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Autoantibodies Neutralizing Type III Interferons
Are Uncommon in Patients with Severe Coronavirus

Disease 2019 Pneumonia
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Autoantibodies (AABs) neutralizing type I interferons (IFN) underlie about 15% of cases of critical coronavirus
disease 2019 (COVID-19) pneumonia. The impact of autoimmunity toward type III IFNs remains unexplored.
We included samples from 1,002 patients with COVID-19 (50% with severe disease) and 1,489 SARS-CoV-2-
naive individuals. We studied the prevalence and neutralizing capacity of AABs toward IFNl and IFNa.
Luciferase-based immunoprecipitation method was applied using pooled IFNa (subtypes 1, 2, 8, and 21) or
pooled IFNl1–IFNl3 as antigens, followed by reporter cell-based neutralization assay. In the SARS-CoV-2-
naive cohort, IFNl AABs were more common (8.5%) than those targeting IFNa2 (2.9%) and were related with
older age. In the COVID-19 cohort the presence of autoreactivity to IFNl did not associate with severe disease
[odds ratio (OR) 0.84; 95% confidence interval (CI) 0.40–1.73], unlike to IFNa (OR 4.88; 95% CI 2.40–11.06;
P < 0.001). Most IFNl AAB-positive COVID-19 samples (67%) did not neutralize any of the 3 IFNl subtypes.
Pan-IFNl neutralization occurred in 5 patients (0.50%), who all suffered from severe COVID-19 pneumonia,
and 4 of them neutralized IFNa2 in addition to IFNl. Overall, AABs to type III IFNs are rarely neutralizing,
and do not seem to predispose to severe COVID-19 pneumonia on their own.
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Introduction

The clinical course of coronavirus disease 2019
(COVID-19) varies from asymptomatic infection to

life-threatening disease requiring mechanical ventilation or
other means of organ support. The risk of hospitalization or
death increases with age, doubling every 5 years from
childhood onward (Levin et al., 2020). A crucial factor
determining disease severity may be the host immune re-
sponse, particularly the early production of type I and type
III interferons (IFN) in the respiratory tract (Andreakos
et al., 2019; Bastard et al., 2022b; Galani et al., 2021;
Hadjadj et al., 2020; Prokunina-Olsson et al., 2020; Smith
et al., 2022; Sposito et al., 2021). The effects of IFN-I/III are
mediated by induction of IFN-stimulated genes (ISGs),
which encode proteins capable of inhibiting viral replication
through various mechanisms (Schoggins, 2019).

The essential role of type I IFNs in protective immunity
against SARS-CoV-2 has been amply documented. Inborn
errors of TLR3- or TLR7-dependent type I IFN immunity
underlie 1%–5% of cases of critical COVID-19 pneumonia
(Asano et al., 2021; Casanova and Abel, 2022; Zhang et al.,
2022). Moreover, neutralizing autoantibodies (nAABs)
against IFN-Is are present in 15% of COVID-19 patients in
critical condition, whereas these autoantibodies (AABs) are
not or rarely found in asymptomatic patients (Bastard et al.,
2021a; Bastard et al., 2020; Casanova and Abel, 2022;
Troya et al., 2021; Zhang et al., 2022). Importantly, the risk
of critical COVID-19 pneumonia increases with the number
and concentration of type I IFNs neutralized (Manry et al.,
2022).

These findings have been independently replicated in
many different centers around the globe (Abers et al., 2021;
Arrestier et al., 2022; Bastard et al., 2022a; Bastard et al.,
2021b; Chauvineau-Grenier et al., 2022; Eto et al., 2022;

Goncalves et al., 2021; Mathian et al., 2022; Smith et al.,
2022; Solanich et al., 2021; Troya et al., 2021; van der Wijst
et al., 2021; Wang et al., 2021; Zhang et al., 2020). NAABs
pre-exist infection with SARS-CoV-2 (Bastard et al.,
2021b). Moreover, the proportion of individuals carrying
IFN-I AABs increases with age, with a prevalence between
0.3% and 1% younger than the age of 65 years (for neu-
tralization of high and low concentrations of IFNs), and a
rise to 4%–7% in the aged population.

The contribution of type III IFNs to protective immunity
to SARS-CoV-2 is less studied. As IFN-I, IFN-III is also
transiently expressed upon recognition of pathogen-
associated molecular patterns, mostly from viruses. In hu-
mans, the family of IFN-III comprises 4 members: IFNl1/
IL-29, IFNl2/IL-28A, IFNl3/IL-28B, and IFNl4, that is
either a pseudogene due to a certain variant (rs368234815),
or poorly secreted (Hong et al., 2016; Kotenko et al., 2003;
Prokunina-Olsson et al., 2013; Vlachiotis and Andreakos,
2019).

IFNl2 and IFNl3 are virtually identical, with 96% amino
acid identity, and IFNl1 is sharing *80% of amino acids
with them (Sheppard et al., 2003). IFN-IIIs are involved not
only in the front line of antiviral defense since their het-
erodimeric receptors (IFNlR1/IL-10RB) are mainly ex-
pressed on epithelial cells of respiratory mucosa and other
anatomical barriers, but also on a set of immune cells (Goel
et al., 2021; Kotenko et al., 2003; Lazear et al., 2019; Ye
et al., 2019). In contrast, IFN-I receptors are expressed
ubiquitously—it is therefore speculated that the systemic
response elicited by IFN-Is is reserved to situations where
the effect of IFN-IIIs does not suffice (Andreakos et al.,
2019).

Indeed, IFN-IIIs efficiently restricted the proliferation of
SARS-CoV-2 in vitro (Felgenhauer et al., 2020; Stanifer
et al., 2020; Vanderheiden et al., 2020) and higher serum
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IFN-III levels were associated with faster viral clearance in
COVID-19 patients (Galani et al., 2021). COVID-19 treat-
ment trials with IFN-IIIs have either shown faster viral
clearance (Feld et al., 2021; Santer et al., 2022) or protection
from hospitalization and emergency department visits (Reis
et al., 2023), but no benefit from a single dose of subcuta-
neous Peginterferon Lambda-1a over placebo ( Jagannathan
et al., 2021).

In contrast to IFN-I AABs, it is poorly studied whether
AABs against IFN-III (IFNl AABs) underlie life-
threatening COVID-19, apart from a recent report in a very
limited number of patients (Credle et al., 2022). It also re-
mains unknown whether age and gender are factors con-
tributing to the formation of IFNl AABs in the general
population, as it was proven for IFN-I AABs. Some findings
also suggest that IFNl may be essential in defense against
fungal infections such as invasive pulmonary aspergillosis,
which according to a study by Fekkar et al. (2021) affects
about 5% of intensive care unit admitted COVID-19 patients
(Espinosa et al., 2017; Ye et al., 2019).

It has not, however, been studied whether NAABs tar-
geting IFNl predispose to severe COVID-19 per se, and/or
predispose COVID-19 patients to aspergillosis superinfec-
tion. We aimed to analyze auto-Abs to type III IFNs in the
general population and in patients with COVID-19, with or
without aspergillosis.

Materials and Methods

Study population

This study included 1,002 COVID-19 patients from Es-
tonia, Denmark, France, and the United Kingdom (Table 1).
The patients were allocated to 2 severity groups according to
the WHO guidelines (World Health Organization, 2022).
Mild disease corresponded to WHO grades 1–2 [WHO1:
symptomatic patients without evidence of pneumonia;
WHO2: evidence of pneumonia, but no signs of severe
pneumonia (SpO2 ‡90% in room air)], and severe COVID-
19 corresponded to WHO grades 3–4 (WHO3: pneumonia
plus one of the following—respiratory rate ‡30 breaths/min
or SpO2 <90% and WHO4: patients with acute respiratory
distress syndrome, sepsis, or septic shock). A total of 50% of
the study group developed severe COVID-19. Median age
among COVID-19 patients was 51 years [interquartile range
(IQR) 22 years], 47% of patients were male.

We also included serum samples from 1,489 Estonian
SARS-CoV-2 naive subjects either collected prior COVID-
19 pandemic or tested negative for antibodies specific for
SARS-CoV-2 (Table 2). Median age among SARS-CoV-2-
naive individuals was 66 years (IQR 36 years), 43% of
subjects were male. Plasma or serum samples were collected
from all study participants to analyze IFNa and IFNl AAB
levels and AAB bioactivity.

Written informed consent was obtained from all study
participants. Study protocols were approved by the Ethics
Review Committee of Human Research of the University of
Tartu (Protocols 272/T-12, 275/M-17, 368M-4, and 318/T-1)
from the French Ethics Committee ‘‘Comité de Protection
des Personnes,’’ the French National Agency for Medicine
and Health Product Safety, and the ‘‘Institut National de la
Santé et de la Recherche Médicale,’’ in France (Protocol
C10-13, ID-RCB No. 2010-A00634-35), and the Rockefeller

University Institutional Review Board in New York (Proto-
col JCA-0700), Danish National Committee on Health re-
search ethics: (#1-10-72-80-20), Ethical approval obtained
from the National Research Ethics Service (REC reference
15/NW/0409 for ManARTS and 18/WA/0368 for NCARC).
The research was completed in accordance with the De-
claration of Helsinki as revised in 2013.

Luciferase-based immunoprecipitation system

The sequences encoding IFNa subtypes (IFNa1, IFNa2,
IFNa8, IFNa21) or IFNl subtypes IFNl1–IFNl3 (IL-29,
IL-28A, IL-28B) were cloned into pPK-CMV-F4 plasmid
(PromoCell GmbH) where NanoLuc luciferase sequence
(Promega) was inserted instead of firefly luciferase.
HEK293 cells were used to produce the fusion proteins. The
cells were cultured in Dulbecco’s modified Eagle’s medium
(DMEM; Lonza, Switzerland) supplemented with 10% fetal
bovine serum (FBS), 100 U/mL penicillin and 100mg/mL
streptomycin at 37�C in a 5% CO2 atmosphere. Cells were
transfected with the constructs, 72 h later, cell media con-
taining the secreted fusion proteins was collected. Patient
sera were diluted 1:10 using buffer A (50 mM Tris pH 7.5,
100 mM NaCl, 5 mM MgCl2, 1% Triton X-100). A volume
of 25 mL serum dilution and 25 mL of protein G agarose bead
suspension (Exalpha Biologicals) was coincubated in a 96-
well microfilter plate (Merck Millipore) on a shaker at room
temperature for 1 h.

Afterward, a mix of each fusion protein corresponding to
1 · 106 luminescent unit for each, was pipetted into each
well. The plate was incubated on a shaker for 1 h. A vacuum
system (Millipore) was used to wash the plate first with
buffer A and thereafter with 1 · phosphate-buffered saline
(PBS). Into each well, 20mL of 1:1,000 PBS-diluted lucif-
erase substrate (Promega) was added, and VICTOR X
Multilabel Plate Reader (PerkinElmer Life Sciences) was
used to quantify luminescence. The same 3 AAB-negative
control serum samples were run in duplicates with each 96-
well plate. For each sample, a fold change of luminescence
relative to the mean of 3 negative control samples was
calculated by dividing the mean luminescence value of the
test sample with the mean of the negative control samples.

Neutralization assays

The blocking activity of IFNa2 AABs in patient serum
samples from France was determined with a reporter lucif-
erase activity as described in Bastard et al. (2021a). In brief,
HEK293T cells were transfected with a plasmid containing
the firefly luciferase gene under the control of the human
ISRE promoter in the pGL4.45 backbone, and a plasmid
constitutively expressing Renilla luciferase for normaliza-
tion (pRL-SV40). Cells were transfected in the presence of
the X-tremeGene9 transfection reagent (Sigma-Aldrich) for
24 h. Cells in DMEM (Thermo Fisher Scientific) supple-
mented with 2% fetal calf serum and 10% healthy control or
patient serum/plasma (after inactivation at 56�C, for 20 min)
were either left unstimulated or were stimulated with IFNa2
(Miltenyi Biotech, Germany) at 100 pg/mL, for 16 h at
37�C. Each sample was tested once for each cytokine and
dose.

Finally, cells were lysed for 20 min at room temperature
and luciferase levels were measured with the Dual-

AUTOANTIBODIES TO TYPE III IFNS 381



T
a

b
l
e

2
.

T
h

e
M

a
i
n

C
h

a
r
a

c
t
e
r
i
s
t
i
c
s

o
f

t
h

e
S

A
R

S
-
C

o
V

2
-
N

a
i
v

e
S

t
u

d
y

G
r
o

u
p

S
u
b
sa

m
p
le

n
a
m

e
N

o
.

o
f

p
a
ti

en
ts

M
a
le

,
%

M
ed

ia
n

a
g
e

IF
N

a
A

A
B

S
P

o
s

(n
)

IF
N
k

A
A

B
S
P

o
s

(n
)

IF
N
a

n
eu

t
te

st
ed

IF
N
k

n
eu

t
te

st
ed

S
er

u
m

co
ll

ec
ti

o
n

p
er

io
d

R
ef

er
en

ce
sa

1
.

C
O

V
ID

-1
9

ep
id

em
io

lo
g
ic

al
st

u
d
y

b
7
2
4

4
4

4
4

1
.7

%
(1

2
)

4
.0

%
(2

9
)

1
1
4

M
ay

2
0
2
0
–
Ju

ly
2
0
2
0

Jõ
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Luciferase� Reporter 1000 assay system (Promega), ac-
cording to the manufacturer’s protocol. Luminescence in-
tensity was measured with a VICTOR X Multilabel Plate
Reader (PerkinElmer Life Sciences). Firefly luciferase ac-
tivity values were normalized against Renilla luciferase
activity values. These values were then normalized against
the median induction level for non-neutralizing samples and
expressed as a percentage. Samples were considered neu-
tralizing if luciferase induction, normalized against Renilla
luciferase activity, was below 15% of the median values for
controls tested the same day.

For the serum samples over the cutoff for IFNa
luciferase-based immunoprecipitation system (LIPS) assay
from the SARS-CoV-2-naive cohort and from Estonian,
Danish, and British patient cohorts, IFNa neutralizing ca-
pacity was measured by using a reporter cell line HEK-Blue
IFNa/IFNb (InvivoGen) as previously described (Meyer
et al., 2016). The cells were grown in DMEM (Lonza) with
heat inactivated FBS (10%), 30 g/mL Blasticidin (Invivo-
Gen), and 100 g/mL Zeocin (InvivoGen). IFNa2 (Miltenyi
Biotech) was used at the concentration of 25 U/mL. Three-
fold serially diluted serum samples were coincubated with
IFNs for 2 h at 37�C, 5% CO2. Reporter cells (105) were
added to 96-well tissue-culture plate wells and incubated
20–24 h at 37�C, 5% CO2. QUANTI-Blue (InvivoGen)
colorimetric enzyme assay was used to determine AP ac-
tivity in overnight supernatants.

Optical density (OD) was measured at 620 nm with
Multiscan MCC/340 enzyme-linked immunosorbent assay
(ELISA) reader (Labsystems). Neutralization activity was
expressed as IC50, which was calculated from the dose-
response curves and represents the serum dilution at which
the IFN bioactivity was reduced to half of its maximum
(Supplementary Fig. S1). If the lowest serum dilution (1:20)
did not reduce the maximum signal induced by IFNa2 by
half, the serum was considered non-neutralizing. In addition,
the full British patient cohort was tested with 100 pg/mL
IFNa2 coincubated 16 h with 10% of patient serum. Neu-
tralization was calculated as a percentage from the mean
signal gained with non-neutralizing control samples. Sam-
ples were considered neutralizing if OD values were re-
duced below 15% of the mean values for non-neutralizing
control sera tested the same day.

The neutralization activity of IFNl AAB-positive sera
was assessed with the help of HEK-Blue� IFNl cells
(InvivoGen)—a reporter cell-line expressing alkaline phos-
phatase under the control of ISG54 promoter. The cells were
cultured in DMEM (Lonza) supplemented with 10% heat
inactivated FBS and the following antibiotics: 100 U/mL
penicillin, 100 mg/mL streptomycin, 10mg/mL blasticidin
(InvivoGen), 1 mg/mL puromycin (InvivoGen), Zeocin�
100 mg/mL (InvivoGen) a 37�C 5% CO2. Serum serial di-
lutions (3 · ) starting from 1:20 were made on 96-well cell
culture plates using supplemented DMEM. Next, IFNl1
(IL-29; BioLegend, CA) at a final concentration of
12.5 pg/mL or either IFNl2 (IL-28A) or IFNl3 (IL-28B)
fusion proteins produced for use in LIPS assay was pipetted
to the serum dilutions. The IFNl2 and IFNl3 fusion pro-
teins were used in a final dilution that induced approxima-
tely similar alkaline phosphatase expression as the
optimized IFNl1 concentration.

For the positive control wells, no serum was added, and
for the negative control wells neither IFNl nor serum was

added. The plate was preincubated (37�C 5% CO2) for 2 h.
After the preincubation step 5 · 104 of HEK-Blue IFNl cells
were added to each well and the plate was incubated (37�C
5% CO2) overnight. Alkaline phosphatase secreted into cell
media was quantified colorimetrically after adding
QUANTI-Blue� (InvivoGen) solution. OD was measured
after 30 min of incubation at 620 nm with Multiskan
MCC/340 (Labsystems) ELISA plate reader. OD results
were normalized to cell viability assessed by use of
CellTiter-Glo� luminescent cell viability assay (Promega).
In brief, CellTiter-Glo was added to wells, well contents
were transferred to opaque-welled plates. After a 10-min
incubation step, luminescence was measured with VICTOR
X Multilabel Plate Reader.

A half maximal inhibitory concentration (IC50) for each
neutralizing serum was calculated from dose-response
curves using GraphPad Prism 9 (GraphPad Software, Inc.)
based on the normalized OD values of the serial dilution.
Neutralization activity was expressed as IC50, which was
calculated from the dose-response curves and represents the
serum dilution at which the IFN bioactivity was reduced to
half of its maximum (Supplementary Fig. S1). If the lowest
serum dilution (1:20) did not reduce the maximum signal
induced by IFNa2 by half, the serum was considered non-
neutralizing.

Statistical analysis

Cutoffs for determining AAB positivity were chosen
based on the distribution of AAB titer values across the
whole sample (n = 2,491). The Gaussian mixture models
algorithm (R code in Supplemetary Materials) was used to
determine 3 normal distribution clusters: low (healthy) le-
vel, intermediate level, and high level (Supplementary
Fig. S2). AAB positivity cutoff was defined as the mean plus
1 standard deviation of intermediate cluster. The cutoff level
was 4.94 for IFNa AAB and 4.88 for IFNl AAB. The sta-
tistical significance of the difference between 2 groups was
compared using Wilcoxon rank-sum test, and Kruskal–
Wallis test was used in case of more than 2 groups. The
level of significance was set at 0.05. Bonferroni correction
was used for post hoc analyses.

Differences between the proportions of categorical vari-
ables of multiple groups were analyzed with chi-square test.
Spearman correlation was used to study the association of 2
continuous variables. To evaluate the effect of IFN AABs
(categorical variable) to COVID-19 severity, multivariable
logistic regression was carried out in R using the package
finalfit. Patient age and sex were used as confounding var-
iables. Most of the plots were constructed with the package
ggpubr. All statistical analyses were performed in R version
4.1.2 (Free Software Foundation, Boston, MA; www.r-
project.org).

Results

IFN AAB prevalence and bioactivity
in the SARS-CoV-2-naive cohort

To compare the prevalence of IFNa and IFNl AABs in
population, and its association with age and gender, we used
LIPS assay for screening 1,489 serum samples collected
from SARS-CoV-2-naive individuals. For IFNa AAB
screening, we used the pool of 4 different IFNa subtypes
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(IFNa1, IFNa2, IFNa8, IFNa21) and for IFNl AAB testing,
3 IFNl subtypes IFNl1–IFNl3 (IL-29, IL-28A, IL-28B)
were mixed. IFNl4 was not included, because this is often a
pseudogene due to a variant in the gene, and its secretion is
inhibited in remaining individuals. Therefore, AABs are not
expected to emerge. The prevalence of AABs among SARS-
CoV-2-naive subjects (aged 2–99 years) was 2.9% [95%
confidence interval (CI) 2.0%–3.9%] for IFNa AABs and
8.5% (95% CI 7.1%–10.1%) for IFNl AABs. We identified
only 9 individuals (0.6% CI 0.3%–1.1%) who tested double
positive for both type I and type III IFN AABs.

The plots displaying AAB levels against age (Fig. 1)
point to the accumulation of higher AAB values in older age
groups. As expected, individuals with IFNa AAB were
significantly older compared to AAB double-negative ones.
Although the median age of IFNl AAB-positive individuals
was slightly higher in comparison to the double-negative
group, these antibodies were detectable also in children in

contrast to IFNa AABs (Fig. 2). While comparing the pro-
portions of IFN AAB-positive and -negative individuals in
different age groups, we found that the frequency of AAB
double-negative cases was significantly higher in the
younger (<65 y/o) age group, and IFN AAB-positive cases
were more prevalent in the older (‡65 y/o) age group
(Supplementary Table S1).

Sex was not associated with AAB prevalence (Supple-
mentary Table S2). The biological impact of the slightly,
although significantly, increased median levels of IFNa
AABs in males, is probably low (Supplementary Fig. S3).
While several AABs tend to be more prevalent in females,
this is not the case for IFN AABs.

IFN AAB prevalence in COVID-19 patients

Next, we studied IFN AABs in COVID-19 patients. The
overall prevalence of IFNa AABs in the COVID-19 cohort

FIG. 1. Association of age
and IFNa AAB (left panel)
or IFNl AAB (right panel)
level in the SARS-CoV-2-
naive group serum samples.
AAB level was expressed on a
common logarithmic (log10)
scale. The cutoffs were 4.94
and 4.88 for IFNa AAB and
IFNl AAB, respectively.
IFNa AAB, interferon a au-
toantibody; IFNl AAB, inter-
feron l autoantibody.

FIG. 2. Median age of
SARS-CoV-2-naive individ-
uals stratified by presence of
anti-IFN AABs. The upper
and lower edge of the box
signify IQR and the whiskers
correspond to 95% CI. Wil-
coxon rank-sum test was ap-
plied to compare the groups
pairwise, P value was ad-
justed with Bonferroni cor-
rection. AAB Dneg, IFNa,
and IFNl AAB negative;
AAB DPos, IFNa and IFNl
AAB positive; CI, confidence
interval; IFNa AAB SPos,
interferon a autoantibody
single positive; IFNl AAB
SPos, interferon l autoanti-
body single positive; IQR,
interquartile range.
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was 5.5% (95% CI 4.2%–7.1%), for IFNl AABs, it was
3.4% (CI 2.4%–4.7%). Of patients, 1.7% (95% CI 1.0%–
2.7%) were double positive. The proportion of double-
positive serum samples among all IFN AAB-positive cases
(either single- or double positive) was significantly higher in
the COVID-19 group compared to SARS-CoV-2-naive in-
dividuals (16.0% vs. 5.0%, chi-square test of independence
P = 0.004). IFNa AAB-positive COVID-19 patients were
older than AAB-negative patients (Fig. 3 and Supplemen-
tary Fig. S4).

Bioactivity of IFN AABs assessed
by neutralization assays

Apart from the level of binding AABs, their capacity to
block IFN bioactivity is of importance. IFNa neutralization
was tested in all COVID-19 patients from French and U.K.
cohort. In SARS-CoV-2-naive individuals and in other

COVID-19 cohorts, the assay was performed with samples
above the cutoff level of binding AABs in serum samples
available in sufficient quantities (numbers tested can be
found in Tables 1 and 2). IFNa AAB level was significantly
higher in neutralizing samples in comparison to non-
neutralizing sera (Fig. 4).

Due to the relatively scant number of sera with available
neutralizing data, we were not able to find a cutoff LIPS value
using a receiver operating characteristic curve that would sep-
arate neutralizing sera from non-neutralizing sera. However, it
can be estimated from the figure that for IFNa-neutralizing
sera, the lowest IFNa AAB LIPS value was about 30, which
indicates a luminescence signal 30 times higher than the mean
value of the healthy controls ran with each LIPS assay.

Regarding the suggested importance of IFNl for the
protection of mucosal surfaces, the potential biological im-
pact of IFNl AABs is also of interest. Therefore, we per-
formed neutralization assay with the reporter cells checking

FIG. 3. Association of age
and IFNa AAB (left panel)
or IFNl AAB (right panel)
titer in COVID-19 patients.
AAB titer was expressed on a
common logarithmic (log10)
scale. The cutoffs were 4.94
and 4.88 for IFNa AAB and
IFNl AAB, respectively.
COVID-19, coronavirus dis-
ease 2019.

FIG. 4. IFNa AAB level
difference between IFNa
non-neutralizing and neu-
tralizing COVID-19 patient
sera. AAB level was ex-
pressed on a common loga-
rithmic (log10) scale. The
cutoff for IFNa AAB was
4.94. The upper and lower
edge of the box signify IQR
and the whiskers correspond
to 95% CI. Wilcoxon rank-
sum test was used to assess
the statistical significance of
the difference between the
groups.
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the blocking activity of serum samples with or without IFNl
AABs using 3 different IFNl subtypes separately. A total of
105 serum samples, including both COVID-19 patients
(35%) and SARS-CoV-2-naive individuals (65%), were
analyzed for IFNl neutralization (Supplementary Table S3).
All the serum samples with IFNl AAB-binding value over
20 were selected (n = 71) alongside with randomly selected
sera with lower binding values or below the cutoff value. It
was not necessary to test all seropositive sera on the lower
end of the spectrum since previous experience demonstrated
that significantly heightened AAB titers are a prerequisite
for bioactivity.

The most common target of IFNl NAABs was IFNl1
(Fig. 5 and Supplementary Table S3), 16 COVID-19 patient
samples inhibited the bioactivity of this IFN (prevalence in
the whole group 1.6%) and 16 serum samples (1.1%) from
the SARS-CoV-2-naive cohort. Only 5 serum samples from
the COVID-19 cohort neutralized IFNl2 and IFNl3 in ad-
dition to IFNl1, so that pan-IFNl neutralization among the
patients was as low as 0.5% (Supplementary Table S4). The
respective percentage among SARS-CoV-2-naive samples
was 0.6% (9 serum samples), while any of the 3 IFNl
subtypes was blocked by 23 serum samples (1.5%). The
concentration of IFNl1 neutralized by the serum samples
ranged from 2 ng/mL to 10mg/mL.

The association of IFNl AAB level and IFNl NAAB
neutralization activity (as the sum of individually measured
titers) was assessed both in the SARS-CoV-2-naive cohort
and COVID-19 patients. We found that IFNl AAB level of
COVID-19 patients was in a strong correlation with IFNl
neutralization activity (R = 0.91, P < 0.0001, Fig. 6). In the
SARS-CoV-2-naive cohort, a similar, although weaker,
correlation was found (R = 0.72, P < 0.0001).

AABs and COVID-19 severity

Among COVID-19 patients with severe disease course,
IFNa AABs were found in 9.1% (95% CI 6.7%–11.9%),
which encompasses both IFNa-neutralizing and non-
neutralizing sera. In comparison to IFNa AABs, IFNl
AABs were less prevalent (3.0%, 95% CI 1.7%–4.8%)
among severe COVID-19 patients (Supplementary Figs. S5
and S6). The corresponding prevalence rates in patients with
mild COVID-19 were 1.8% (95% CI 0.8%–3.4%) for IFNa
AABs and 3.8% (95% CI 2.3%–5.9%) for IFNl AABs. The
results of multivariable logistic regression (additive model
using age and sex as additional variables) performed in
COVID-19 patients (n = 1,002) point to IFNa AABs exclu-
sively elevating the odds of developing severe disease—
neither IFNl AABs alone nor together with IFNa AABs had
any significant effect on the disease course (Table 3).

Additional adjustment of the model with COVID-19
vaccination status did not change the results much (Sup-
plementary Table S5). The median IFNa and IFNl AAB
levels were significantly different (P = 0.024 for IFNa AABs
and P = 0.0004 for IFNl AABs) between severe and mild
COVID-19 groups, but as the means were very close, the
biologic impact of the difference is probably negligible
(Supplementary Fig. S6).

It is also important to study the association of IFNl
NAABs with the disease severity. Although there were too
few neutralizing serum samples for proper statistical anal-
ysis, we could observe the following. All 5 patients who had
pan-IFNl NAABs suffered from severe COVID-19. Inter-
estingly, 4 of them neutralized also IFNa (Supplementary
Table S3). From 11 IFNl1 selective-neutralizers 7 had se-
vere disease and 1 of them had NAABs to IFNa too.

FIG. 5. IFNl AAB neutralization activity against 3 IFNl subtypes (IFNl1–IFNl3) among all sera with IFNl AAB-
binding value over 20. Analyzed sera are arranged based on IFNl AAB level measured with LIPS (x-axis). For both
COVID-19 and SARS-CoV-2-naive groups the sera (columns) on the left have the highest IFNl AAB level. IFNl
neutralization activity was classified as follows: ‘‘Absent’’—IC50 £20; ‘‘Low’’—IC50 20–500; ‘‘Intermediate’’—IC50 500–
10,000; ‘‘High’’—IC50 >10,000. Severe COVID-19 was defined according to WHO guidelines: pneumonia plus respiratory
rate ‡30 breaths/min or SpO2 <90% or patients with ARDS, sepsis or septic shock. ARDS, acute respiratory distress
syndrome; COVID-19, coronavirus disease 2019; LIPS, luciferase-based immunoprecipitation system; WHO, World Health
Organization.
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As IFN-IIIs have in addition to antiviral activity anti-
fungal effects (Espinosa et al., 2017), we tested the associ-
ation of IFNl AABs with invasive pulmonary aspergillosis
as a complication of COVID-19. Out of 13 patients with
aspergillosis superinfection, only 1 patient exhibited neu-
tralization of IFNl (over the 3 subtypes).

In sum, NAABs toward IFN-IIIs are relatively infrequent
in comparison to IFNa NAABs, and probably unable to
modify COVID-19 course on their own. Their potentially
aggravating role in combination with NAABs toward IFN-Is
would require further studies.

Discussion

AABs to IFN-I and other cytokines are quantified using
various methods, each of them having certain strengths and
weaknesses (Puel et al., 2022). COVID-19-related studies
embrace neutralization assay as a gold standard to which
other methods are compared to (Eto et al., 2022; Manry
et al., 2022). ELISA, although simple and accessible, can be
prone to false positives and negatives (Eto et al., 2022).
Gyros and bead-based assays perform better (Bastard et al.,

2021a; Bastard et al., 2020; Chang et al., 2021). Screening
methods that use full length proteins, as rapid extracellular
antigen profiling (REAP), have permitted the discovery of
IFNa AABs, but those that rely on the expression of shorter
peptides as phage immunoprecipitation sequencing (PhIP-
Seq) do not (Vazquez et al., 2022; Vazquez et al., 2020;
Wang et al., 2021).

Many of the epitopes on IFNas are conformational—
when the proper 3D structure is disrupted, most of the
binding activity of the AABs is lost (Kärner et al., 2013).
LIPS, the method where the conformation of the antigens is
well preserved, has shown very high sensitivity in previous
studies (Meyer et al., 2016), and excellent match with the
neutralization assay in the current study. According to LIPS-
binding values, it is possible to predict the neutralization
capacity of respective serum samples (Fig. 4). Neutralizing
assays might seem an ideal option but sometimes also non-
NAABs can give further valuable information: for example,
they can contain a subpopulation of cytokine stabiliz-
ing/enhancing AABs as suggested by a recent study in
systemic lupus erythematosus (SLE) patients and the broad
screen of AABs in COVID-19 (Bradford et al., 2023; Wang
et al., 2021).

The present study confirmed previous findings about
IFNa AABs: their increased prevalence in older individuals
and their association with severe COVID-19 (Bastard et al.,
2021a; Bastard et al., 2020; Manry et al., 2022). The data
about IFNo and IFNb AABs in this study were not complete
due to the limited volume of several patient samples, and
therefore were omitted from the analysis.

The primary focus of the present study was IFNl AABs.
To date, IFNl AABs have been detected in diseases that are
characterized by high or moderate prevalence of AABs to-
ward IFNa: autoimmune polyendocrinopathy candidiasis
ectodermal dystrophy (APECED), thymoma, and SLE
(Bradford et al., 2023; Burbelo et al., 2010; Meager et al.,
2006; Meyer et al., 2016). In APECED patients, IFNl1 is
the main target (AAB prevalence 30%) while IFNl2 and
IFNl3 are bound only if AABs to IFNl1 are also present
(detectable in 15% of patients) (Meyer et al., 2016).

Table 3. Analysis of the Relationship Between

Interferon Autoantibody Status and Disease

Severity in Coronavirus Disease 2019 Patients

(n = 1,002) Using Multivariable

Logistic Regression

AAB status Count (%)
Severe COVID-19,

OR (95% CI) P

AAB DNeg 896 (89.4) — —
IFNa AAB SPos 55 (5.5) 4.88 (2.40–11.06) <0.001
IFNl AAB SPos 34 (3.4) 0.84 (0.40–1.73) 0.63
AAB DPos 17 (1.7) 1.78 (0.62–5.52) 0.30
Total count 1,002 — —

Besides IFN AAB status, age and sex were used as explanatory
variables.

AAB DNeg, IFNa and IFNl AAB negative; CI, confidence
interval; OR, odds ratio.

FIG. 6. Spearman correla-
tion analysis of IFNl AAB
level and IFNl AAB bioac-
tivity expressed as IC50 (half
maximal inhibitory concen-
tration) in selected IFNl
AAB-positive COVID-19
patients (n = 27). AAB bio-
activity was obtained by
summarizing the IC50 values
against 3 IFNl subtypes
(IFNl1, IFNl2, and IFNl3).
Both AAB titer and bioac-
tivity were plotted on a
common logarithmic (log10)
scale.
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Approximately 2/3 of the type III AAB-positive APECED
sera are neutralizing (Meager et al., 2006).

AABs to IFNl are difficult to detect, possibly due to the
epitopes that are extremely sensitive to conformational
changes. Techniques that rely on the expression of shorter
peptides (eg, PhIP-Seq), or antigen binding on the solid
surfaces have failed to detect AABs to IFN-III (Chang et al.,
2021; Vazquez et al., 2020) (our own unpublished obser-
vations). However, REAP method has recovered reactivity
toward IFN-III in healthy controls as well as in COVID-19
patients (Wang et al., 2021). LIPS method has shown its
advantages again in this study and in previous publications
on APECED and thymoma (Burbelo et al., 2010; Meyer
et al., 2016).

The discovery that IFN-I NAABs are an important risk
factor for developing severe COVID-19 helped to verify the
essential role of IFN-I in limiting the infection by SARS-
CoV-2. An obvious next question is if we can learn about
IFN-IIIs in a similar way. It is established that IFN-IIIs are
specialized in epithelial surface protection and can restrict
SARS-CoV-2 proliferation in vitro. Specific contribution
from each subtype is less known. There are some hints that
the relative resistance of children to COVID-19 may be the
result of their higher local production of IFNl1 in response
to SARS-CoV-2 infection in comparison to adults (Gilbert
et al., 2021), and that children and patients with mild disease
have higher levels of serum IFNl1 and IFNl2/3 than pa-
tients with severe COVID-19 ( Jeong et al., 2023).

We discovered that IFNl AABs are relatively common in
the SARS-CoV-2-naive cohort and among COVID-19 pa-
tients. Their frequency increases slightly with age but not as
dramatically as is the case of IFNa AABs. Our SARS-CoV-
2-naive sample contained 3 subgroups consisting of mainly
older people (median age ‡70, Table 2) with increased
prevalence of IFNl AABs. This explains the seemingly
higher prevalence of IFNl AABs in SARS-COV-2-naive
individuals in comparison to COVID-19 cohort. Im-
portantly, the neutralizing capacity toward the 3 IFNl
subtypes remained below the detection limit in the majority
of the IFNl AAB-positive cases. Like in APECED patients,
IFNl1 was neutralized more often than the IFNl2/3 sub-
types in COVID-19 patients, while the SARS-CoV-2-naive
group showed more equal distribution of AAB neutraliza-
tion targets.

The frequency of IFNa and IFNl AAB double-positive
individuals is very low in SARS-CoV-2 naive cohort
pointing to different causes for their induction. Significantly,
higher proportion of double-positive serum samples in
COVID-19 group is intriguing, suggesting that the tolerance
toward IFNl could be disrupted after SARS-CoV-2 infec-
tion in some cases.

COVID-19 patients are characterized by increased fre-
quency of various AABs (Burbelo et al., 2022; Chang et al.,
2021; Vazquez et al., 2022; Wang et al., 2021). Some of the
specificities can be induced by SARS-CoV-2 infection, the
others (among them IFNa AABs) were estimated to be pre-
existing (Wang et al., 2021). The origin of IFNl AABs
remains unknown, but as the total frequency of IFNl AABs
was not increased in the COVID-19 cohort in comparison to
the SARS-CoV-2-naive cohort, they are likely pre-existing
in the majority of cases.

The role of type III IFNs in humans has not been geneti-
cally clarified, although the patients with IL-10RB deficiency

have been mildly affected by SARS-CoV-2 (Abolhassani
et al., 2022). This resistance, although, does not apply to all
viral infections, as 2 siblings with defective IL-10RB have
succumbed to fulminant viral hepatitis (Korol et al., 2023).
Parallel hints can be derived from animal models. Stat2-/-

(lacking both IFN-I and IFN-III responses) hamsters cannot
control SARS-CoV-2 infection, whereas this infection is
successfully controlled by Il-28r-/- (deficient for IFN-III re-
sponse only) animals (Boudewijns et al., 2020).

We suggest that AABs to IFNl are neutral to COVID-19
course due to their infrequent neutralization capacity and
their interchangeability in case a single IFNl subtype is
blocked. However, taking into the account the analogy with
IFN-I family, where the risk of severe COVID-19 increases
with the number of family members affected, it is possible
that additional pan-IFNl neutralization can contribute to the
equation even more. It may seem tempting to consider IFNl
AABs as potentially protective against severe COVID-19,
but the odds ratio (OR) obtained from the multivariable lo-
gistic regression analysis (0.84; 95% CI 0.40–1.73) does not
provide statistically significant support for this hypothesis.

This study has some limitations, which may have affected
the results. First, the IFN AAB positivity cutoffs were rel-
atively low—for this reason a large proportion of IFN AAB-
positive sera are not capable of neutralizing IFNs. Second,
IFNa AAB neutralization activity data were fully available
for only 2 cohorts of COVID-19 patients and for IFNl
AABs, only sera containing high levels of IFNl AABs were
analyzed for bioactivity. Third, SARS-CoV-2-naive group
represents only Estonian population containing a proportion
of samples derived from patients from internal medicine and
dermatology clinics, meaning that this cohort of patients
should not be held for healthy controls. Finally, the low
number of pan-IFNl neutralizing sera prevents us drawing
definite conclusions about the pathogenicity of these
NAABs.

Conclusions

Although AABs toward IFN-III are readily detectable in
serum samples derived from SARS-CoV-2-naive individu-
als as well as from COVID-19 patients, their neutralizing
capacity is limited to very rare cases. Regarding all the
current evidence, we suggest that IFNl AABs on their own,
even if neutralizing, are not capable of modifying COVID-
19 course, but in combination with impaired type I IFN
responses might further increase the susceptibility to severe
COVID-19.
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Médicale (INSERM) and the University Paris Cité.
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de Candelaria, Santa Cruz de Tenerife; CIBER de
Enfermedades Respiratorias, Instituto de Salud Car-
los III, Madrid; Genomics Division, Instituto Tec-
nológico y de Energı́as Renovables (ITER), Santa
Cruz de Tenerife, Spain.

22. Group of Primary Immunodeficiencies, University of
Antioquia UDEA, Medellin, Colombia.

23. Pulmonology Department, Cliniques Universitaires
Saint-Luc; Institut de Recherche Expérimentale et
Clinique (IREC), Université Catholique de Louvain,
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