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Abstract 

Background  Lung adenocarcinoma (LUAD) is an extraordinarily malignant tumor, with rapidly increasing morbid-
ity and poor prognosis. Immunotherapy has emerged as a hopeful therapeutic modality for lung adenocarcinoma. 
Furthermore, a prognostic model (based on immune genes) can fulfill the purpose of early diagnosis and accurate 
prognostic prediction.

Methods  Immune-related mRNAs (IRmRNAs) were utilized to construct a prognostic model that sorted patients 
into high- and low-risk groups. Then, the prediction efficacy of our model was evaluated using a nomogram. The 
differences in overall survival (OS), the tumor mutation landscape, and the tumor microenvironment were further 
explored between different risk groups. In addition, the immune genes comprising the prognostic model were sub-
jected to single-cell RNA sequencing to investigate the expression of these immune genes in different cells. Finally, 
the functions of BIRC5 were validated through in vitro experiments.

Results  Patients in different risk groups exhibited sharply significant variations in OS, pathway activity, immune cell 
infiltration, mutation patterns, and immune response. Single-cell RNA sequencing revealed that the expression level 
of BIRC5 was significantly high in T cells. Cell experiments further revealed that BIRC5 knockdown markedly reduced 
LUAD cell proliferation.

Conclusion  This model can function as an instrumental variable in the prognostic, molecular, and therapeutic pre-
diction of LUAD, shedding new light on the optimal clinical practice guidelines for LUAD patients.
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Introduction
As an extremely malignant tumor, lung cancer is among 
the most commonly diagnosed cancers (11.6% of the 
total cases) and is the leading cause of cancer death 
(18.4% of all cancer deaths) [1]. All lung cancers con-
sist of two main subtypes: small-cell lung carcinoma 
(SCLC) and non-small cell lung carcinoma (NSCLC) 
[2]. Accounting for over 40% of non-small cell lung can-
cers, lung adenocarcinoma (LUAD) is overwhelmingly 
the most common histologic type of lung cancer [3]. The 
most advantageous approach for managing patients with 
locally advanced non-small cell lung cancer (NSCLC) 
that is amenable to surgical resection involves adminis-
tering chemoradiation as a minimum [4]. The utilization 
of trimodality treatment, which encompasses surgical 
resection, has been a contentious topic for numerous 
decades. Furthermore, for patients with inoperable or 
unresectable locally advanced disease, the adoption of 
immunotherapy consolidation following chemoradia-
tion has established a novel benchmark for care. Despite 
improvements in surgery in recent years, the prognosis 
of lung cancer remains unfavorable. Thus, more compre-
hensive therapies are urgently needed. The development 
of cancer genomics in recent decades has permitted the 
identification of several gene alterations as driver gene 
mutations for LUAD, including anaplastic lymphoma 
kinase (ALK), epidermal growth factor receptor (EGFR) 
and KRAS [5–7]. Several therapies that target these gene 
alterations have been employed. EGFR is found to be 
mutated in as much as 59.7% of NSCLC tumors in Asian 
patients and approximately 16.7% of those in Caucasian 
patients. Novel therapeutic agents known as tyrosine 
kinase inhibitors (TKIs) have been developed to specifi-
cally target these mutations, including erlotinib, gefitinib, 
and afatinib, which have demonstrated response rates 
of up to 75% [8]. The mechanism of targeted therapy 
focused on these mutation sites involves the use of drugs 
that specifically inhibit the activity of the altered protein. 
For example, EGFR inhibitors, such as erlotinib and gefi-
tinib, block the activity of the EGFR protein, preventing 
the activation of downstream signaling pathways that 
promote cell growth and survival. Similarly, ALK inhibi-
tors, such as crizotinib and ceritinib, block the activity of 
the ALK protein, which is often altered in lung cancer. 
In summary, the mechanism of targeted therapy focused 
on ALK, EGFR, KRAS, and other mutation sites involves 
the use of drugs that specifically inhibit the activity of the 
altered protein. These drugs can effectively target cancer 
cells while sparing healthy cells, reducing side effects, and 
improving patient outcomes. Despite improvements in 
the prognoses of some patients after receiving targeted 
treatments, a large number of patients eventually become 
resistant to targeted therapy [9]. For example, all patients 

possessing activating mutations in EGFR eventually 
encounter resistance to TKIs after a median duration of 
12  months. The most prominent resistance mechanism 
observed is a secondary point mutation located in exon 
20 of EGFR (T790M), wherein methionine is substituted 
by threonine at amino acid position 790 [10]. Under these 
circumstances, the advent of immunotherapy provides 
novel insight into lung cancer therapy.

The rapid development of cancer immunology in recent 
years has provided a novel perspective for cancer therapy 
[11]. A complex network has been well established to 
regulate interactions between the immune system and 
cancers. The human immune system can recognize and 
extinguish abnormal tumor cells. Immune checkpoint 
inhibitors (ICIs) have recently gained increasing atten-
tion as an essential part of immunotherapy [12]. Fur-
thermore, tremendous advances in immune checkpoint 
blockade have introduced a paradigm shift in treatment 
for patients with lung cancer. In addition, immune check-
point inhibitor (ICI) treatment has functioned as the 
standard of care for patients with extensive-stage small 
cell lung cancer or locally advanced/metastatic non-small 
cell lung cancer without EGFR/ALK alterations [13]. 
Thus, ICIs have been widely used in LUAD therapy. For 
example, immune checkpoint inhibitors (ICIs) that tar-
get programmed cell death 1 (PD-1) and programmed 
cell death-ligand 1 (PD-L1) play a significant role in the 
immune check-point pathway, exhibiting excellent and 
durable antitumor activity in LUAD patients [14]. The 
signaling pathway of programmed cell death 1 (PD-1) is 
often co-opted by malignant cells as a means of evading 
immunological scrutiny. Consequently, the PD-1 path-
way serves to stifle T cell activities, such as their acti-
vation, proliferation, and production of cytokines. As 
it stands, antibodies that obstruct either PD-1 itself or 
its ligand, PD-L1, have gained regulatory approval for 
employment in treating an array of solid and hematologic 
neoplasms [15]. In addition to PD-1 and PD-L1, cyto-
toxic T-lymphocyte-associated antigen 4 (CTLA-4) also 
presents promising results in the treatment of advanced-
stage lung cancer patients [16]. Despite the great impact 
of immunotherapy on the treatment of LUAD patients, 
many patients still experience disease progression dur-
ing treatment or after treatment discontinuation due to 
immune resistance [17]. In immunocompetent individu-
als, neoplastic cells can undergo three outcomes: eradi-
cation, stasis, or evasion. Tumor immune evasion (TIE) 
refers to a mechanism by which the immune milieu 
of molded neoplasms can proliferate via an unbridled 
route [18]. The continual interactions amidst neoplas-
tic cells and the neoplastic microenvironment are piv-
otal in neoplasm inception, advancement, metastasis, 
and reaction to therapeutic interventions [19]. The 
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tumor microenvironment plays an important role in the 
immunotherapy response. Exploring the tumor micro-
environment (TME) can improve the effect of cancer 
immunotherapy. Under these circumstances, construct-
ing an immune gene signature is crucial to predict the 
prognosis and efficacy of LUAD immunotherapy.

In our study, a novel immune gene signature marker 
that can predict the response to immunotherapy was 
developed. After being validated by the GEO database, its 
prediction value in the prognosis of LUAD patients was 
proven to be excellent. Then, several clinicopathological 
characteristics were analyzed to explore the correlations 
between them and the prognostic model. To elucidate the 
TME of LUAD, the tumor mutation burden (TMB) and 
immune infiltration were further analyzed. In addition, 
the prediction of immunotherapy response and prog-
nostic ability of various models were compared. Further-
more, BIRC5, an immune gene in the prognostic model, 
was identified to be significantly enriched in T cells by 
single-cell sequencing analysis. Finally, cell experiments 
were further performed to confirm the effects of BIRC5 
on LUAD cells.

Materials and methods
Public data collection
Two public databases were leveraged in this study. RNA-
seq data of 551 samples (497 tumor samples, 54 normal 
samples) with clinical characteristics and tumor mutation 
burden (TMB) were collected from The Cancer Genome 
Atlas (TCGA) database (https://​portal.​gdc.​cancer.​gov/),   
functioningas the training set. Samples with an unknown 
total survival time were excluded. Two transcription 
profile datasets (GSE72094 and GSE26939), consisting 
of 512 samples in total, were obtained from GEO data-
bases (https://​www.​ncbi.​nlm.​nih.​gov/​geo/) and used as 
validation sets. The criteria for messenger RNA (mRNA) 
expression data were set as log2 conversion, and the aver-
age expression amount was considered the gene expres-
sion quantity. Additionally, immune-related genes (IRGs) 
were obtained from IMMPORT. (https://​www.​immpo​rt.​
org/​home) and InnateDB (https://​www.​innat​edb.​ca/).

Differentially expressed immune‑related genes
Differentially expressed genes between LUAD and corre-
sponding normal tissues were analyzed based on TCGA 
data to screen out immune-related genes (IRGs) involved 
in oncogenesis. Aberrantly expressed genes were 
obtained using the ‘limma’ package [20–22] (|logFC |> 1 
and false discovery rate (FDR) < 0.05). Then, differentially 
expressed IRGs were obtained by interacting IRGs and 
differentially expressed genes. Furthermore, the R pack-
age ‘ggplot2’ was utilized to complete the volcano map. 

The log2(fold change) was set to two to improve the reli-
ability of the result in the volcano map.

Weighted correlation network analysis (WGCNA)
Based on the principle of WGCNA calculation [23–25], 
highly coexpressed gene modules represent many spe-
cifically expressed genes that are significantly correlated 
with several tumors. To obtain the genes extraordinar-
ily related to lung adenocarcinoma, weight correlation 
network analysis was further conducted. By using the R 
packages ‘WGCNA’ and ‘limma’, different modules con-
taining coexpressed IRGs were obtained. The modules 
were named by different colors, and the number repre-
sents the significance of the difference between tumor 
samples and normal samples.

Constructing an IRG‑related prognostic model for LUAD
First, the expression of the coexpressed genes in TCGA 
and GEO was obtained by intersecting the transcriptome 
profile collected from TCGA data and GEO data. Then, 
based on the weighted correlation network analysis, 
IRGs in the ME turquoise module were considered dif-
ferentially expressed to the greatest extent. (The lowest p 
value). Additionally, the profiles obtained as mentioned 
above were included in the intersection to obtain the sig-
nificantly differentially expressed IRGs. Furthermore, by 
leveraging univariate Cox proportional hazard regres-
sion, prognosis-related immune genes in the training 
cohort were screened out with the help of the R packages 
‘survival’ and ‘survminer’, with the screening criterion 
set to a p value < 0.05. Moreover, the IRG-related prog-
nostic model was constructed by a multivariate Cox 
proportional hazards model based on prognosis-related 
immune genes. The risk score was calculated using a lin-
ear combination of the Cox coefficient and gene expres-
sion as follows:

where N, Expi, and Coei represent the gene number, 
level of gene expression, and coefficient value, respec-
tively. The median risk score was considered the cut-
off value to divide all LUAD patients into high-risk and 
low-risk groups. In the model, the risk score reflected the 
prognosis of LUAD patients: a higher score indicated a 
worse prognosis. TCGA data were selected as the train-
ing cohort, while two GEO datasets were selected as the 
test cohort. Finally, to assess the prognostic prediction 
value of the model, both the training cohort and the test 
cohorts were enrolled in the time-dependent survival 
curve analysis by using the R package ‘timeROC’.

Risk score =
n

i=1
Expi ∗ Coei ,

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.immport.org/home
https://www.immport.org/home
https://www.innatedb.ca/
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Validation of the prognostic model
To evaluate the accuracy of this prognostic model, time-
dependent ROC analysis was leveraged, and comparisons 
with other models were further performed. Moreover, 
the prognostic value of the IRG risk model was evaluated 
by leveraging both univariate and multivariate analyses 
of prognostic factors using Cox proportional hazards 
regression. Age and risk scores were treated as ordinal 
variables. Gender was coded as male (1) and female (0), 
and stage was treated as an ordinal variable, coded as 
stage I (1), stage II (2), stage III (3), and stage IV (4). Vari-
ables with a p value < 0.05 based on univariate analysis 
were further enrolled in multivariate analysis. Only vari-
ables with p values < 0.05 in both univariate and multivar-
iate analyses were identified as independent prognostic 
factors. We constructed a nomogram to further explore 
the correlation between some clinicopathological char-
acteristics and the prognostic model. Calibration curves 
were applied to appraise the consistency between the 
actual survival results and predictions.

Pathway and enrichment analysis
To probe the significant biological processes of these 
differentially expressed IRGs, pathway and enrichment 
analyses were performed with the R package ‘clusterPro-
filer’. Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analyses were 
performed. P-adjusted values < 0.05 were considered 
significant thresholds. With the help of the R package 
‘ggplot2’, the top 30 terms or pathways were displayed.

To assess the functions associated with subtypes, gene 
set enrichment analysis (GSEA) was used by imple-
menting the R package ‘clusterProfiler’ and ‘limma’ with 
the hallmark gene sets (h.all.v7.5.symbols.gmt) and the 
GO-BP subsets of the canonical pathway gene sets (c2.
cp.go.v7.5.symbols.gmt).

Analysis of immune cell characteristics
The proportions of the immune-related cells from each 
sample were calculated using the R package ‘CIBER-
SORT’. CIBERSORT [26] was used to analyze the rela-
tive expression levels of 547 genes in individual tissue 
samples according to their GEPs to predict the propor-
tion of 22 types of TIICs in each tissue, including naive 
B cells, memory B cells, plasma cells, CD8 + T cells, 
naive CD4 + T cells, CD4 + resting memory T cells, 
CD4 + memory-activated T cells, follicular helper T 
cells, regulatory T cells, γδ T cells, resting natural killer 
cells, activated natural killer cells, monocytes, M0 mac-
rophages (M0), M1 macrophages (M1), M2 macrophages 
(M2), resting dendritic cells, activated dendritic cells, 

resting mast cells, activated mast cells, eosinophils, and 
neutrophils. A p value < 0.05 and 100 × permutation 
count was considered significant for subsequent analy-
sis. Additionally, the differences in the distribution of 
immune cells in the high- and low-risk groups were com-
pared. Then, survival curves were completed based on 
immune-related cells. Finally, we explored the relation-
ship between the risk score and immune cell infiltration 
in the tumor microenvironment.

TMB analysis
Based on data collected from TCGA, we calculated the 
TMB of each patient (mutations per million bases) using 
Strawberry Perl. Then, LUAD patients’ somatic vari-
ant data were analyzed and visualized using the package 
‘maftools’. The association between TMB and prognostic 
model risk score was further analyzed.

Clinical utility of this model
The relationships between our model and the clinico-
pathologic features (age, sex, pathological stage, T stage, 
M stage, and N stage) were assessed to evaluate the 
prediction ability of the model in LUAD patients. All 
patients were divided into two groups (high-risk group 
and low-risk group) according to the risk score obtained 
previously. Age was treated as a categorical variable 
(< = 65 and > 65), sex was coded as female and male, and 
pathological stage, T stage, N stage, and M stage were 
treated as ordinal variables.

Single‑cell analysis
Single-cell sequencing data were downloaded from 
the GEO database (GSE203360). Single-cell analysis 
was conducted based on Seruatv4.1.1. First, we fil-
tered out the genes with low expression in cells. Then, 
the filtered expression matrix was normalized by the 
NormalizeData function with the default parameters. 
Moreover, the top 3000 genes with the highest vari-
ations were obtained using the FindVariableFeatures 
function with the default ‘vst’ method. Principal com-
ponent analysis (PCA) was further conducted based 
on the scaled variable gene expression. The nearest 
neighbor graph was constructed using the FindClus-
ters function, and several cell clusters were identified 
based on the first ten principal components. Uniform 
Manifold Approximation and Projection (UMAP) was 
used to exhibit various cells in low dimensions. Finally, 
the differentially expressed genes were obtained using 
the FindMarkers function by Wilcoxon rank-sum test 
with the criteria that the │logFC│ between the two 
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groups exceeds  0.25 and the gene expression differ-
ence between the two groups is statistically significant. 
The results are displayed in violin, bubble, and volcano 
plots.

Cell culture and transfection
Lung cancer cell lines including A549, H1299, and 
H1650 cells was purchased from ATCC. The normal 
human bronchial epithelial (BEAS-2B) cell line was 
also purchased from ATCC. All the cells were cul-
tured in the 1640 medium (Gibco, USA) with 10% FBS 
(HyClone Sera, USA) and 1% penicillin‐streptomy-
cin (Sangon Biotech, China) in an atmosphere of 5% 
CO2 at 37 °C.The BIRC5 shRNA expression vector and 
scrambled shRNA nontarget control were obtained 
from Genewiz. Plasmids (Genewiz, China) were 
transfected through Lipofectamine 3000 (Thermo 
Scientific, USA) following the instructions from the 
manufacturer’s protocols.

RNA Extraction and Quantitative real‑time polymerase 
chain reaction (qRT‑PCR)
TRIzol Reagent (Thermo Scientific, USA) was used to 
extract RNA following the manufacturer’s protocol. 
RevertAid First Strand cDNA Synthesis Kit (Thermo 
Scientific, USA) was chosen to conduct the reverse tran-
scription experiment. First-strand cDNA was generated 
during the procedure. To detect the expression of genes, 
qRT-PCR following the SYBR protocol was carried out 
on a Roche lightcycler 480 PCR System by using ChamQ 
SYBR qPCR Master Mix (Vazyme, China). The follow-
ing primers were used in PCR: BIRC5, forward, 5’-TGC 
CTG​GCA​GCC​CTT​TC-3’ and reverse, 5’-CCT​CCA​
AGA​AGG​GCC​AGT​TC-3’; GAPDH, forward, 5’-GAG​
TCA​ACG​GAT​TTG​GTC​GT-3’, and reverse, 5’-TTG​
ATT​TTG​GAG​GGA​TCT​CG-3’.

Western blotting analysis
RIPA Buffer (Thermo Scientific, USA) with Protease 
Inhibitor Cocktail (Sangon Biotech, China) was used 
to extract the proteins from cells, and the concen-
tration of cell lysates was detected by BCA Protein 
Assay Kit (Sangon Biotech, China). The absorbance 
at 570  nm was measured (BioTek Epoch, USA). Equal 
quantities of proteins were separated by 12.5% sul-
fate–polyacrylamide gel electrophoresis (SDS-PAGE), 
and then the proteins were transferred to 0.2  μm NC 
membranes (GE whatman, USA). Nonspecific anti-
gens on the membranes were blocked by incubating the 
membranes in 5% skim milk. Primary antibodies were 
incubated with the membranes at 4  °C overnight. The 
HRP-conjugated secondary antibody was applied to the 
membranes and incubated for two hours. The signals of 

each washed membrane were detected by electrochem-
iluminescence. All the antibodies were purchased from 
ABclonal.

Cell Counting Kit‑8 (CCK‑8) Assay
A total of 2*103 cells in each plate were incubated under 
the conditions mentioned in the cell culture section in 
96-well plates. At 0 h, 24 h, 48 h, 72 h and 96 h, 10 μl 
CCK-8 solution mixed (Sangon Biotech, China) with 
90 μl RPMI 1640 medium was added to each plate and 
incubated for 2  h at 37  °C. The absorbance at 450  nm 
was measured (BioTek Epoch, USA).

Clone formation assay and EdU
Five hundred cells were inoculated in 6-well plates. The 
inoculated cells were then cultured in medium contain-
ing 10% FBS for fourteen days. Colonies were fixed with 
4% paraformaldehyde for 60 min at room temperature and 
then stained with crystal violet for 60 min at room temper-
ature. The number of colonies of each group was counted 
and statistically analyzed. EdU staining was carried out 
using the EdU kit (Beyotime Biotechnology, China) 
according to the manufacturer’s instructions. EdU-positive 
rate = EdU-positive cell count/cell count *100%.

Statistical analysis
Statistical analysis was performed with R 4.1.0 (https://​
www.R-​proje​ct.​org). The differences in continuous 
variables between the two groups were measured by 
independent t tests or nonparametric Wilcoxon tests. 
We used chi-square tests to calculate categorical vari-
ables. The Kaplan–Meier method and log-rank test were 
applied for survival analysis. Univariate and multivariate 
Cox regression analyses were performed to explore the 
correlation between clinicopathologic features and our 
prognostic model.

Results
Development and Evaluation of Immune‑Related 
Prognostic Model Based on the TCGA Dataset
The detailed flow chart for the prognostic model con-
struction was exhibited in Fig. 1.

The characteristics of patients
RNA-sequencing profiles and clinical data of 486 LUAD 
patients were downloaded from the TCGA-LUAD data-
set (https://​portal.​gdc.​cancer.​gov/), constituting the 
training cohort. Moreover, the GEO dataset (https://​
www.​ncbi.​nlm.​nih.​gov/​geo/) was leveraged to construct 
the test cohorts, one of which consisted of data from 
398 LUAD patients (GSE72094) and the other consisted 

https://www.R-project.org
https://www.R-project.org
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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of data from 114 LUAD patients (GSE26939). Then, the 
training cohort was used to develop the prognosis risk 
model, while the test cohorts were applied for valida-
tion. The clinical characteristics of both the training 
cohort and the test cohorts are summarized in Supple-
mentary Table S1.

Identification of differentially expressed immune‑related 
genes (DEIRGs) and functional enrichment analysis
By comparing LUAD tissues with normal tissues, 8013 
DE genes were identified, including 1912 downregulated 
and 6101 upregulated genes. Based on the two dimen-
sions of -log10FDR and log2FC, the distribution of all DE 

Fig. 1  The workflow of the present study

Fig. 2  Identification of differentially expressed (DE) immune-related genes (DEIRGs). A Volcano plot of the DE genes. B Interaction 
between immune-related genes and differentially expressed genes. C Volcano plot of DEIRGs. D-F Top 10 terms for Gene Ontology (GO) analysis 
of the DEIRGs. G Top 20 terms for Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the DEIRGs [27–29].
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genes is represented by a volcano map in Fig. 2A, thirteen 
of which are labeled and represent the genes involved in 
the prognostic model (constructed below). Additionally, 
2660 immune genes were collected from the IMMPORT 
and InnateDB databases. Based on DE and immune-
related genes, 675 DE immune genes, consisting of 260 
downregulated and 415 upregulated genes, were obtained 
(Fig. 2B). Similarly, the DEIRGs (differentially expressed 
immune-related genes) are shown in Fig. 2C.

Functional analysis of DE genes was performed based 
on Kyoto Encyclopedia of Genes and Genomes (KEGG) 
and Gene Ontology (GO) functional enrichment analy-
sis. As shown in Fig.  2D-F, the top 10 GO terms asso-
ciated with biological process (BP), cellular component 
(CC), and molecular function (MF) are displayed. The 
DEIRGs were found to be significantly enriched in 
positive regulation of cell activation, immunoglobu-
lin complex, and signaling receptor activator activity. 
Interestingly, in terms of BP, the DEIRGs dramatically 
correlated with immune-related functions, such as 

positive regulation of leukocyte activation and produc-
tion of molecular mediators of the immune response. 
Likewise, the top 20 enriched pathways are represented 
in Fig.  2G, the results of which demonstrated that 
DE immune genes were significantly enriched in the 
cytokine − cytokine receptor interaction, neuroactive 
ligand − receptor interaction, and chemokine signaling 
pathways.

Construction of the prognostic model based on DEIRGs
Using WGCNA, DEIRGs were grouped into modules to 
aggregate genes with similar traits (Fig.  3A); then, the 
‘MEturquoise’ module with the highest correlation with 
tumors (Cor = -0.86, P = 9e-157) was identified as a 
tumor-specific module (Fig. 3B). Then, after interacting 
the transcriptome sequencing data collected from the 
TCGA database and GEO database (GSE72094) and the 
genes involved in the ‘MEturquoise’ module (based on 
WGCNA), the immune-related genes coexpressed in 
the TCGA and GEO databases that were differentially 

Fig. 3  Weighted correlation network (WGCNA) analysis and prognostic model construction. A, B Cluster dendrogram and module assignment 
for modules based on WGCNA. Genes cluster dendrogram drawn by use of a dissimilarity measure (1-TOM). The colored horizontal bar represents 
the modules, lying below the dendrogram. A total of 675 immune related genes were assigned to one of 4 modules including the turquoise 
module. C Circle plot displayed the result of univariate analysis (D) Kaplan–Meier survival curves of 13 immune-related hub genes obtained 
by univariate Cox regression analysis
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expressed to a great degree between lung adenocar-
cinoma samples and normal samples were obtained. 
Based on the training cohort, 56 immune-related genes 
(that were possible prognostic genes) were obtained by 
univariate Cox analysis (Figure S1). These genes were 
then enrolled in multivariate Cox analysis to acquire 
13 optimal immune genes (as shown in Fig. 3C) based 
the constructed prognosis risk model. The risk model 
formula is presented in the materials section, while the 
risk coefficient is summarized in Supplementary Table 
S2. Finally, a survival analysis of these genes was con-
ducted on the condition that the median risk point was 
considered the cutoff value to divide all LUAD patients 
into high-risk and low-risk groups. As depicted in 
Fig.  3D, ANGPTL4, BIRC5, PDGFB, PLK1, PTX3, and 
TRIM6 serve as risk genes, while C6, FLI1, IL7R, LIFR, 
SCARF1, SHC3, and WNT3A function as protective 
genes (survival analysis of genes in GSE72094 is pre-
sented in Figure S2).

Validation of the prognostic model
Compared with the low-risk group, the high-risk group 
had a significantly higher proportion of deaths and 
shorter survival times in both the training cohort and 
test cohort (Fig.  4A-F). Moreover, as depicted in the 
heatmaps (Fig.  4G-I), C6, FLI1, IL7R, LIFR, SCARF1, 
SHC3, and WNT3A had higher expression levels in the 
low-risk group; in contrast, ANGPTL4, BIRC5, PDGFB, 
PLK1, PTX3, and TRIM6 had higher expression levels 
in the high-risk group, consistent with the identification 
presented before. Then, both the training cohort and 
test cohorts were enrolled in the survival curve analysis, 
as shown in Fig. 4J-L. A significant difference in survival 
curves was found between the high-risk group and the 
low-risk group, preliminarily reflecting the reliability of 
our model.

Next, the area under the curve (AUC) in the time-
dependent ROC analysis was further analyzed in both 
the training cohort and test cohorts to predict the 

Fig. 4  Correlations between risk score and prognosis of LUAD patients. A-C patient risk score distribution, D-F scatter diagram of patient survival 
status, and G-I expression pattern of prognostic genes respectively of training cohort and two test cohorts. J-L KM survival curves of TCGA training 
cohort and GEO validation cohorts based on high- and-low risk groups
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Fig. 5  Validation of the prognostic model (A) Time ROC curves of the training cohort and test cohorts. B Multivariate as well as Univariate 
Cox regression analysis. C Nomogram consisted of several clinicopathologic features, and consistency between predicted and actual survival 
rates by calibration and C-index. D GSEA analysis of DEIRGs with the hallmark gene sets (h.all.v7.5.symbols.gmt). E–F GSEA analysis based 
on high-and-low risk groups with the GO-BP subsets of the canonical pathway gene sets (c2.cp.go.v7.5.symbols.gmt)
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performance of the prognostic model. As shown in 
Fig. 5A-C, the AUC of the risk score model was 0.754 at 
1 year, 0.721 at 3 years, and 0.681 at 5 years in TCGA; 
0.663 at 1 year, 0.662 at 3 years, and 0.710 at 5 years in 
GSE72094; and 0.776 at 1  year, 0.605 at 3  years, and 
0.676 at 5  years in GSE26939, revealing the excellent 
specificity and sensitivity of the prognostic risk score. 
Furthermore, univariate Cox analysis illuminated that 
stage (hazard ratio: 1.618, 95% confidence interval: 
1.406–1.862) and the prognostic model (hazard ratio: 
1.716, 95% confidence interval: 1.561–1.886) were 
independent risk factors for the prognosis of LUAD 
patients. Likewise, multivariate Cox analysis confirmed 
that both stage (hazard ratio: 1.551, 95% confidence 
interval: 1.341–1.795) and the prognostic model (haz-
ard ratio: 1.670, 95% confidence interval: 1.515–1.840) 
were significantly related to the prognosis of LUAD 
patients (Fig.  5B). In addition, a nomogram integrat-
ing the prognostic model and other clinical character-
istics was established for quantitative prediction. Then, 
the performance of the nomogram was proven to be 
robust by the C-index and calibration curve (Fig.  5C). 
These findings collectively validated that the prognostic 
model could function as a reliable independent prog-
nostic factor for patients with LUAD.

GSEA (Gene Set Enrichment Analysis)
The DEIRGs in the TCGA database were subjected to 
GSEA, and the immune-related pathways were found 
to be significantly correlated with the NES (normalized 
enrichment score) > 1.5 (Fig.  5D). Additionally, GSEA 
enrichment was performed between the high-risk group 
and the low-risk group. Notably, some immune-related 
pathways were activated in low-risk patients, including B 
Cell Receptor Signaling Pathway, Positive Thymic T Cell 
Selection, and T Cell Receptor Complex (Fig. 5E), while 
Response To Interleukin 1 was significantly enriched in 
high-risk group (Fig. 5F).

Risk score and TMB (Tumor Mutation Burden)
Subsequently, the gene mutations of each LUAD patient 
were analyzed. Figure  6A reflects the mutation context 
of genes in the prognostic model (ANGPTL4, BIRC5, 
PDGFB, PLK1, PTX3, TRIM6, C6, FLI1, IL7R, LIFR, 
SCARF1, SHC3, and WNT3A). Then, the top 20 genes 
with the highest mutation frequencies (TP53, TTN, 
MUC16, RYR2, CSMD3, LRP1B, ZFHX4, USH2A, KRAS, 
XIRP2, FLG, SPTA1, NAV3, ZNF536, FAT3, COL11A1, 
ANK2, PCDH15, CSMD1, and KEAP1) were separately 
depicted in high-risk patients and low-risk patients 
(Fig. 6B-C). In addition, the TMB was higher in high-risk 

Fig. 6  A Gene mutation of LUAD patients based on 13 prognostic genes. B Gene mutation of patients within the high-risk group. C Gene mutation 
of patients within the low-risk group. D, H Correlations between TMB and risk score. E, F, G, I, J, K Correlations between several hypervariable genes 
and risk score
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patients (R = 0.25) (Fig.  6D,H), indicating that the TMB 
might contribute to tumor initiation and progression. 
Furthermore, of the top 10 genes with the highest muta-
tion frequencies, the expression of MUC16 was found to 
be positively correlated with the TMB, while the expres-
sion of RYR2 and TTN was identified to be negatively 
related to the TMB (Fig. 6E-G,I-K).

Associations between the prognostic model and clinical 
characteristics in LUAD Patients
After analyzing the clinical characteristics (age, sex, stage, 
T stage, N stage, and M stage) of the high-risk and low-
risk patients, stage, T stage, and N stage were found to be 
remarkably correlated with the prognostic model. Nota-
bly, patients in the high-risk group tended to have more 
severe clinical stages (Fig. 7A). Furthermore, we analyzed 
the relationship between prognostic genes and character-
istics. Among the 13 prognostic genes, the expression of 
BIRC5, ANGPTL4, and PLK1 was significantly higher in 
tumor samples, while the expression of IL7R and SHC3 
was higher in normal samples. In addition, higher BIRC5, 
ANGPTL4, TRIM6, and PLK1 gene expression correlated 
with a more severe clinical stage for patients. In contrast, 
the expression of SHC3 and IL7R was negatively associ-
ated with clinical stage. In summary, BIRC5, ANGPTL4, 
and PLK1 might act during the origin and progression of 

LUAD, while IL7R and SHC3 might serve as protective 
factors (Fig. 7B-C).

Immune cell proportions between low‑and‑high risk scores 
in LUAD patients
With the CIBERSORT algorithm, 22 immune cell types 
were chosen in each LUAD sample and compared 
between the low- and high-risk groups. The propor-
tions of 22 immune cells as well as immune-related 
functions are depicted in Fig. 8A-B. Compared with the 
low-risk group, the high-risk group revealed increasing 
proportions of activated memory CD4 T cells and M0 
macrophages. In contrast, resting memory CD4 T cells, 
monocytes, resting dendritic cells, and resting mast cells 
accounted for remarkable proportions in the low-risk 
group compared with the high-risk group. Interestingly, 
in terms of immune-related functions, aDCs, B_cells, 
HLA, iDCs, mast_cells, neutrophils, T_helper_cells, 
TIL, and Type_II_IFN_Response overwhelmingly gained 
higher scores in the low-risk group. Then, 22 types of 
immune cells were subjected to survival analysis. Fig-
ure  8C shows that patients with high proportions of 
macrophage Mos, macrophage Mos, activated memory 
CD4 T cells, and follicular helper T cells tended to have 
short survival times. Conversely, high proportions of 
naive B cells, resting dendritic cells, monocytes, plasma 

Fig. 7  A The heatmaps reflected the associations between prognostic-risk model and clinicopathological characteristics in the training cohort. 
(*p-value <  = 0.05; p-value <  = 0.01; ***p-value <  = 0.001) B Expression level difference of several prognostic genes between tumor samples 
and the paired normal ones. C Correlations between expression level of the prognostic genes and clinical-stage
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cells, resting memory CD4 T cells, and CD8 T cells were 
remarkably correlated with long survival time (K-M anal-
ysis of immune-related functions is presented in Figure 
S3). Moreover, Fig. 8D shows the correlation between the 
13 genes in the prognostic model and the 75 immune-
related genes.

Landscape of immune and stromal cell infiltrations 
in the low‑ and high‑risk groups and therapeutic benefit 
prediction
After exploring the landscape of immune and stro-
mal cell infiltrations in the low- and high-risk groups, 
Fig.  9A illustrates that patients in the high-risk group 
shared higher proportions of immune and stromal cell 
infiltrations than those in the low-risk group. In addi-
tion, the expression of 48 immune checkpoints was 
investigated and compared between the high- and low-
risk groups. The relationship between their expres-
sion and patients’ clinical characteristics was further 
probed. In total, 6 checkpoints (CD27, IDO2, CD200R1, 
TNFRSF25, CD40LG, ADORA2A, and BTLA) were 
obtained (Fig.  9B); the expression of these genes was 

not only obviously correlated with risk scores but also 
significantly correlated with clinical characteristics. In 
line with Fig. 9A, these 6 checkpoints were remarkably 
modulated in the low-risk group. Figure 9C shows the 
correlation between 13 prognostic genes, risk score, 
and 6 immune checkpoints. All 6 immune checkpoints 
were strongly linked with the prognostic genes and risk 
score.

Then, we also investigated connections between the 
ImmuneScore, StromalScore, ESTIMATEScore, risk 
score and clinical stage (Fig.  9D-E). The results demon-
strated that a high ImmuneScore correlated with low-risk 
scores and favorable clinical stage, which was consist-
ent with the K-M survival analysis (Fig.  9F). However, 
in terms of response to immunotherapy, patients in the 
high-risk group had a lower TIDE score (Fig. 9G), reflect-
ing that patients in the high-risk group might respond 
better to immunotherapy. TMB differences between 
high- and low-risk groups could account for the contra-
diction. Finally, the area under the curve ROC analysis 
exhibited better prediction of our prognostic model com-
pared with that of others, such as TIDE and TIS (Fig. 9H).

Fig. 8  Immune cell infiltrations analysis (A) Infiltration abundance of 22 immune cells based on high-and-low risk groups. B Infiltration abundance 
of immune-related functions based on high-and-low risk groups. Blue represents the low-risk group and the red represents the low-risk group. 
The horizontal line represents the median, and the top and bottom of the box are the 75th and 25th percentiles (quartile intervals), respectively. 
The Wilcoxon test was used to evaluate the differences between the two groups (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). C KM survival 
curves of immune cells based on high-and-low risk groups. D The ring heatmap showed the associations between the prognostic genes and 75 
immune-related genes
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Single‑cell analysis of genes in the prognostic model
To validate the expression of prognostic genes in 
immune-related cells, single-cell analysis was performed 
with the GSE203360 dataset. A total of 19,363 cells were 
obtained and subjected to UMAP clustering analysis. 
Based on the expression of cell-type-annotation markers, 
all cells were clustered into eight major cell types, includ-
ing macrophages, Alveolar cell Type 2, Dendritic cells, T 
cells, plasma cells, Clara cells, ciliated cells, and endothe-
lial cells. Three genes (PTX3, TRIM6, and WNT3A) 
were not found in the dataset. In addition, the other 10 
genes (C6, FLI1, IL7R, LIFR, SCARF1, SHC3, ANGPTL4, 
BIRC5, PDGFB, and PLK1) were presented in a UMAP 
plot with their microsatellite status (Fig.  10A). Interest-
ingly, BIRC5 showed remarkable enrichment in T cells, 
while ANGPTL4, C6, SHC3, and PDGFB showed no 
enrichment. Additionally, IL7R, SCARF1, FLI1, PLK1, 
and LIFR exhibited slight enrichment in macrophages, 
Alveolar cell type 2, ciliated cells, T cells, and Alveolar 

cell type 2, respectively. Furthermore, according to bub-
ble, violin, and volcano plots (Fig.  10B-D), BIRC5 was 
significantly enriched in T cells. Combined with the bulk 
RNA results obtained previously, BIRC5 was determined 
to be noticeably immune-related and significantly corre-
lated with the prognosis of LUAD patients.

Validation of the tumor‑related role of BIRC5 in NSCLC
Finally, we conducted systematic cellular experiments to 
validate our in silico findings. After testing the mRNA 
level of BIRC5 in four different lung adenocarcinoma cell 
lines (BEAS-2B, A549, H1299, and H1650), we selected 
A549 cells for further experiments (Fig. 11A). The knock-
down efficiency of shRNA targeting BIRC5 was con-
firmed by immunoblotting (Fig.  11B), and infected cells 
were then subjected to phenotype analyses. Accord-
ingly, the CCK-8 assay showed that silencing BIRC5 
significantly inhibited the viability of A549 cells com-
pared to that of control cells (Fig. 11C). Similarly, colony 

Fig. 9  Tumor microenvironment and immunotherapy response (A) Multialgorithm analytical results on immune cells of tumor microenvironment 
(TME) in LUAD, including existing data from platform TIMER and MCP-counter. The top-bars show the distribution of TME-related scores. B 
Correlations between expression level of immune checkpoints and the risk score along with vital clinicopathological features. C The heatmap 
combined with bubble diagram demonstrated the correlations between prognostic genes and immune checkpoints along with the risk score. D 
Relationships between risk score and stromal score, immune score, as well as estimate score. E Associations between clinical-stage and stromal 
score, immune score, as well as estimate score. F KM survival curves based on stromal score, immune score, as well as estimate score. G 
Immunotherapy response prediction by TIDE. (H) Comparison between the prognosis prediction efficacy of our prognostic model and that of other 
models
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formation assays demonstrated a decreased colony for-
mation capacity after BIRC5 knockdown (Fig.  11D). 
Consistent with the CCK-8 and colony formation experi-
ments, the EdU assay further confirmed that silencing 
BIRC5 remarkably suppressed lung cancer cell prolifera-
tion (Fig. 11E), highlighting its oncogenic role.

Discussion
Recently, great progress has been made in immunother-
apy, especially for non-small cell lung cancer (NSCLC), 
shedding novel light on the therapeutic strategy of 
patients diagnosed with NSCLC [30]. Nevertheless, many 
LUAD patients still suffer from this malignant tumor due 
to the low response rate [31]. The lack of precise thera-
peutic targets or limited knowledge of the TME might 
account for this dilemma [32]. The tumor microenviron-
ment, consisting of not only diverse immune and stromal 
cells but also the factors they secrete, has been deemed 
to correlate with treatment efficacy and patient outcomes 
[33]. Under these circumstances, a prognostic model 
based on immune-related genes was constructed to help 
select patients for immunotherapy and discover potential 
biomarkers.

In our study, 675 DEIRGs were obtained between 
tumor and normal tissues based on TCGA and 
IMMPORT databases. Then, 56 immune-related genes 
were identified using univariate Cox regression analysis. 
Multivariate Cox regression analysis was applied to iden-
tify 13 key immune-related genes, calculate coefficients 
and construct the risk model. As expected, we found 
that patients in the high-risk group had shorter survival 
than those in the low-risk group. Subsequently, for-
est plots and a nomogram were constructed to evaluate 
the clinical applicability of the model. Plotting the ROC 
curve and survival curve established that our model had 
an excellent predictive effect. Furthermore, our model 
still performed well after external validation with two 
GEO datasets (GSE72094 and GSE26939). In addition, 
our model was remarkably correlated with prognostic 
malignant clinicopathologic characteristics (such as clini-
cal stage, T stage, and N stage), further revealing its out-
standing prognostic efficacy.

For the GSEA based on the DEIRGs, adaptive immune 
response, B-cell activation, and B-cell mediated immu-
nity were significantly enriched, which could exert 
enormous influence on the tumor microenvironment, 

Fig. 10  Evaluation of the prognostic genes’ expression level in different cells by single-cell sequencing (A) UMAP plot exhibited the prognostic 
genes’ expression level in different cells. Bubble diagram (B) violin plot (C) and volcano plot (D) showed these genes’ expression level in different 
cells
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limiting tumor invasion to some extent [34, 35]. Then, 
all samples were subjected to GSEA based on the 
high- and low-risk groups. Interestingly, we found that 
mitotic nuclear division, which could lead to chromo-
somal instability and promote the migration of NSCLC 
[36], was remarkably enriched in the high-risk group. 

In addition, response to interleukin-1 and cellular 
response to interleukin-1 were also observed to be 
enriched. Besides, antigen receptor mediated signaling 
pathway was found enriched in high-risk group, which 
has been confirmed to mediate superior antitumor 
effects [37]. Recently, a paper revealed that the tumor 

Fig. 11  Validation of the oncogenic role of BIRC5 in lung adenocarcinoma cells. A qRT-PCR to evaluate the BIRC5-mRNA levels in different lung 
adenocarcinoma cell lines. B Western Blotting assay to confirm knockdown efficiency of sh-BIRC5 in A549 cells, using shRNA vector as the negative 
control.(The original, unprocessed versions of blots with membrane edges visible are included in the Supplementary Information file named 
‘β-actin’ and ‘BIRC5’) (C) CCK-8 assay to test cell proliferation capacity after BIRC5-knockdown in A549 cells. D Colony formation assay was conducted 
to assess colony formation alteration after silencing BIRC5 in A549 cells. E Edu experiment was further performed to evaluate the different cell 
proliferation difference in A549 cells treated with BIRC5-shRNA or control cells
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response to cetuximab could be enhanced by increas-
ing the levels of IL-1α [38]. In conclusion, patients in 
the high-risk group might have a worse prognosis but 
respond better to immunotherapy.

Tumors consist not only of cancer cells but also the 
tumor microenvironment, which consists of stromal 
cells (tumor-infiltrating immune cells and cancer-asso-
ciated fibroblasts), the extracellular matrix, and various 
cytokines and metabolites. Representing most of the 
tumor mass, the TME actively participates in tumorigen-
esis [39]. The development and progression of cancer are 
accompanied by modifications in the adjacent stroma. 
Cancerous cells are capable of manipulating their micro-
environment in a functional manner, by means of excret-
ing diverse cytokines, chemokines, and other factors. 
As a consequence, a reprogramming of the neighboring 
cells is induced, allowing them to assume a decisive func-
tion in the sustenance and advancement of the neoplasm 
[40]. The TME can communicate with tumor cells, per-
mitting them to proliferate and protecting them from 
apoptosis. Thus, the TME might play an essential role 
in therapeutic efficacy [41]. Under these circumstances, 
we comprehensively analyzed the TME with the ESTI-
MATE algorithm based on transcriptomic data. The 
immune score and stromal score represent the status of 
immune and stromal cell infiltration within the TME in 
LUAD. The results revealed that patients in the low-risk 
group shared remarkably higher immune scores than 
those in the high-risk group. In addition, the immune 
score was negatively correlated with clinical stage and 
positively associated with survival time, indicating that 
immune cells might function as protective factors, pro-
viding a favorable prognosis for patients diagnosed with 
LUAD. However, the stromal score was not found to be 
significantly linked to the risk score and clinical charac-
teristics, which implied that stromal cells might not play 
a significant role in the tumorigenesis of our samples. 
Moreover, six immune subtypes of cancer could influ-
ence the prognosis by determining immune response 
patterns [42], which consist of C1 (wound healing), C2 
(IFN-γ dominant), C3 (inflammatory), C4 (lymphocyte 
depleted), C5 (immunologically quiet) and C6 (TGF-γ 
dominant). The distribution of various immune subtypes 
between the high- and low-risk groups was analyzed by 
the chi-square test (Fig. S4). The results showed that the 
C1 and C2 subgroups accounted for more patients in the 
high-risk group (28% and 37%), while the low-risk group 
mainly correlated with the C3 subgroup. As reported, 
CD4+ T cells can function as tumor growth suppressors 
and induce cytolysis by secreting interferon-γ (IFN-γ) 
[43]. However, chronic inflammation can induce tumor 
progression, triggering treatment resistance [2]. To sum-
marize, we can infer that patients in the high-risk group 

might respond well to immunotherapy based on immune 
subtype analysis.

Furthermore, to elucidate the TME immune land-
scape, we explored the infiltration status of 22 immune 
cells in LUAD. Consistent with previous results, most of 
the immune cells were enriched in the low-risk group, 
including resting memory CD4 T cells, monocytes, rest-
ing dendritic cells, and resting mast cells, which were 
related to a longer survival time. Correlated with worse 
prognosis, activated memory CD4 T cells and M0 mac-
rophages were significantly enriched in the high-risk 
group.

Immune cell infiltration has been accepted to play an 
essential role in tumor progression and the response to 
immunotherapy in LUAD [44]. By eradicating tumor cells 
directly through cytolytic mechanisms or modulating 
the TME indirectly, CD4 + T cells can target tumor cells 
in various ways [45]. By helping to induce a gene expres-
sion program in CD8 + T cells that promotes cytotoxic 
T lymphocyte (CTL) function through various molecu-
lar mechanisms, CD4 + T cells assist CTLs in overcom-
ing the barriers that sharply hinder antitumor immunity 
[46]. In addition, Probst, H C. et al. showed that periph-
eral CD8 + T-cell tolerance could result from antigen 
presentation by resting dendritic cells [47], revealing the 
vital role that resting dendritic cells play in immuno-
therapy resistance. On the other hand, numerous types 
of immune cells, comprising regulatory T cells, mac-
rophages (M2), and terminally exhausted CD8 + T cells, 
have the potential to result in adverse clinical conse-
quences due to their immune dysregulation [48]. These 
results indicated that patients in the high-risk group 
might have a better response to immunotherapy.

As a crucial part of immunotherapy, immune check-
points can regulate T-cell effector function, bringing 
about breakthroughs and even constituting a paradigm 
shift in cancer therapy [49]. Recently, great efforts have 
been made to develop immune checkpoint blockade 
treatments, mainly targeting PD-1, PD-L1, and CTLA-
4 [50]. However, in contrast to LUSC patients, LUAD 
patients benefit little from CTLA4 and anti-PD-1 or anti-
PD-L1 therapy. Thus, improved ICI-based treatment 
approaches beyond those targeting the CTLA4 and PD-1/
PD-L1 pathways are urgently needed. In this study, the 
mRNA expression levels of diverse immune checkpoints 
other than PD-1, PD-L1, and CTLA-4 were analyzed 
with the TCGA database. The results showed that CD27, 
IDO2, CD200R1, TNFRSF25, CD40LG, ADORA2A, and 
BTLA were significantly enriched in the low-risk group 
and remarkably correlated with vital clinicopathologic 
features. Wang, Qinchuan et  al. revealed that several 
immune points (including BTLA, IDO, and CD27) were 
optimal biomarkers for tumor recurrence and survival in 
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renal cell carcinoma patients, and a high expression level 
of BTLA was also found to be related to decreased sur-
vival [51]. Acting as gatekeepers of the immune response, 
several inhibitory immunoreceptors have been identified 
and exploited in past decades, including PD-1, CTLA-
4, LAG3, TIM3, TIGIT and BTLA [52]. As surface mol-
ecules, their activity can be easily restrained by blocking 
antibodies that inhibit ligand‒receptor engagement [53]. 
In addition, activating costimulatory T-cell receptors 
is deemed a promising therapeutic strategy in clinical 
practice [54]. Furthermore, the six immune checkpoints 
were identified as significantly connected with genes in 
our prognostic model as well as the risk score, implying 
that patients in the low-risk group are more suitable for 
immunotherapy based on costimulatory receptor target-
ing therapy.

Then, the tumor immune dysfunction and exclusion 
(TIDE) algorithm, which simulates two main immune 
escape mechanisms of tumors to predict the ICI 
response, was used to predict the response to immuno-
therapy [55]. The TIDE score has excellent performance 
in tumor immune escape prediction [56], which illus-
trates that patients with lower scores are more likely to 
share favorable responses to immunotherapy. In our 
study, the high-risk group had a lower TIDE score, rep-
resenting more benefits from immunotherapy. How-
ever, as discussed before, patients in the high-risk group 
presented a lower immune score, suggesting that high 
immune cell proportions do not necessarily predict high 
immunogenicity.

Tumor mutation burden (TMB) has been deemed an 
efficient biomarker not only for measuring the number 
of mutations in a cancer but also for immunotherapy 
response [57, 58], where higher TMB tends to correlate 
with more promising outcomes from immunotherapy. To 
further elucidate the immune characteristics of LUAD 
patients, gene mutations were analyzed based on high- 
and low-risk subgroups, where missense mutations were 
most common. Various genomic alterations, including 
alterations in EGFR, KRAS, ALK, and TP53, have been 
proven to be related to ICI efficacy [13]. In particular, 
cooccurring mutations in KRAS and TP53 have been 
determined to have predictive value in immune check-
point inhibitors [59]. The top 20 genes with the highest 
mutation rates are displayed, among which TP53 shared 
the highest mutation frequency, with a higher level in the 
high-risk group. As reported before, TP53 was signifi-
cantly correlated with oncogenic pathways, such as DNA 
replication, mismatch repair, and the cell cycle, contrib-
uting to undesirable clinical outcomes in LUAD patients 
[60]. In addition, mutations in MET, KRAS, and TP53 
have been revealed to sharply correlate with high PD-
L1 expression and a favorable ICI response [61]. These 

results corresponded with our observation that patients 
in the high-risk group had a worse prognosis but better 
immunotherapy responses. In addition, TMB was found 
to be positively associated with the risk score, further 
illustrating that patients in the high-risk group could 
benefit more from immunotherapy, and the prognostic 
model possesses excellent prediction value in measuring 
the TMB and immunotherapy response.

In contrast to bulk data that measure the averaged 
attributes of whole tissues, single-cell RNA sequencing 
(scRNA-seq) facilitates the identification of cell types 
and lineages of various cell subpopulations based on het-
erogeneous tissue ecosystems [62]. As discussed above, 
our prognostic model exhibited great efficacy in TMB 
measurement as well as prognosis and immunotherapy 
prediction. To explore the expression level of prognostic 
genes in different cell subpopulations, scRNA-seq was 
performed. The results showed that only BIRC5 was sig-
nificantly enriched in T cells, which play a vital role in 
antitumor immunogenicity. Wang Y et  al. revealed that 
baculoviral inhibitor of apoptosis protein (IAP) repeat 
containing 5 (BIRC5) expression can be regulated by 
the circCAMSAP1/miR-1182/BIRC5 axis, promoting 
NSCLC progression [63]. Besides, it has been revealed 
that the attenuation of the long non-coding RNA 
LINC00857 significantly augments the susceptibility of 
lung adenocarcinoma cells to radiotherapy, contingent 
upon BIRC5 expression, by inducing the recruitment of 
NF-κB1 [64]. As a well-known cancer therapeutic target, 
BIRC5 has been extensively researched, providing new 
insight into immunotherapy [65]. Based on these find-
ings, we infer that BIRC5 could function as a biomarker 
and even therapeutic target in LUAD. Finally, the func-
tional phenotype of BIRC5 was further explored by pre-
liminary experiments. The significant BIRC5 mRNA 
levels in LUAD tissues and cell lines were confirmed by 
cell experiments, which was consistent with several find-
ings obtained previously [66–68]. In addition, BIRC5 
gene knockdown in LUAD cell lines was proven to sig-
nificantly inhibit the activity and proliferation of cancer 
cells. The elevated expression of BIRC5 has been notably 
demonstrated to significantly facilitate tumorigenesis 
and migration, exerting a profound influence on the early 
detection and accurate prediction of the immunothera-
peutic response in patients with LUAD.

In summary, an immune-related prognostic model was 
constructed based on the TCGA database to predict the 
OS of LUAD patients, which was validated by the GEO 
database. The risk score and clinical stage were found to 
be independent prognostic factors. The immunotherapy 
response was further analyzed, reflecting our model’s 
robust and capacious perspective in utilization. Unavoid-
ably, deficiencies remain in our study because this is still 
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a retrospective analysis. Thus, a prospective study or clin-
ical samples and methods of animal models in  vivo are 
needed to further confirm our results.

Conclusions
We performed comprehensive bioinformatics analysis 
and identified a predictive model for LUAD prognosis 
based on thirteen immune-related genes. We assessed 
the prognosis and immunological microenvironment of 
LUAD patients via this model. By scRNA analysis, the 
expression of BIRC5 was identified significantly high in 
T cell. We also verified the role of BIRC5 in LUAD by 
cell assay, which may provide novel insight into LUAD 
patients management.
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