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Abstract

Introduction: Callous-unemotional (CU) traits are a youth antisocial phenotype hypothesized to be a result of
differences in the integration of multiple brain systems. However, mechanistic insights into these brain systems
are a continued challenge. Where prior work describes activation and connectivity, new mechanistic insights into
the brain’s functional connectome can be derived by removing nodes and quantifying changes in network proper-
ties (hereafter referred to as computational lesioning) to characterize connectome resilience and vulnerability.
Methods: Here, we study the resilience of connectome integration in CU traits by estimating changes in effi-
ciency after computationally lesioning individual-level connectomes. From resting-state data of 86 participants
(48% female, age 14.52 – 1.31) drawn from the Nathan Kline institute’s Rockland study, individual-level con-
nectomes were estimated using graphical lasso. Computational lesioning was conducted both sequentially and
by targeting global and local hubs. Elastic net regression was applied to determine how these changes explained
variance in CU traits. Follow-up analyses characterized modeled node hubs, examined moderation, determined
impact of targeting, and decoded the brain mask by comparing regions to meta-analytic maps.
Results: Elastic net regression revealed that computational lesioning of 23 nodes, network modularity, and Tan-
ner stage explained variance in CU traits. Hub assignment of selected hubs differed at higher CU traits. No evi-
dence for moderation between simulated lesioning and CU traits was found. Targeting global hubs increased
efficiency and targeting local hubs had no effect at higher CU traits. Identified brain mask meta-analytically asso-
ciated with more emotion and cognitive terms. Although reliable patterns were found across participants, ado-
lescent brains were heterogeneous even for those with a similar CU traits score.
Conclusion: Adolescent brain response to simulated lesioning revealed a pattern of connectome resiliency and vul-
nerability that explains variance in CU traits, which can aid prediction of youth at greater risk for higher CU traits.

Keywords: adolescents; brain heterogeneity; callous-unemotional traits; computational lesioning; functional con-
nectivity; topology

Impact Statement

Mechanistic insights into the differences in multiple brain systems underlying callous-unemotional (CU) traits
represent a continued challenge. By examining changes in the brain functional connectome after computationally
lesioning that node and examining changes in network properties, we can derive unique mechanistic insights. By
applying this method to individual-level connectomes, we revealed a pattern of vulnerability and resiliency in the
individual-level connectomes that aid the prediction of CU traits. Regions revealed with this method contextu-
alize behavioral impairments in these youth, and this mask of identified regions could improve the prediction of
youth higher in CU traits.
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Introduction

Callous-unemotional (CU) traits are an antisocial
phenotype in youth related to the affective impairments

in adult psychopathy (Barry et al., 2000; Frick and White,
2008; Frick et al., 2014a) and are defined by impairments
in prosocial emotions such as remorse, guilt, and empathy
(Frick et al., 2014a; Frick et al., 2014b). The CU traits are as-
sociated with persistent criminal behavior (Kahn et al., 2013)
and higher substance use (Winters et al., 2021a) while caus-
ing substantial costs to society (Kiehl and Hoffman, 2011).

Available treatments, however, are limited in their effi-
cacy, indicating the need to better understand the mecha-
nisms underlying these traits (for review: White et al.,
2022). Brain mechanisms underlying CU traits have been
conceptualized as involving either under-activation of the
modular regions involved in salience (Blair and Frith,
2000; Patrick, 1994) or less efficient integration between
multiple brain networks (impaired integration theory; Ham-
ilton et al., 2015).

But, extracting mechanisms from this work is an ongoing
challenge, which is plausibly due to the following three rea-
sons. First, rather than modular activation, to understand in-
tegration across multiple brain systems, we need to consider
how different and potentially distant hubs respond to pertur-
bations of a given network node (i.e., node removal) using
computationally simulated lesions (Honey and Sporns,
2008). Second, the shape of brain networks and resulting in-
formation processing streams (i.e., topology) (De Vico Fal-
lani et al., 2014; Kaiser et al., 2015) are rarely examined in
studies on CU traits.

Finally, the substantial heterogeneity of individual con-
nectomes (Damoiseaux et al., 2021) and their heterogeneous
association with both psychopathy (Dotterer et al., 2020) and
CU traits (Winters et al., 2021c) need to be accounted for to
make accurate inferences (Gates and Molenaar, 2012; Mole-
naar, 2004). Thus, the present study examines the topological
brain properties underlying CU traits by examining
individual-level brain responses with computational lesion-
ing to understand the functional architecture accounting for
variance in CU traits and underlying etiology.

Etiological theories of CU traits posit primary impair-
ments that center on either affective (Blair, 2008; Hawes
and Dadds, 2012) or cognitive deficits (i.e., attention and
cognitive control) (Hamilton and Newman, 2018), with
both positions supported by neurobiological evidence. For
example, affective processing deficits include salience regions
such as the insula and amygdala (Seara-Cardoso et al., 2016),
with the majority of studies focusing on the amygdala in psy-
chopathy (Blair and Frith, 2000; Patrick, 1994) and CU traits
(Marsh et al., 2008). Cognitive deficits involve social and con-
trol regions in cortical midline structures such as the medial/
lateral prefrontal cortices and anterior/posterior cingulate.

Less activation of these regions is observed during top-
down attention (Larson et al., 2013; Newman and Baskin-
Sommers, 2012), reward anticipation (Veroude et al.,
2016), and decision-making tasks involving conflict monitor-
ing (Abe et al., 2018; White et al., 2013). Whether these cog-
nitive results indicate a general attention impairment or a
tendency to not process affective information in the present
context is debated (Blair and Mitchell, 2009); however, the
ability to monitor and bring attention to context for regulat-

ing goal-directed behaviors (i.e., cognitive control; Botvi-
nick et al., 2001) is an important impairment associated
with CU traits (Gluckman et al., 2016) and related to decre-
ments in representing others’ affective states (Winters and
Sakai, 2021) that are associated with differences in these
multiple brain systems (Winters et al., 2022).

Impaired integration across these multiple brain systems
(e.g., control, social, salience) is believed to underlie CU
trait impairments beyond modular activation (impaired inte-
gration hypothesis) (Hamilton et al., 2015). Studies support-
ing this demonstrate less integration within and between
networks involving regions outlined earlier, including the de-
fault mode network (DMN), frontoparietal network (FPN),
and salience network (SAL).

For example, where we would expect greater connectivity
within networks among healthy brains, CU traits are associ-
ated with less connectivity within the DMN (Cohn et al.,
2015; Umbach and Tottenham, 2021), FPN (Winters et al.,
2021c), and SAL (Yoder et al., 2016). Functional integration
of these networks is also associated with normative brain
processes (e.g., DMN and cognitive empathy) (Winters
et al., 2021b) that are perturbed among individuals with ele-
vated CU traits.

Further, where we would expect an anticorrelation be-
tween task-positive and task-negative networks in typically
developing brains (Uddin et al., 2009), higher CU traits are
associated with a diminished anticorrelation between the
DMN and SAL (Winters and Hyde, 2022), as well as be-
tween the DMN and FPN (Pu et al., 2017; Winters et al.,
2021c), which has also been found in adult psychopathy
(Dotterer et al., 2020). This pattern of less connectivity
within and between these networks is theorized to underlie
cognitive impairments that impact affective processing
(Hamilton et al., 2015), possibly via difficulties with per-
spective taking and cognitive control (Winters et al., 2022b).

It is necessary to also highlight the lack of convergence of
the brain literature on CU traits and psychopathy that appears
to point to more general topological properties of the brain.
For example, task-based findings demonstrate some overlap
but broadly heterogenous activation patterns among similar
tasks (Seara-Cardoso et al., 2022); some connectivity studies
did not find aberrant connectivity in the DMN (Pu et al.,
2017) or in the SAL and FPN (Umbach and Tottenham,
2021), whereas other studies reviewed earlier did.

One possibility is that the brains of those higher in CU
traits may have a less modular structure. Modularity de-
scribes the structure of the brain network representing the
strength of divisions into network modules, with more mod-
ularity indicating dense connections within the network and
less connections between networks (Newman and Girvan,
2004). Less modular structure of the brain results in less ef-
ficiency (Tosh and McNally, 2015), which impacts behavior
and cognitive functioning (Rypma and Prabhakaran, 2009).

Decreased modularity could manifest in different net-
works of the brain (e.g., less connectivity of the DMN or
the SAL) that could plausibly represent different subgroups
of CU trait phenotypes. For example, CU traits have multiple
presentations underlying individual differences (Fanti et al.,
2018; Fanti et al., 2013; Hadjicharalambous and Fanti, 2018;
Sebastian et al., 2012) and it is plausible that differential dec-
rements in modularity of the DMN compared with the SAL
may underlie these different subgroups. These hypotheses
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remain speculative, however, and substantial methodological
improvements are needed in this area of study.

The following three methodological improvements can
help improve the characterization of neural substrates of
CU traits. First, computational lesioning has yet to be applied
to understand underlying functional brain properties of youth
with CU traits. Computational lesioning probes the resilience
or vulnerability of a functional network related to specific
nodes, thereby providing valuable insights into entry points
for mechanistic understanding of a disorder (Deco and Krin-
gelbach, 2014).

Although real lesions involve long-term brain re-
organization that is not captured when simulating lesions,
computational lesioning confirms far-reaching disruptions
of functional architecture that are related to the modular
structure of nodes (e.g., global vs. local hubs) that is found
in real lesions (Gratton et al., 2012; Tao and Rapp, 2021).
Specifically, characterizing the disruptions that these differ-
ent hubs cause on the connectome after computational
lesioning is important for understanding underlying brain
function (Honey and Sporns, 2008).

Second, although rarely studied in CU trait investigations,
considering topological properties of the brain such as effi-
ciency, modularity, and hubs can characterize how informa-
tion is transferred in the brain. For example, measuring
efficiency captures how information is exchanged in a net-
work assuming that shorter distances between nodes is
more efficient (Achard and Bullmore, 2007; Latora and
Marchiori, 2001; Rubinov and Sporns, 2010), modularity
captures within module density (Newman and Girvan,
2004), and hubs that are global or local captures whether a
node is more connected across the brain or within a module
(Gratton et al., 2012; Tao and Rapp, 2021).

The few studies of CU traits examining topology have
identified important differences (Dotterer et al., 2020; Jiang
et al., 2021; Winters et al., 2021c) that go beyond the typical
considerations of functional activation and connection
strength.

Third, letting go of the incorrect assumption of homogene-
ity in brain analyses can improve our statical inferences on
potential mechanisms. For example, most relevant work
uses group averages across the brain to make inferences.
This would suggest an assumption of strict homogeneity of
individual brains (Gates, 2022), but it is well known that
functional brain patterns are as unique as fingerprints (Dam-
oiseaux et al., 2021); thus, the assumption of homogeneity is
incorrect.

Accordingly, recent studies demonstrate substantial het-
erogeneity of the brain in relation to CU traits (Winters
et al., 2021c) and psychopathy (Dotterer et al., 2020).
These studies demonstrate some shared patterns despite
this heterogeneity (known as weak homogeneity) (Gates,
2022), which appears to more accurately reflect how we
should model the brain. Failing to account for this individual
variability when examining patterns across individuals leads
to inaccurate inferences (Gates and Molenaar, 2012; Mole-
naar, 2004).

Thus, examining connectome efficiency across individual-
level connectives using computational lesioning can improve
our mechanistic understanding of CU traits by probing
the resilience and vulnerability of an individual’s functional
connectome.

The way nodes in the functional connectome are con-
nected can have different impacts on efficiency after compu-
tational lesioning. For example, a node can be globally
connected, meaning it has denser connections across the
brain between network modules, or can be locally connected,
meaning it has denser connections within its respective net-
work module and less connections with other modules—
these are called global and local hubs, respectively (Gratton
et al., 2012; Tao and Rapp, 2021).

Computational lesioning of global hubs reduces the num-
ber of long-range connections, resulting in more segregation
of network modules, whereas lesioning of local hubs reduces
the number of short-range connections, resulting in less seg-
regation of network modules (Gratton et al., 2012; Sporns
et al., 2007; Tao and Rapp, 2021). These forms of reorgani-
zation of the brain’s modularity can have substantial impact
on the brain’s efficiency (Tosh and McNally, 2015).

Efficiency in the brains of those with CU traits is lower
than controls ( Jiang et al., 2021), which may be related to
the global or local hub-like qualities (i.e., ‘‘hubness’’) of a
given node. Despite not yet having been investigated, to
our knowledge, data on how the efficiency of a network
changes related to the properties of a node being a global
or local hub could provide practical, functionally important
mechanistic insights (Deco and Kringelbach, 2014). Thus,
an important next step for understanding mechanisms under-
lying CU traits is to examine changes in efficiency using
computational lesioning, characterize nodal ‘‘hubness,’’
and examine targeted lesioning of node types in relation to
CU traits.

The present study examines the changes in efficiency after
computationally simulating lesions in relation to CU traits
among a community sample of adolescents. The CU traits
exist along a continuum in community samples with substan-
tial evidence of similar neurocognitive and neurobiological
impairments as forensic samples with these traits (Seara-
Cardoso et al., 2022; Viding and McCrory, 2012). In this
sample of community adolescents, we hypothesize that the
changes in efficiency after computationally simulating le-
sions can explain variance in and help us understand the
mechanisms underlying CU traits.

Specifically, we hypothesize that the changes in response
to cortical midline structures as well as regions associated
with salience (amygdala and insula) will account for vari-
ance in CU traits. Consistent with the literature on global
and local hub lesioning discussed earlier, we specifically an-
ticipate that lesioning local hubs will demonstrate the great-
est decrement in efficiency. In addition, in accordance with
prior studies, we expect that modularity will account for var-
iance in CU traits such that lower modularity will be associ-
ated with higher CU traits. This information has the potential
to provide unique mechanistic insights that complement
task-based and functional connectivity studies by identifying
points of resilience and vulnerability in functional connec-
tomes in relation to CU traits.

Methods

Sample

Participants were drawn from the Rockland study col-
lected by the Nathan Kline Institute. We downloaded raw
fMRI files and study measurements from the 1000
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connectomes project. We included adolescent participants
between the ages of 13 and 17 with an IQ >80 as measured
by the WAIS-II (a = 0.96) (Wechsler, 2011). We excluded
potential participants with motion >3 mm or >20% of invalid
functional magnetic resonance imaging (fMRI) scans.

Two participants had spikes in motion that were near the
end of the session and were able to retain those participants
by cutting their time series, leaving a total analysis sample of
86. The participants in this sample were predominantly
White (White = 63%, Black = 24%, Asian = 9%, Indian = 1%,
other = 3%), with 14% reporting Latinx ethnicity, mean age
of 14.5 (14.52 – 1.31) years, slightly more males (fe-
males = 48%), and mean pubertal development just below
full maturity (4.10 – 0.97; range 1–5). Nooner et al. (2012)
outline study procedures, including consent and assent for
all participants.

Measures

Inventory of callous-unemotional traits. The CU traits
were assessed using the total score of the 24-item inventory
of callous-unemotional traits (ICU) (Frick, 2004). Consis-
tent with Kimonis et al. (2008), we removed two items
with poor psychometrics, which had adequate reliability in
the current sample (a = 0.72). Higher scores indicate greater
CU traits. The total ICU score was used as the primary out-
come of interest.

Tanner stage. Sex and pubertal stage were measured
using the Tanner assessment (a = 0.77). Parents rated pictures
of secondary sex characteristics, indicating pubertal develop-
ment of 1 (pre-pubertal) to 5 (full maturity) (Petersen et al.,
1988).

fMRI acquisition

Resting-state fMRI images from the Rockland dataset
were collected by the Nathan Kline Institute using a Siemens
TimTrio 3T scanner with a blood oxygen level dependent
contrast and an interleaved multiband echo planar imaging
(EPI) sequence. Each scan involved resting state (260 EPI
volumes; repetition time [TR] = 1400 ms; echo time = 30 ms;
flip angle = 65�; 64 slices, field of view (FOV) = 224 mm,
voxel size = 2 mm isotropic, duration = 10 min) and a magne-
tization prepared rapid gradient echo (MPRAGE) anatomi-
cal image (TR = 1900 ms, flip angle = 9�, 176 slices,
FOV = 250 mm, voxel size = 1 mm isotropic).

The Siemens sequence does not collect images until T1
stabilization is achieved, so removing scans was not neces-
sary. Instructions for participants were to keep their eyes
closed without falling asleep and to not think of anything
while they let their mind wander.

Resting-state fMRI preprocessing

Imaging data were preprocessed with the standard prepro-
cessing in the CONN toolbox (version 18b) (Whitfield-
Gabrieli and Nieto-Castanon, 2012) that uses Statistical
Parametric Mapping (SPM version 12) (Penny et al., 2011).
Motion outliers were flagged for correction if >0.5 mm using
the Artifact Detection Tools and regressed out using spike re-
gression. Slice timing correction was not used given the fast
multiband acquisition (Glasser et al., 2013; Wu et al., 2011).

The anatomic component-based noise correction method
(aCompCor) (Whitfield-Gabrieli and Nieto-Castanon,
2012) was used to regress out cerebrospinal fluid and white
matter noise. MPRAGE and EPI images were co-registered
and normalized to an MNI template; and data were bandpass
filtered between 0.008 and 0.09 Hz to retain resting-state sig-
nals. Finally, we parcellated these data into 164 ROIs using
the Harvard Oxford atlas for cortical and sub-cortical areas
(Desikan et al., 2006) as well as the Automated Anatomical
Labeling Atlas for cerebellar areas (Tzourio-Mazoyer et al.,
2002).

The use of both parcellations is the default parcellation
used in the CONN toolbox, as the cerebellar areas from
the Automated Anatomical Labeling atlas do not overlap
with the cortical or sub-cortical nodes of the Harvard
Oxford atlas.

We found that 24 participants had excess motion >3 mm
and 4 had >20% of invalid scans. However, we were able
to retain two of the participants with excess motion because
this motion was at the end of the timeseries and was able to
be snipped while still retaining >90% of the timeseries. This
left a total of 86 participants for analysis.

Construction of individual-level functional connectomes

Single-subject connectomes were derived within python
(version 3.9.5; Van Rossum and Drake, 2009) using the
graphical lasso covariance estimator in the package ‘‘scikit-
learn’’ (Pedregosa et al., 2011). This resulted in a brain-wide
sparse precision matrix for each participant (sparsity propor-
tion = 0.895 – 0.005) that retained about 10.5% of connec-
tions across all participants.

As opposed to imposing arbitrary covariance thresholds
that reflect unique characteristics of the sample, this sparse
matrix approach was chosen because it uses a principled ap-
proach that retains meaningful connections after conditioning
on the rest of the matrix (Smith et al., 2011; Varoquaux et al.,
2010). The most connected regions included bilateral frontal
pole and bilateral insular cortex, whereas the most discon-
nected regions were posterior and anterior cerebellar as
well as the bilateral posterior temporal gyrus (Supplementary
Table S1).

Individual-level brain connectivity measures

Functional brain properties were derived from network es-
timations using the python-based brain connectivity toolbox
(Rubinov and Sporns, 2010). First, we applied the robust
Louvain algorithm (Blondel et al., 2008; Lancichinetti and
Fortunato, 2009) combined with an iterated fine-tuning algo-
rithm to optimize identifying modular structures at the
single-subject level (Sun et al., 2009) and address the Lou-
vain algorithm’s stochastic nature (Bassett et al., 2011).

Specifically, we estimated five communities for each par-
ticipant to determine the optimal individual-level gamma pa-
rameter, re-estimated communities using the individual-level
optimal gamma, calculated the similarity for each iteration
for each participant, and then derived a single consensus
community across all iterations at the single-subject level.

Using the tuned parameters described earlier, we calculated
individual-level modularity, participation coefficient, and
within-module degree z-score. The participation coefficient
was used to identify global hubs, because it represents the
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strength of cross-module connections; conversely, the within-
module z-score was used to identify local hubs, because it
measures the extent of intra-modular connections of each
node (Guimera and Nunes Amaral, 2005).

To identify the hubness of each node, we used criteria by
Tao and Rapp (2021) but, where they used mean and stan-
dard deviation, we used median and median absolute devia-
tion (MAD) because it is not as subject to sampling effects
(Leys et al., 2013). We used this to identify individual-level
global hubs (participation coefficient >1 MAD+median) and
local hubs (within-module degree z-score coefficient >1
MAD+median).

Consistent with prior computational lesion studies (He
et al., 2009), we identified non-hubs that were connector
(i.e., more likely to be connected across network) or periph-
ery nodes (i.e., more connected within module) but did not
meet hub criteria. Finally, we calculated individual baseline
efficiency to compare the changes in efficiency after compu-
tational lesioning.

Computationally simulated lesions at the individual-level

To investigate the dynamics and probe resilience or vul-
nerability underlying individual-level connectomes, we ap-
plied a procedure to computationally simulate lesions
(deletion) over the functional connectome (He et al., 2009).
Specifically, we used node deletion across each participant’s
functional connectome with two separate approaches. The
first was a sequential deletion procedure for each node across
the brain, and the second targeted nodes with properties of
global and local hubs separately and connector and periphery
non-hubs separately.

After each computationally simulated lesion, we calcu-
lated brain efficiency and subtracted each participant’s base-
line efficiency score to assess the brain’s response. In other
words, we calculated the baseline efficiency for each partic-
ipant, then recalculated efficiency after each simulated le-
sion, and finally subtracted the baseline efficiency score
from the new efficiency score to measure the change in effi-
ciency. This procedure of change after a simulated lesioning
was adopted form prior work (Gratton et al., 2012; Tao and
Rapp, 2021).

Feature selection

We conducted feature selection to reduce noise by retain-
ing only those features that are the most pertinent and im-
prove model performance (Dosenbach et al., 2010).
Feature selection is the method of reducing the number of
features used in the elastic net regression by retaining the
most relevant features while removing the features that
increase noise in the data. Specifically, we used the k-best
feature selection using the f regression function within
‘‘scikit-learn’’ (Pedregosa et al., 2011) and conducted hyper-
parameter tuning of the number of k features selected to im-
prove model performance.

This feature selection resulted in 26 features in the feature
vector consisting of: 23 nodes (23 features) representing
changes in efficiency for each participant’s functional con-
nectome after removing that node, overall brain modularity
(24th feature), and Tanner stage (25th feature). We also in-
cluded sex (26th feature) independently of feature selection
because of its implications for differences in the brain and

CU traits in youth (Raschle et al., 2018). Importantly, head
motion was not selected as accounting for substantial vari-
ance; thus, it was not included in the model. Brain features
were placed in the model as independent variables to decode
what brain activity predicts CU traits.

Elastic net regression

A linear elastic net regression was implemented in the py-
thon package ‘‘scikit-learn’’ (Varoquaux et al., 2010) to
evaluate the relationship between functional connectome
change in efficiency after removing each node. This is the
primary analysis testing what features account for variance
in CU traits. Model performance was evaluated using a
nested five-fold cross-validation procedure involving
hyper-parameter tuning and cross-validation.

What this means is that we conducted fivefold cross-
validation but within each fold hyperparameters for the elas-
tic net (i.e., L1 and L2 penalties) were tuned to ensure each
fold had optimal hyperparameters. We used mean squared
error, R2, and mean absolute error to evaluate the model as
well as comparing training and testing cross-validation
scores. In addition, we compared the model with a dummy
model to assess whether the model performed better than
chance using the mean squared error.

We then assessed cumulative empirical distribution of
model performance under the null hypothesis using a permu-
tation test with 2000 iterations. Results were considered sta-
tistically significant if 95% of these 2000 R2 values were
lower than the R2 of the real data (Dosenbach et al., 2010).

Meta-analytic decoding

For connection response to brain regions accounting
for variation in CU traits, we used Neurosynth to meta-
analytically annotate their functional characteristics. The au-
tomated neuroimaging meta-analysis computed whole-brain
posterior activation distributions P(Term j Activation) for the
psychological concepts examined (Yarkoni et al., 2011).
Terms that have been consistently associated with a particu-
lar activation map can be identified using unbiased reverse-
inference analyses across the Neurosynth database.

At the time of writing this article, Neurosynth database
contained maps for 1334 terms, 507,891 coordinates
extracted from 14,371 fMRI studies, and coactivation maps
for 150,000 brain locations. Using this database, we first
decoded the mask of regions in our analysis, and second,
we identified regional terms loading on to CU traits and
psychopathy.

First, to decode the mask of identified ROIs during feature
selection, we took the coordinates of all 23 regions and cre-
ated a mask with 8 mm spheres around the center of each co-
ordinate using the python package ‘‘nltools’’ (Chang, 2020)
that is publicly available. This mask was used to then char-
acterize co-activation of brain regions across studies in the
Neurosynth database.

Statistical inference for each voxel in the brain volume
was conducted using chi-square tests to generate a z-value
map thresholded with a false discover-rate adjusted p-value
of p < 0.01; and the voxel-wise correlation coefficient be-
tween the co-activation map and each term-specific map
was assessed for extraction. To obtain a large enough number
to account for variation, the top 40 terms (e.g., executive
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functioning, affect response; excluding methodological tech-
niques [e.g., fMRI] or anatomy terms [e.g., prefrontal cor-
tex]) were taken as the most likely associated terms. We
assessed ambiguous terms by examining the top 10 loading
studies to determine inclusion or exclusion.

For example, the term ‘‘amygdala response’’ involved the
study of response to emotional stimuli; thus, it was included
given that it is the brain’s response to emotional stimuli. We
averaged R values for terms that have common root terms
(e.g., feeling and feelings). In addition, we placed each
term in a general category (e.g., emotion, cognitive) that rep-
resents the studies under that term.

Second, we examined the identified region terms and
extracted loading values on CU traits and psychopathy. We
choose CU traits and psychopathy as our primary terms, be-
cause CU traits represent the affective dimension of psy-
chopathy (Barry et al., 2000; Frick et al., 2014a) and brain
features are shared between psychopathic adults and youth
with CU traits (Seara-Cardoso et al., 2022). We searched var-
iations of terms for CU traits (callous-unemotional, callous,
callousness) and psychopathy (psychopathic, psychopath),
reviewed the highest loading studies to ensure construct con-
sistency, and extracted the loading value for that brain area
and term.

Random-effects models, node characterization,
and evaluating moderation

To contextualize brain properties related to the model re-
sults, linear random-effects models were conducted in py-
thon (version 3.9.5) (Van Rossum and Drake, 2009) using
the ‘‘statsmodels’’ package (Seabold and Perktold, 2010)
to characterize selected nodes, test for mediation, and test
the impact of targeting global and local nodes. For all mod-
els, we accounted for random intercept variation for each
participant. Confidence intervals for each parameter were
bootstrapped with 2000 resamples.

We conducted secondary analysis that characterized nodes
included in the elastic net model by evaluating whether their
global or local ‘‘hubness’’ was associated with CU traits
using separate regressions. Importantly, nine nodes were ex-
cluded from analyses characterizing global hubs because
zero participants had a global hub for that node. To assess
whether nodes’ global or local ‘‘hubness’’ was different at
higher CU traits from what was typically expected, we com-
pared the probability of being a global or local hub for each
node against a random distribution to assess whether the cur-
rent sample’s probability was better than chance.

We evaluated sex, modularity, and Tanner stage as poten-
tial moderators of above brain associations because both sex
(Raschle et al., 2018) and pubertal stage (Cameron, 2004;
Dahl, 2004; Sisk and Foster, 2004) demonstrate important
differences in brain development and CU traits, and modu-
larity can influence efficiency. First, we identified which of
the above to evaluate based on significance in relation to
CU traits in the elastic net model.

We then ran correlations of the significant independent var-
iables with every significant node in the elastic net regression
and identified which nodes they may be a moderator for by
selecting correlation values that were 2 MAD greater or less
the median R value. Potential moderation terms were derived
using the residualized centering approach using the python

package ‘‘resmod’’ (Winters, 2022). This approach orthogo-
nalizes included terms by centering the residuals, thereby
avoiding the violation of model assumptions by removing
correlated residuals (Little et al., 2006). Confidence intervals
were bootstrapped with 2000 resamples to test moderation.

Results

Lesioning nodes negatively impacted efficiency across
all participants

Changes in efficiency after node deletion were, on average,
negative for all nodes across the sample. The magnitude of
this decrement varied by node (Table 1). Thus, positive asso-
ciations in the following analyses represent the connectomes
resilience because the change is closer to zero and negative
associations represent a greater decrement in efficiency.

Computational lesioning of brain nodes predicts CU traits

Feature selection identified 23 brain nodes, modularity,
and Tanner stage as features that improved the prediction
of CU traits (see Table 1 for coordinates of brain features
and Fig. 1C for all features). The elastic net model performed
better than a dummy model and we found no evidence of
overfitting (Table 2). As shown in Figure 1A, the association
between predicted score and observed score for CU traits
was significant (R2 = 0.311, pperm <0.001).

The observed R2 in the permutation distribution is plotted
in Figure 1B. Figure 1C plots the distribution of cross-
validation betas for each feature in the model. These results
suggest that the elastic net model performed satisfactorily in
predicting CU traits.

Ten features are negatively associated with CU traits: mod-
ularity, aMTG L, toITG L, SPL L, ICC L, PT R, Ver 3 and 9,
anterior insula R, and SMG L (all abbreviations are in
Table 1). Modularity indicates that those with higher CU
traits tended to have a less modular structure. The brain
nodes indicate that a greater decrement in efficiency after
computationally lesioning that node is associated with higher
CU traits. Fourteen features are positively correlated with CU
traits: Tanner stage, IFG oper L, TP L, PostCG L, SMA L,
AC, Cuneal L, aTFusC L, pTFusC R, FO L, PO L, Amygdala
L, PCC, and IFG R (all abbreviations are in Table 1).

Tanner stage indicates that those further along in pubertal
development demonstrate higher CU traits. The remaining
nodes indicate that less of a change in efficiency after lesion-
ing each node is associated with more CU traits. The two fea-
tures that could not be distinguished from zero were sex and
the anterior cerebellar region. The full model weights for the
features in the elastic net model and their corresponding R2

and p-values derived from permutations are provided in
Table 3, and the brain region beta weights are depicted in
Figure 2.

Meta-analytic decoding of region mask
identified emotional terms

The mask of regions used in the elastic net model is asso-
ciated with several maps within Neurosynth covering emo-
tions and affective information processing (Fig. 3). The
five terms with the highest associations involved the amyg-
dala’s response to affective stimuli, mood, neutral (emo-
tions), semantic control, and emotion regulation. When
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placed in the respective categories, emotional terms were of
the most prominent category with 29 terms followed by 9
cognitive terms and 2 related to disorders (post traumatic
stress disorder and anxiety disorder).

Meta-analysis of node terms loaded on CU traits
and psychopathy

A total of 13 nodes loaded on to CU traits and/or psychop-
athy, with the amygdala having the highest loading value.
Three of the nodes loaded on to CU traits, and all 13 loaded
on to psychopathy. A total of 10 nodes associated with adult
psychopathy but had not yet been identified in youth with CU
traits among the studies within Neurosynth.

Node hub differences at higher CU traits

There were only a few nodes for which hubness associated
with CU traits, but these hubs were notably less likely to be a
hub (either global or local) over the entire sample. For global
hubs, only the IFG oper L being a global hub associated with
higher CU traits (Std b = 0.178, p = 0.006). Importantly,
across the entire sample the probability of that region
being considered a hub was only 4.7% (Table 4) and was
not better than chance at being a global hub.

For local hubs, the aMTG L (Std b = 0.304, p = 0.002),
SPL L (Std b = 0.287, p < 0.001), ICC L (Std b = 0.054,
p = 0.025), Cuneal L (Std b = 0.110, p = 0.022), and IFG R
(Std b = 0.078, p = 0.038) being a local hub associated with
higher CU traits. Again, the probability of these regions
being a local hub across the sample was low (<17%) and

not better than chance (Table 5). Common node hubs across
the sample were identified for global hubs (AC, FO L,
Amygdala L, and IFG R; Table 4) as well as local hubs
(none; Table 5).

Targeting global hubs had less impact, whereas connector
non-hubs decreased efficiency

Less change in efficiency after computationally lesioning
global hubs was positively associated with higher CU traits
(Std b = 0.210, p = 0.006), but targeting local hubs did not
produce significant effects (Table 6). A greater decrement
in efficiency after lesioning connector non-hubs was also as-
sociated with higher CU traits (Std b =�0.184, p = 0.024),
but targeting peripheral nodes was not statistically significant
(Table 7).

No evidence of moderation

We found no statistically meaningful moderations for
modularity or Tanner stage. Results of these analysis are
placed in Supplementary Tables S2 and S3.

Heterogenous functional connectomes evidence
weak homogeneity

Figure 4 depicts the heterogeneity of individual brains
even among those with higher or lower CU traits. Results
were able to evidence some pattern-level similarities at
higher CU traits, but there was considerable heterogeneity
at the individual level.

Table 1. Selected Regions Coordinates, Abbreviations Used, and Descriptives on Change in Efficiency

Area Abbreviation

Coordinate Efficiency change

X Y Z Mean SD

Cerebellar anterior Cebellar.Anterior 0 �63 �30 �0.0067 0.0004
Inferior frontal gyrus R Language.IFG R 54 28 1 �0.0065 0.0004
Supramarginal gyrus L Salience.SMG L �60 �39 31 �0.0067 0.0005
Anterior insula R Salience.Ainsula R 47 14 0 �0.0067 0.0004
Posterior cingulate cortex DefalutMode.PCC 1 �61 38 �0.0069 0.0005
Vermis 9 Ver9 1 �55 �35 �0.0066 0.0005
Vermis 3 Ver3 1 �40 �11 �0.0063 0.0004
Amygdala L Amygdala L �23 �5 �18 �0.0064 0.0004
Planum temporale R PT R 55 �25 12 �0.0067 0.0004
Parietal operculum L PO L �48 �32 20 �0.0065 0.0003
Frontal pole L FP L �40 18 5 �0.0060 0.0004
Temporal fusiform cortex posterior division R pTFusC R 36 �24 �28 �0.0067 0.0004
Temporal fusiform cortex anterior division L aTFusC L �32 �4 �42 �0.0067 0.0004
Cuneal L Cuneal L �8 �80 27 �0.0066 0.0004
Anterior cingulate AC 1 18 24 �0.0067 0.0004
Supplementary motor area L SMA L �5 �3 56 �0.0066 0.0004
Intracalcarine cortex L ICC L �10 �75 8 �0.0064 0.0004
Superior parietal lobule L SPL L �29 �49 57 �0.0068 0.0004
Postcentral gyrus L PostCG L �38 �28 52 �0.0067 0.0004
Inferior temporal gyrus temporooccipital L toITG L �52 �53 �17 �0.0069 0.0004
Middle temporal gyrus anterior division L aMTG L �57 �4 �22 �0.0069 0.0006
Temporal pole L TP L �40 11 �30 �0.0050 0.0008
Inferior frontal gyrus pars opercularis L IFG oper L �51 15 15 �0.0069 0.0005

Efficiency change is the change in baseline efficiency after lesioning the brain region.
SD, standard deviation.
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FIG. 1. Predicting continuous CU traits with elastic net regression using 26 selected features. (A) Regression line and true
R2 value. (B) Two thousand permutations testing of R2 values for the model and permuted p-value for true R2 value.
(C) Fivefold cross-validation betas for each feature in the elastic net model that accounted for variance in CU traits. CU,
callous-unemotional.

Table 2. Elastic Net Cross-Validation Fit Statistics

Cross validation

Mean squared error

Best fitElastic net Dummy

Comparison to a dummy model
1 7.522 10.265 Elastic net
2 4.168 5.946 Elastic net
3 9.042 21.315 Elastic net
4 5.875 7.941 Elastic net
5 7.651 9.588 Elastic net

MSE R2 MAE

Elastic net model fit
Training model 4.244 – 0.268 0.601 – 0.075 1.569 – 0.060
Test model 6.784 – 1.613 0.310 – 0.123 2.00 – 0.169

True R2 Distribution p

Permutation R2 0.313 0.146 – 0.0922 <0.001

MAE, mean average error; MSE, mean standard error.
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Discussion

Overall results reveal that understanding efficiency
changes after computational lesioning individual-level con-
nectomes accounts for variation in CU traits in a community
sample of adolescents. Moreover, the network properties of
these nodes are important for distinguishing their impact
on the network. The results of this study demonstrate the im-
portance of topological features of the brain for gaining a
mechanistic understanding of traits that may aid the identifi-
cation of individuals higher in CU traits.

Lesioning nodes negatively impacted efficiency across
all participants

As expected, the average response of the functional con-
nectome for all selected nodes resulted in a reduction in ef-
ficiency. This reflects the importance of each individual
node for the function of the entire brain, and removing any
node has an impact on the brain’s efficiency. Although this
is a descriptive statistic, it is important for interpreting the re-
sults. Specifically, positive associations indicate resilience of
the connectome because changes in efficiency are closer to

Table 3. Beta Weights and Permuted p Values Sorted by Permuted R
2

Weights R2
perm pperm

DefaultMode.PCC 0.688* 0.077 0.033
Salience.Ainsula R �0.496* 0.070 0.015
PO L 0.312* 0.049 0.001
Ver3 �0.227* 0.036 0.006
Amygdala L 0.198* 0.036 0.005
ICC L �0.346* 0.033 0.016
PostCG L 0.285* 0.031 0.018
Modularity �0.170* 0.024 0.006
Ver9 �0.135* 0.021 0.007
SPL L �0.314* 0.021 0.037
Salience.SMG L �0.191* 0.019 0.010
IFG oper L 0.094* 0.017 0.003
TP L 0.318* 0.017 0.028
FO L 0.214* 0.014 0.020
SMA L 0.453 0.012 0.056
pTFusC R 0.151* 0.012 0.003
AC 0.259* 0.008 0.028
Tanner 0.229* 0.006 0.034
toITG L �0.434* 0.005 0.047
aMTG L �0.024* 0.003 <0.001
Cerebellar.Anterior �0.049 0.002 0.050
Language.IFG R 0.011* 0.001 <0.001
aTFusC L 0.003* 0.001 <0.001
Sex 0.040 0.001 0.060
PT R �0.344 0 0.062
Cuneal L 0.002* 0 <0.001

*pperp < 0.05.

R2 and p-values tested with 2000 permutations.

FIG. 2. Brain region mask and corresponding beta values accounting for variance in CU traits. Red and blue indicate pos-
itive and negative beta values, respectively. See Table 1 for coordinates of each region and Table 3 for specific beta values.
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FIG. 3. Meta-analytic decoding demonstrating that emotional terms are associated with brain mask identified from simu-
lated lesions and individual nodes loading on the CU traits and psychopathy. (A) Word cloud of top 40 terms where size
indicates strength of correlation value and top 5 terms are outlined in light blue; (B) meta-analytic R values for the top 5
terms; (C) categories of identified terms; (D) loading of node terms on CU traits or psychopathy.

Table 4. Results of Characterizing Global Nodes in Relation to Callous-Unemotional Traits

Coef. Std.Coef Std.Err. z p

Bootstrapped, 95% CI Whole sample probability global hub

Lower Upper Probability >Chance

IFG oper L 6.286* 0.178 2.275 2.763 0.006 1.827 10.746 0.047 False
PostCG L 1.617 0.139 1.104 1.464 0.143 �0.547 3.78 0.001 False
ICC L 0.428 �0.105 0.828 0.516 0.606 �1.195 2.051 0.001 False
SMA L �0.005 �0.078 0.987 �0.005 0.996 �1.94 1.93 0.001 False
AC 1.179 0.017 0.887 1.329 0.184 �0.56 2.918 0.500 True
aTFusC L 1.237 0.015 1.056 1.171 0.242 �0.833 3.307 0.001 False
FO L �0.215 �0.045 1.018 �0.211 0.833 �2.211 1.781 0.523 True
PO L 0.517 �0.064 0.989 0.523 0.601 �1.421 2.455 0.442 False
Amygdala L 1.564 �0.017 1.014 1.542 0.123 �0.424 3.552 0.547 True
Ver9 1.467 �0.002 0.951 1.542 0.123 �0.397 3.331 0.001 False
Salience.Ainsula R 0.280 0.136 1.152 0.243 0.808 �1.978 2.538 0.349 False
Salience.SMG L 0.543 �0.183 0.875 0.621 0.535 �1.172 2.259 0.001 False
Language.IFG R �0.272 �0.159 0.918 �0.297 0.767 �2.071 1.527 0.512 True
Individual Var 8.925

Nine nodes were excluded due to zero participants with a global hub for that node.
The whole sample probability test compares the whole sample probability of being a global node and compares this with a random sample.

True indicates that the sample probability is better than chance, whereas False indicates that the sample probability is not better than chance.
See Table 1 for abbreviations for brain regions.
*p < 0.05.
CI, confidence interval.
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zero whereas a negative association indicates a node where
the functional connectome is vulnerable.

Computational lesioning of brain nodes predicts CU traits

As anticipated, feature selection identified cortical midline
regions (e.g., anterior cingulate, posterior cingulate cortex)
and regions associated with salience detection (right anterior
insula, left supramarginal gyrus, and left anterior amygdala).
What was less expected is that elastic net weights reveal im-
portant regions where the functional connectome is resilient
where it was not expected to be. For example, the weight for

the left amygdala was positive, suggesting that there was less
of a change in efficiency after removing that node.

The amygdala is a central hub for processing emotions and
is heavily involved in social interactions (Bickart et al.,
2014); thus, we would expect greater decrements after its re-
moval. However, the resilience of the connectome at higher
CU traits after removing the amygdala suggests that there is
less integration with the rest of the connectome. Although
many task-based studies found a lack of activation in the
right amygdala at higher CU traits (Dotterer et al., 2017;
Jones et al., 2009; Viding et al., 2012), our study, consistent
with others (Marsh et al., 2008; Yang et al., 2009), reveals

Table 5. Results of Characterizing Local Nodes in Relation to Callous-Unemotional Traits

Coef. Std.Coef Std.Err. z p

Bootstrapped, 95% CI Whole sample probability local hub

Lower Upper Probability >Chance

IFG oper L 1.790 0.069 1.138 1.573 0.116 �0.441 4.021 0.198 False
TP L 2.179 0.128 1.386 1.573 0.116 �0.537 4.895 0.140 False
aMTG L 3.851* 0.304 1.233 3.124 0.002 1.435 6.266 0.174 False
toITG L �0.203 �0.155 1.16 �0.175 0.861 �2.476 2.07 0.186 False
PostCG L 0.295 �0.098 1.229 0.24 0.810 �2.113 2.704 0.151 False
SPL L 4.265* 0.287 1.193 3.574 <0.001 1.926 6.604 0.140 False
ICC L 2.822* 0.054 1.256 2.248 0.025 0.361 5.283 0.140 False
SMA L 1.549 0.034 1.285 1.206 0.228 �0.969 4.067 0.151 False
AC 1.663 �0.021 1.208 1.376 0.169 �0.705 4.03 0.151 False
Cuneal L 2.593* 0.110 1.132 2.29 0.022 0.373 4.812 0.174 False
aTFusC L 0.073 �0.173 1.151 0.063 0.95 �2.182 2.328 0.186 False
pTFusC R 0.243 �0.072 1.346 0.181 0.857 �2.395 2.881 0.174 False
FO L 0.253 �0.030 1.368 0.185 0.853 �2.429 2.934 0.163 False
PO L 0.065 �0.190 1.246 0.052 0.959 �2.379 2.508 0.221 False
PT R 2.074 0.069 1.303 1.592 0.111 �0.48 4.627 0.140 False
Amygdala L 1.055 �0.059 1.355 0.778 0.436 �1.601 3.710 0.151 False
Ver3 1.201 �0.001 1.112 1.079 0.28 �0.979 3.381 0.174 False
Ver9 �0.388 �0.120 1.264 �0.307 0.759 �2.865 2.089 0.174 False
DefaultMode.PCC 2.496 0.138 1.237 2.018 0.044 0.071 4.921 0.186 False
Salience.Ainsula R �0.382 �0.110 1.147 �0.333 0.739 �2.63 1.866 0.163 False
Salience.SMG L �0.445 �0.108 1.606 �0.277 0.782 �3.592 2.703 0.128 False
Language.IFG R 2.761* 0.078 1.331 2.075 0.038 0.153 5.37 0.116 False
Cerebellar.Anterior �0.227 �0.124 1.238 �0.183 0.855 �2.654 2.20 0.198 False
Individual Var 7.705

Whole sample probability compares the whole sample probability of being a local node and compares this with a random sample. True
indicates that the sample probability is better than chance, whereas False indicates that the sample probability is not better than chance.

See Table 1 for abbreviations for brain regions.
*p < 0.05.

Table 6. Results of Targeted Lesions for Global and Local Nodes Predicting Callous-Unemotional Traits

Coef. Std.Coef Std.Err. z p

Bootstrapped, 95% CI

Lower Upper

Intercept 6.468* 0.000 1.173 5.514 <0.001 1.678 11.771
D Global nodes 20.641* 0.210 7.567 2.728 0.006 1.714 42.429
D Local nodes 30.113 0.140 17.183 1.753 0.08 �12.041 71.427
Modularity �209.001* �0.220 99.053 �2.11 0.035 �482.037 3.366
Tanner 0.812 0.237 0.355 2.285 0.022 0.062 1.509
Sex 0.078 0.012 0.715 �0.109 0.913 �1.752 1.560
Individual var 4.997

Global and local hubs were included in one analysis because of their statistical independence but not with their non-hub counterparts be-
cause of multicollinearity.

*p < 0.05.
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Table 7. Results of Targeted Lesions for Connector and Periphery Nodes Predicting

Callous-Unemotional Traits

Coef. Std.Coef Std.Err. z p

Bootstrapped, 95% CI

Lower Upper

Intercept �4.424 �0.001 4.333 �1.021 0.307 �13.574 1.1781
D Connector nodes �22.817* �0.181 10.107 �2.258 0.024 �42.462 �6.223
D Periphery nodes �17.117 �0.132 23.39 �0.732 0.464 �85.450 19.768
Modularity �204.058* �0.215 99.714 �2.046 0.041 �490.497 �18.660
Tanner 0.836* 0.245 0.354 2.361 0.018 0.139 1.599
Sex 0.216 �0.028 0.681 0.317 0.751 �1.926 1.258
Individual var 6.361

Connector and periphery non-hubs were included in one analysis because of their statistical independence but not with their hub counter-
parts because of multicollinearity.

*p < 0.05.

FIG. 4. Depicts the heterogeneity of adolescent brains even among those with similar scores at higher and lower CU traits.
Meaning there are differences by individual even among those higher or lower in CU traits. Even though all analyses were
done with continuous variables, we selected at random three participants with high and low levels of CU traits who were
randomly selected to demonstrate heterogeneity within and between those at high and low CU traits. Note on color bars:
the top color bar is for figures (A, B), whereas the lower color bar is for figures (C, D). (A) Individual-level functional con-
nectomes demonstrate differences in connection (note some have negative connection and others do not and note the differ-
ences in positive connections); (B) changes in network efficiency after lesioning each node demonstrate differences in
patterns of impact (note differences in the distribution of the positive and negative impact of lesioning each node); (C) lo-
cation of global and local hubs demonstrates differences in hubness by individual (note different locations of global and local
hubs); (D) number of hubs and non-hubs for each individual participant; each column is a participant, and it demonstrates
different numbers of hubs.
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that the left amygdala had less of an impact on the functional
connectome’s efficiency.

This discrepancy may be an artifact of stimuli presentation
during a task-dependent state in prior studies (Funayama
et al., 2001; Phelps et al., 2001). The present study did not
impose a task-dependent state; thus, results plausibly reflect
a more trait-like impairment involving less integration of the
left amygdala associated with CU traits.

Additional positive associations were revealed in cortical
midline structures, including the posterior cingulate and the
anterior cingulate. The posterior cingulate is a central hub
for information exchange (Leech et al., 2012) and is heavily
involved in emotional arousal and attentional focus (Leech
and Sharp, 2014) in healthy brains. The anterior cingulate is
similarly involved in attention allocation, conflict monitoring,
decision making, and emotion (Botvinick, 2007; Botvinick
et al., 2004; Bush et al., 2000). As such, removal of these
nodes was expected to impact the functional architecture of
the brain in typically developing samples. However, less of
a response of these nodes at higher CU traits suggests less in-
tegration with the rest of the connectome and less involvement
in core processes for cognitive and emotional functioning.

However, lesioning other salience regions revealed a neg-
ative association of the right anterior insula and left supra-
marginal gyrus with CU traits. Where the right anterior
insula is involved in attention (Eckert et al., 2009) involving
interoceptive awareness (Craig, 2009, 2011) that aids both
emotion and cognitive functioning (Touroutoglou et al.,
2012), the left supramarginal gyrus is primarily involved in
phonological processing (Celsis et al., 1999), though hypoac-
tivity of this region has been associated with social cognition
impairments in autism (Hadjikhani et al., 2006) and early
psychosis (Park et al., 2021).

The negative impact on the functional connectome after re-
moving these nodes may indicate an overreliance on these re-
gions for similar processes that would be distributed across
the amygdala and other cortical midline structures, leading
to decreased whole-brain global efficiency. The differences
in the brains’ response to removal of these nodes characterize
the impairments observed in CU traits as they appear to center
around both cognitive and affective processing.

Modularity was another brain property accounting for vari-
ance in CU traits. Lower modularity, as revealed in prior work
(Jiang et al., 2021), is associated with higher CU traits. Beyond
differences in specific connections, decreased modularity may
better describe the apparent lack of convergence among func-
tional connectivity studies of CU traits, all of which generally
demonstrate less intra-network connectivity and abnormal
inter-network connections (Cohn et al., 2015; Umbach and
Tottenham, 2021; Winters et al., 2021c; Yoder et al., 2016).

This is an important property that may lead to a better un-
derstanding of multiple CU trait variants underlying individ-
ual differences (Fanti et al., 2018; Fanti et al., 2013;
Hadjicharalambous and Fanti, 2018; Sebastian et al.,
2012). Specifically, which networks and the extent to
which they exhibit decreased modularity may underlie dif-
ferences in CU trait profiles.

Meta-analytic decoding of mask identified emotional terms

Meta-analytic decoding of the mask of regions identified
in the present analysis primarily consisted of terms related

to emotion and cognitive processes. Of the top 40 terms as-
sociated with the resulting mask, 29 were related to emotion
processing (e.g., mood, amygdala response to emotion stim-
uli, and emotion regulation) and 9 involved cognitive pro-
cesses (e.g., semantic control, cognitive encoding, and
memory). This constellation of associations is consistent
with the broader literature and theoretical accounts that CU
traits involve both cognitive and, more substantially, affec-
tive processing impairments.

Meta-analysis of node terms loaded on CU traits
and psychopathy

Meta-analytic activations in the identified nodes revealed
13 individual nodes loading on either CU traits or psychop-
athy. Of these nodes, the five highest loading nodes were the
amygdala, posterior cingulate, anterior cingulate, left supra-
marginal gyrus, and anterior insula. Importantly, 10 of these
nodes loaded only on psychopathy, which suggests that our
results revealed brain regions associated with a related
adult phenotype that was not previously found in CU traits.
It is, therefore, plausible that this mask may provide a com-
prehensive picture of neural underpinnings that could help
predict CU traits.

No evidence of moderation

There was no statistical evidence for modularity or Tanner
stage moderating node efficiency changes related to CU
traits. Moreover, the correlation between sex and CU traits
did not meet study criteria to be further evaluated as a poten-
tial moderator. Overall, this suggests that the identified asso-
ciations are direct and not affected by theoretically relevant,
potential moderators.

Node hubness is different at higher CU traits

Both global and local hubs indicated at higher CU traits
are not hubs in those that are lower in CU traits, suggesting
a completely different topological structure at higher CU
traits. Of the nodes surviving feature selection, a global
hub in the IFG oper L and local hubs of the aMTG L, SPL
L, ICC L, Cuneal L, and IFG R was associated with higher
CU traits, which was different from the rest of the sample.

For example, the probability of the inferior frontal gyrus
pars opercularis L being a global hub across the entire sample
was about 4.7% and not better than chance even though its
‘‘hubness’’ was associated with elevated levels of CU traits.
Similar results were also found among the aforementioned
local hubs. Conversely, the amygdala has been demonstrated
to be an important hub in the brain (Bickart et al., 2014) and
the full sample results support this finding (i.e., the left amyg-
dala was identified as a global hub above chance).

However, the left amygdala’s likelihood of being a hub
was not associated with CU traits. This specificity of CU-
related hubs further highlights the notion that certain patterns
of variation in brain topology likely account for differences
in the brain’s association with CU traits.

Targeting global hubs increased whereas connector
non-hubs decreased efficiency

Targeting hubs and non-hubs revealed not only some simi-
larities but also important differences in functional architecture
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at higher CU traits. While targeting global hubs increased ef-
ficiency as expected, targeting local hubs had a positive trend-
ing yet non-significant effect despite predictions that doing so
would decrease efficiency. Lesioning local hubs tends to
remove shorter, more dense, and oftentimes more efficient
connections, sparing longer and less efficient connections
(Sporns et al., 2007; Tao and Rapp, 2021).

The fact that functional connectivity patterns of those
higher in CU traits correlate with less modularity—and are
therefore less likely to have highly interconnected sets of
local connections aiding efficiency—may explain why
there was less of an impact on connectomes when attacking
these nodes at higher CU traits.

Efficiency changes after computationally lesioning con-
nector non-hubs were negatively associated with CU traits.
Because these nodes are more connected but do not possess
the far-reaching connections of global hubs (He et al., 2009;
Tao and Rapp, 2021), these nodes are more likely to have
shorter, more abundant connections that are critical for effi-
cient functional connectivity. Thus, this finding is consistent
expectations that lesioning connector non-hubs would logi-
cally negatively impact efficiency.

Weak homogeneity of brains in relation to CU traits

While pattern-level similarities were identified in relation
to CU traits, substantial heterogeneity exists between indi-
viduals’ brains. This substantiates the weak homogeneity as-
sumption (Gates, 2022) and, consistent with prior work
(Dotterer et al., 2020; Winters et al., 2021c), stresses the
need to account for individual heterogeneity of the brain’s
functional architecture in relation to CU traits. As such, we
believe that our decision to not impose unrealistic homoge-
neity assumptions on adolescent brains lends itself to greater
confidence in this study’s results.

Limitations

The current study’s results should be interpreted with the
following limitations in mind. First, the present study had a
modest sample size that may have missed some important ef-
fects. For example, sex effects were trending as expected, but
we may not have had sufficient power to detect these effects.
Knowing whether sex moderates the relationships observed
is worthy of future study, and the identified brain mask
should be applied to larger samples with adequate distribu-
tions of males and females.

Second, we sampled a range of ages that span multiple ad-
olescent developmental stages (i.e., early to mid-
adolescents), and larger samples within or across age bands
would permit testing for age-specific differences. Third,
while identified effects explained variance in CU traits, di-
rectionality cannot be determined from this cross-sectional
sample. Longitudinal studies are needed to better examine
the possibility of causality.

Finally, the sample analyzed was a community sample
that, although exhibiting similar neurocognitive (Viding
and McCrory, 2012) and neurobiological impairments
(Seara-Cardoso et al., 2022) as forensic individuals, may
not adequately capture the extremely high levels of CU traits
seen among forensic and clinical samples. As such, sampling
community along with clinical and forensic samples are
needed for future investigations of this nature.

Conclusions

The present analyses demonstrate that knowing informa-
tion about how individual-level brain connectomes respond
to computationally simulated lesioning can explain meaning-
ful variance in CU traits. This work identifies which nodes of
adolescents’ functional connectomes are more resilient or
vulnerable to computational lesioning and how this pattern
differs among individuals with high levels of CU traits. For
example, the left amygdala is a central and highly connected
node that aids the coordination of salience and emotion pro-
cessing in typically developing samples; the lack of response
observed in the current study, however, suggests that the
brain’s topological structure differs substantially at higher
levels of CU traits.

Similar results implicate the anterior cingulate and poste-
rior cingulate cortices, cortical midline structures that are
pivotal for conflict monitoring, attention, and emotion pro-
cessing. These differences plausibly account for behavior
differences related to neurocognitive and emotional pro-
cesses observed among youth with elevated CU traits. Fur-
ther topological differences were observed when lesioning
local hubs did not impact efficiency as expected.

These are important features describing qualities of infor-
mation processing streams in the brain of youth with CU
traits that suggest functional differences beyond activation
or connection strength. Together, these results indicate a pat-
tern of resilience and vulnerability, as well as underlying to-
pological structure, characterizing CU traits. Future studies
can advance our understanding of CU traits by using these
identified regions to further investigate functional brain
properties underlying CU traits as well as replication of pre-
dicting the severity of CU traits.
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