated models, which allow for zeroes in the count portion of the model (e.g., 

distinguishing between alcohol abstainers and drinkers who happened not to drink on a 

Huh et al. Page 16

Multivariate Behav Res. Author manuscript; available in PMC 2024 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



particular occasion) and newer marginalized zero-inflated approaches that produce a single 

set of treatment estimates, such as the marginalized zero-inflated Poisson regression model 

(Martin & Hall, 2017; Mun et al., 2022). Further investigation via real data analyses and 

simulation will be needed to assess the bias and coverage of other approaches to modeling 

zero-altered count outcomes in an IPD meta-analysis. Second, the present simulation 

assumed complete data at the participant and study levels across all approaches, so it does 

not provide information on the extent that the four approaches examined may be impacted 

by missing assessment data.

Finally, an important methodological issue in IPD meta-analysis research is how to 

incorporate summary-based results from completed analyses that did not properly account 

for zero-inflation, when the original data are not available. The recently developed Zero-

inflation Bias Correction method (ZIBC method; Zhou et al., 2021) can mathematically 

correct biased treatment effect estimates that were improperly analyzed with the Poisson 

model as if they were correctly analyzed using the zero-inflated Poisson model in the 

original study. The ZIBC-adjusted treatment effect estimates can then be combined with 

IPD-derived treatment effects from other studies in the second step of a two-step IPD meta-

analysis. The ZIBC method only requires summary information from the original study; 

however, it is limited to situations where the error was the choice of a Poisson model that 

ignored excessive zeroes. More methodological work and the increasing availability of IPD 

would help address related methodological challenges when combining data from existing 

studies.

Conclusions

This simulation study is the first to evaluate the accuracy and precision of IPD meta-analysis 

approaches for count outcomes with excessive zeroes and over-dispersion, including one-

step and two-step approaches. In general, for the zero-truncated count sub-model, all models 

yielded similar results under all data conditions. However, for the logistic sub-model, 

performance varied. The true, one-step model produced the best performance while other 

models underestimated treatment effects on the logistic outcome. It may be unreasonable to 

draw a sweeping conclusion about one- vs. two-step IPD meta-analysis for count outcomes 

with many zeroes. The performance of both one- and two-step approaches depended on 

the formulation of the treatment effects, suggesting a need to carefully consider model 

assumptions and specifications when using IPD.
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Figure 1. Bias of the treatment effect estimates produced by hurdle negative binomial meta-
analysis models by (a) fitted model, (b) hurdle sub-model, (c) no. of studies, (d) no. of 
participants within study, and (e) proportion of zeroes.
Notes. Model 1, the data generating model, a one-step multilevel model with study-specific 

intercepts and treatment slopes. Model 2, the model detailed in Huh et al. (2019), is 

a one-step multilevel model with a random intercept for unique study-by-treatment arm 

combination, where the treatment effects are calculated as post hoc contrasts of the random 

intercept. Model 3 is an extension of Model 2 that adds a fixed effect of treatment. Model 

4 is a two-step IPD meta-analysis in which the treatment effect is estimated separately by 

study (step 1), and the study-specific treatment estimates and corresponding variability are 

subsequently modeled in a bivariate meta-analysis (step 2). Z-T count = Zero-truncated 

negative binomial sub-model, Logistic = Logistic sub-model.
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Figure 2. Coverage of the treatment effect estimates produced by hurdle negative binomial 
meta-analysis models by (a) fitted model, (b) hurdle sub-model, (c) no. of studies, (d) no. of 
participants within study, and (e) proportion of zeroes.
Notes. Model 1, the data generating model, a one-step multilevel model with study-specific 

intercepts and treatment slopes. Model 2, the model detailed in Huh et al. (2019), is 

a one-step multilevel model with a random intercept for unique study-by-treatment arm 

combination, where the treatment effects are calculated as post hoc contrasts of the random 

intercept. Model 3 is an extension of Model 2 that adds a fixed effect of treatment. Model 

4 is a two-step IPD meta-analysis in which the treatment effect is estimated separately by 

study (step 1), and the study-specific treatment estimates and corresponding variability are 

subsequently modeled in a bivariate meta-analysis (step 2). Z-T count = Zero-truncated 

negative binomial sub-model, Logistic = Logistic sub-model.
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Figure 3. A sensitivity comparison of simulation results under larger treatment effect sizes (Odds 
Ratio [OR] = 2.01 and Rate Ratio [RR] = 0.50) compared with the original effect sizes (OR = 1.15 
and RR = 0.99).
Notes. The two sets of treatment effect sizes were compared under a sample size of 10 

studies, 200 participants per study, and two observations per participant at zero outcome 

rates of 5%, 10%, and 25%. Negative bias in the logistic sub-model and positive bias in 

the zero-truncated count sub-model correspond with underestimation of the true treatment 

effect size. Z-T count = Zero-truncated negative binomial sub-model, Logistic = Logistic 

sub-model.
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Table 1

True values of the parameters used for data generation

Parameter True value(s) Description

Equation 1a(Logistic sub-model)

b0 B 2.94, 2.20, 1.10 Non-varying intercept corresponding with probability of any drinking in the control condition. The three 
values correspond with a 5%, 10%, and 25% rate of zeroes, respectively

b1 B 0.14 Non-varying slope for treatment

b2 B 3.16 Covariate effect of baseline drinking (not drinking vs. any drinking)

b3 B −0.91 Covariate effect of baseline drinking (quantity of drinking)

σ0 B 1.06 SD of study-level varying intercept

σ1 B 0.16 SD of study-level varying slope for treatment

σr0 B 1.60 SD of participant-level varying intercept

ρ01 B 0.09 Correlation of the varying intercept and varying treatment slope

Equation 1b(Zero-truncated negative binomial sub-model)

b0 C 0.72 Non-varying intercept corresponding with mean number of drinks when drinking in the control condition.

b1 C −0.01 Non-varying slope for treatment

b2 C 0.16 Covariate effect of baseline drinking (not drinking vs. any drinking)

b3 C 0.38 Covariate effect of baseline drinking (quantity of drinking)

σ0 C 0.14 SD of study-level varying intercept

σ1 C 0.05 SD of study-level varying slope for treatment

σr0 C 0.24 SD of participant-level varying intercept

ρ01 C −0.19 Correlation of the varying intercept and varying treatment slope

α C 330.00 Dispersion parameter

Notes. Correlations between the two hurdle sub-models were not modeled in the data generation, to minimize non-convergence in the simulation 
analyses. (B) = Logistic sub-model parameter; (C) = Zero-truncated negative binomial sub-model parameter; SD = standard deviation.
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