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Abstract
The study presents the genome analysis of a new Pseudomonas sp. (SWRIQ11), which can alleviate salinity stress effects 
on growth of olive seedlings in greenhouse study. The strain SWRIQ11 can tolerate salinity up to 6%, produce siderophores, 
indole acetic acid (IAA), aminocyclopropane-1-carboxylate (ACC) deaminase, and has the phosphate-solubilizing capability. 
The SWRIQ11 genome contained an assembly size of 6,196,390 bp with a GC content of 60.1%. According to derived indices 
based on whole-genome sequences for species delineation, including tetra nucleotide usage patterns (TETRA), genome-to-
genome distance (GGDC), and average nucleotide identity (ANI), Pseudomonas sp. SWRIQ11 can be considered a novel 
species candidate. The phylogenetic analysis revealed SWRIQ11 clusters with Pseudomonas tehranensis SWRI196 in the 
same clade. The SWRIQ11 genome was rich in genes related to stress sensing, signaling, and response, chaperones, motility, 
attachments, colonization, and enzymes for degrading plant-derived carbohydrates. Furthermore, the genes for production 
of exopolysaccharides, osmoprotectants, phytohormones, and ACC deaminase, ion homeostasis, nutrient acquisition, and 
antioxidant defenses were identified in the SWRIQ11 genome. The results of genome analysis (identification of more than 
825 CDSs related to plant growth-promoting and stress-alleviating traits in the SWRIQ11 genome which is more than 15% 
of its total CDSs) are in accordance with laboratory and greenhouse experiments assigning the Pseudomonas sp. SWRIQ11 
as a halotolerant plant growth-promoting bacterium (PGPB). This research highlights the potential safe application of this 
new PGPB species in agriculture as a potent biofertilizer.

Keywords  Plant growth-promoting rhizobacteria · Stress alleviation · Olive seedlings · Pseudomonas sp. · Genome 
analysis · Genes and pathways

Introduction

Continuous world population growth in recent years and 
the expansion of soil salinity as one of the common abiotic 
stresses has led to the use of the plant growth-promoting 
rhizobacteria (PGPR) as a practical strategy for achieving 
sustainable agriculture (Balasubramanian et al. 2021; Alber-
ton et al. 2020; Arora et al. 2020). PGPR provide cross-
protection from several stresses and facilitate the growth of 
the associated plants (Leontidou et al. 2020). These bacteria 
alleviate salinity stress by various mechanisms such as modi-
fication of root morphology, nutrient acquisition, synthesis 
of exopolysaccharides, phytohormones, volatile compounds, 
and 1-aminocyclopropane-1-carboxylate (ACC) deaminase, 
maintaining ion homeostasis, inducing accumulation of anti-
oxidants and compatible solutes, induced systemic tolerance, 

 *	 Fatemeh Mohammadiapanah 
	 fmohammadipanah@ut.ac.ir

 *	 Sajjad Sarikhan 
	 sarikhan@ibrc.ir

1	 Pharmaceutial Biotechnology Lab, School of Biology 
and Center of Excellence in Phylogeny of Living 
Organisms, College of Science, University of Tehran, 
Tehran 14155‑6455, Iran

2	 Molecular Bank, Iranian Biological Resource Center (IBRC), 
ACECR, Tehran, Iran

3	 Agricultural Biotechnology Department, National Institute 
of Genetic Engineering and Biotechnology, Tehran, Iran

4	 Soil and Water Research Institute (SWRI), Karaj, Iran

http://orcid.org/0000-0003-0286-5342
http://crossmark.crossref.org/dialog/?doi=10.1007/s13205-023-03755-0&domain=pdf


	 3 Biotech (2023) 13:347

1 3

347  Page 2 of 17

and modulation of the stress-responsive genes (Mohamma-
dipanah and Zamanzadeh 2019; Etesami 2020; Hoque et al. 
2022)

Despite the extensive studies on PGPR as biofertilizers, 
the molecular pathways of PGPR function are not completely 
elucidated (Balasubramanian et al. 2021; Sekar et al. 2019; 
Hoque et al. 2022). Recently, next-generation sequencing, 
omics approaches, and computational tools have contributed 
to the molecular mechanisms of PGPR being demonstrated 
and discovery of novel genes and actions on plant–bacteria 
interactions (Meena et al. 2017; Shelake et al. 2019).

Pseudomonas spp. are Gram-negative rods, non-spore-
forming, and motile bacteria belonging to the Gammapro-
teobacteria (Girard et al. 2021). They are ubiquitous bacteria 
that play crucial ecological roles in the environment (Girard 
et al. 2021; Nikolaidis et al. 2020). Pseudomonas spp.are 
prevalent plant-associated bacteria imposing multifaceted 
effects on plants (Gu et al. 2020). Most rhizospheric Pseu-
domonas spp. easily colonize various plant species and sup-
port plant growth, either directly by promoting plant growth 
or indirectly by protecting against stresses, including phy-
topathogens (Mavrodi et al. 2011; Zboralski et al. 2022). 
Pseudomonas, as the most complex genus, contains 312 
validly published species and is presently the genus with 
the largest number of species among Gram-negative bacteria 
(Parte et al., accessed on 11 February, 2023).

In this study, the annotation and mining of the whole 
genome of a novel Pseudomonas sp. (SWRIQ11), capable 
of alleviating salinity stress in olive (Olea europaea L.) 
seedlings, were performed, and the corresponding genes 
and pathways to the beneficial activity of PGPR were 
characterized.

Material and methods

Bacterial strain

This strain was isolated from the olive rhizosphere in 2015, 
which was under salinity stress (12 dS/m) from the Qaz-
vin province of Iran. The strain was identified as a Pseu-
domonas member. The strain was deposited as SWRIQ11 
with CCSM-B00399 code in Culture Collection of Soil 
Microorganisms (CCSM) in Iran, and with CECT 30741 
code in Spanish Type Culture Collection. Its 16S rRNA 
sequence was deposited in GenBank database, NCBI under 
accession number MH201206.

Morphological, biochemical, and physiological 
characterization of SWRIQ11

The Gram staining, oxidase, motility, catalase, and oxi-
dative-fermentative tests were carried out according to 

Cappuccino and Sherman (2014). Furthermore, a fluores-
cence assay was performed by culturing strain on King B 
agar (Paez et al. 2005).

Plant growth‑promoting assays

The siderophore production assay was performed using CAS 
(chrome-azurol sulfonate) agar (Senthilkumar et al. 2021). 
The production of indole-3-acetic acid (IAA) was assayed 
according to Bent and colleagues (2001). The ACC-deam-
inase production was evaluated according to Penrose and 
Glick (2003). The phosphate solubilization assay was carried 
out using Pikovskaya (PVK) liquid medium (Li et al. 2019).

Hypersensitive response (HR) assessment

Hypersensitive response (HR) can differentiate phytopath-
ogenic bacteria from saprophytes. All plant pathogenic 
bacteria induce HR in the mesophyll tissue of the leaf of 
tobacco and geranium (Umesha et al. 2008). The HR test 
on tobacco is proper for detecting phytopathogenicity of 
Pseudomonas spp. (Scala et al. 2018). The HR test was per-
formed based on the Klement method by injecting 200 µl 
suspension of SWRIQ11 at the concentration of 107 cfu/
ml into the intercellular space of tobacco, geranium, and 
tomato leaves. Sterile water and Ralstonia solanacearoum 
suspension were injected as negative and positive controls, 
respectively. After 24–72 h of infiltration, leaves injected 
with phytopathogenic bacteria die off, but saprophytic bac-
teria do not produce necrosis in the injected leaves (Klement 
1963; Umesha et al. 2008).

Hemolysis assay of SWRIQ11

Hemolysins are considered major virulence factors in 
animals and are commonly related to pathogenic bacte-
ria (Mogrovejo et  al. 2020). The hemolytic activity of 
SWRIQ11 was examined by culturing the strain on blood 
agar and incubating two series of cultures for 48h at 28 °C 
and 37 °C. Then, the existence of hemolysis zones surround-
ing the colonies was assayed (Cappuccino and Sherman 
2014).

Evaluation of salinity tolerance of SWRIQ11

The salinity tolerance range of SWRIQ11 was assayed on 
nutrient agar (NA) with 2, 4, 6, and 8% w/v NaCl (Ramadoss 
et al. 2013).

Greenhouse assay of stress‑alleviating activities

The effect of salinity stress (12 dS/m) and inoculation with 
SWRIQ11 suspension on the growth of six-month-old 
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Koroneiki olive seedlings in pots with three replications at 
an average temperature of 23 °C were monitored after one 
year. Plastic pots (20 cm in diameter and volume of 2 kg) 
were filled with cocopeat and perlite (with a volume ratio 
of 2–1). Before transferring the seedlings to the pots, the 
roots of the seedlings were washed several times with water. 
100 ml of SWRIQ11 suspension in saline solution (107 CFU/
ml) was inoculated twice to pots, one month after planting 
the seedlings in pots and at the sixth month. In the fourth 
month, saline treatment was performed once a week for six 
months. The pots with salinity treatment and without bacte-
rial inoculation (saline was added to pots) were considered 
as control. The treatment effect on seedlings growth was 
evaluated by measuring morphological parameters (seed-
ling height, fresh and dry weight of shoot, number of lateral 
branches, and trunk diameter), and physiological param-
eters (photosynthetic pigments by UV–VIS Spectroscopy 
(Lichtenthaler and Buschmann 2001) after one year.

Genomic DNA preparation of SWRIQ11

The genomic DNA of Pseudomonas sp. SWRIQ11 was 
extracted utilizing the biotechrabbit (GenUP™ Bacteria 
gDNA Kit, Berlin, Germany) DNA purification kit. DNA 
quality and quantity were confirmed by NanoDrop™ spec-
trophotometer (Thermo Scientific NanoDrop 2000c) and 
agarose gel electrophoresis.

Genome sequencing and assembly

The whole genome sequencing was carried out by the Illu-
mina HiSeq 4000 platform (150 bp paired-end reads) in 
Novogene company. FastQC v0.11.9 was applied for the 
quality control of raw sequences (Andrews et al. 2010), and 
then adapter and quality trimming was conducted using 
Trimmomatic 0.39 (Bolger et al. 2014). De novo assembly 
was carried out utilizing SPades v3.14.1, with default set-
tings (Nurk et al. 2013). The assembly quality was assessed 
using the QUAST v2.3 software (Gurevich et al. 2013).

Annotation of the SWRIQ11 genome

The gene detection and genome annotation were conducted 
exploiting the Rapid Annotation using Subsystem Technol-
ogy (RAST) server version 2.0 (Aziz et al. 2008), NCBI 
Prokaryotic Genome Annotation Pipeline (PGAP) (Tatusova 
et al. 2016), KEGG Automatic Annotation Server (KAAS) 
(Moriya et al. 2007), and UniProt database (MacDougall 
et al. 2020). Then, the annotated genes were assessed to 
assign the genes related to plant growth-promoting and 
stress-alleviating characteristics.

Gene network or pathway analysis

The presence of entire corresponding metabolic pathways 
to annotated genes related to plant growth-promoting char-
acteristics was manually defined using comparisons to the 
KEGG (Kyoto Encyclopedia of Genes and Genomes) path-
ways (Kanehisa 2019). Gene clusters related to secondary 
metabolites biosynthesis were determined using antiSMASH 
bacterial version 6.6.1 (Blin et al. 2021).

Molecular identification of SWRIQ11

The full-length 16S rRNA sequence of the isolate was 
manually derived by integrating the sequence from 16S 
rRNA amplification and related contigs in the genome 
that were annotated as 16S rRNA (two sequences with 
the length of 1017 and 522 bp) using blastn. The 30 spe-
cies of Pseudomonas spp. with the highest similarity and 
completeness in 16S rRNA sequence with strain SWRIQ11 
were selected from the EzBioCloud database (Yoon et al. 
2017a) for calculating ANI (average nucleotide identity) by 
the ANI calculator tool of EzBioCloud (Yoon et al. 2017b) 
and the JSpeciesWS web server based on BLAST (ANIb) 
and MUMmer (ANIm) (Richter et al. 2015), correlation 
indexes of their tetra-nucleotide signatures (Tetra) through 
the JSpeciesWS web server (Richter et al. 2015), and digital 
DNA–DNA hybridization (dDDH) (genome-to-genome dis-
tance) by Genome-to-Genome Distance Calculator (GGDC 
3.0) (Meier-Kolthoff et al. 2022). Furthermore, the Tetra 
Correlation Search (TCS) based on tetra nucleotide frequen-
cies and correlation coefficients against the entire genomes 
reference database (GenomesDB), was analyzed using the 
JSpeciesWS web server (Richter et al. 2015). In addition, the 
identification of SWRIQ11 was carried out using the Type 
Genome Server (TYGS) (Meier-Kolthoff and Goker 2019).

Phylogenetic analyses of SWRIQ11

The phylogenetic trees based on 16S rRNA sequences were 
constructed using MEGA version 10 with algorithms of 
Neighbor-Joining and Maximum-Likelihood (using the 
Tamura-Nei model), and with 10,000 and 1000 bootstrap 
replications, respectively (Tamura et al. 2021). The genome-
based phylogenetic tree was constructed applying the Type 
(Strain) Genome Server (TYGS) on the basis of the Genome 
BLAST Distance Phylogeny (GBDP) method and with 100 
bootstrap replications (Meier-Kolthoff and Goker 2019).

Comparative genome analysis

The genomic features of the SWRIQ11 strain were compared 
to genomes of closely related species (ANI > 83%) using 
the NCBI database and GenomesDB of JSpeciesWS. Some 
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genomic characteristics, including the genome size, number 
of genes, the number of rRNAs and tRNAs, and the GC 
content of the species, were compared.

Results

Characterization of SWRIQ11

The strain SWRIQ11 is Gram-negative, rod-shaped, motile, 
fluorescent, oxidase-positive, catalase-positive, and non-fer-
mentative. The evaluation of plant growth-promoting char-
acteristics showed that the strain can produce siderophores, 
IAA, and ACC-deaminase and has phosphate-solubilizing 
activity. The strain could tolerate salinity up to 6% w/v NaCl. 
The strain inoculation did not induce necrosis in leaves of 
tobacco, geranium, and tomato after 48 h in the HR assay, 
and as a result, the strain is not considered phytopathogenic. 
No clear zones were not observed surrounding the colonies 
of SWRIQ11 on blood agar, and the strain had no hemolytic 
activity (gamma hemolysis).

Greenhouse assay of stress‑alleviating effect 
of SWRIQ11

The results displayed that treatment with SWRIQ11 has a 
positive effect on the growth of olive seedlings under salin-
ity stress. The inoculation with SWRIQ11 resulted in the 
increase of seedling height (20.69%), fresh weight of shoot 
(43.24%), dry weight of shoot (40%), number of lateral 
branches (66.7%), trunk diameter (28.57%), chlorophyll 
a + b (61.37%), and carotenoid (39.25%) amount compared 
to control seedlings (under salinity stress without bacteria 
inoculation).

Sequence statistics of strain SWRIQ11

Sequencing by the Illumina HiSeq 4000 platform led to 
nearly 185-fold coverage of the isolate genome. In total, 
7,681,869 raw reads with a length of 150 bp were filtered 
for reads with > 10% Ns and 25–35 bases with a low-quality 
average (≤ Q20). Lastly, 7,564,065 (98.47%) clean reads 
were utilized for subsequent analyses and the de novo assem-
bly using SPades v3.14.1 produced 101 scaffolds (≥ 200 bp).

Genomic features of strain SWRIQ11

The strain SWRIQ11 has a single circular chromosome of 
6,196,390 bp with a genomic GC content of 60.1%, N50 
157,109, and L50 14. The total numbers of 5566 genes were 
identified, from which 5420 were coding sequences (CDSs), 
51 tRNA-coding genes, and 5 rRNA genes.

Taxonomic identification of strain SWRIQ11

According to the species definition, strains belonging to the 
same species typically show ≥ 95% ANI (Jain et al. 2018, 
Gomila et al. 2015), higher than 0.99 for the TETRA signa-
ture (Gomila et al. 2015), and > 70% of DNA–DNA hybridi-
zation (DDH) or GGDC. Accordingly, strain SWRIQ11 is a 
new species candidate in the pseudomonas genus (Table 1) 
which will be described in the follow-up study. Furthermore, 
according to the result of TCS (which compares the tetra 
nucleotide frequencies and correlation coefficients of the 
genome against GenomesDB), the highest Z-score (0.9988) 
belonged to Pseudomonas tehranensis SWRI196. Moreover, 
the highest records of ANI (EzBioCloud) (92.96%), ANIb 
(92.39%), ANIm (93.44%), and DDH (50.8%) belonged to 
P. tehranensis SWRI196 (GCA_014268615.1) (Table 1), 
which were less than the consensus threshold of species 
definition. In addition, according to identification using 
TYGS, the SWRIQ11 did not belong to any species found 
in databases.

Comparative genome analysis

The genomic features of the strain SWRIQ11 and nine 
closely related genomes (ANI > 83%), including the 
sequence length, the number of genes (CDSs, tRNAs, and 
rRNAs), and GC content are presented in Table 2. The 
genome features of SWRIQ11 were similar to nine closely 
related species, and the most similarities were related to 
Pseudomonas tehranensis SWRI196, Pseudomonas bras-
sicacearum subsp. Neoaurantiaca, and Pseudomonas cor-
rugata which were located near SWRIQ11 based on phylo-
genetic analysis (Fig. 1 and Fig. 2).

Evolutionary relationships of strain SWRIQ11

The phylogenetic relations of strain SWRIQ11 and closely 
related species of Pseudomonas spp. based on 16S rRNA 
and whole genome sequences showed Pseudomonas sp. 
SWRIQ11 clusters with Pseudomonas tehranensis SWRI196 
(GCA_014268615.1) in the same clade (Fig. S1, Figs. 1, 
and 2).

Genes related to plant growth promotion 
and stress alleviation characteristics in the genome 
of Pseudomonas sp. SWRIQ11

Genes and pathways related to plant growth-promotion and 
stress-alleviation characteristics, including stress response 
sigma factors, stress sensors, signaling or regulation pro-
teins, chaperones, motility, attachments, colonization, 
enzymes for degrading plant-derived carbohydrates, exopol-
ysaccharides, ion homeostasis, osmoprotectants, nutrient 
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Table 1   The indices for identification of strain SWRIQ11 based on the 16S rRNA and genome analysis

Species
(Type strain)

Similarity % 
(16S rRNA)

Complete-
ness% (16S 
rRNA)

ANI% 
(EzBio-
Cloud)

ANIb% 
(JSpe-
ciesWS)

ANIm% 
(JSpe-
ciesWS)

Tetra Cor-
relation 
(Z-Score)

DDH or GGDC ( based 
on Formula 2 (Recom-
mended))

Pseudomonas tehranensis 
SWRI196

99.93 99 92.96 92.39 93.44 0.9988 Distance: 0.0697
DDH estimate: 50.80%

Pseudomonas piscicola P50 99.76 84.4 81.64 80.43 85.62 0.9669 Distance: 0.1694
DDH estimate: 25.70%

Pseudomonas bijieensis 
L22-9

99.66 100 88.04 87.42 88.97 0.99466 Distance: 0.1174
DDH estimate: 35.20%

Pseudomonas thivervalensis 
DSM 13194

99.52 100 87.76 87.28 88.93 0.98973 Distance: 0.1177
DDH estimate: 35.10%

Pseudomonas brassicacearum 
subsp. Brassicacearum 
DBK11 / CCUG:51,508

99.52 99.9 88.22 87.70 89.18 0.99399 Distance: 0.1157
DDH estimate: 35.60%

Pseudomonas corrugata 
ATCC 29736 / DSM:7228

99.44 98.6 86.08 85.41 87.66 0.99407 Distance: 0.1335
DDH estimate: 31.60%

Pseudomonas kilonensis 
DSM 13647

99.38 100 88.13 87.44 89.19 0.99298 Distance: 0.1154
DDH estimate: 35.70%

Pseudomonas viciae 11K1 99.31 100 88.30 87.69 89.22 0.99587 Distance: 0.1134
DDH estimate: 36.20%

Pseudomonas lini CFBP 5737 
/ DSM 16768

99.31 100 82.57 81.51 86.04 0.96318 Distance: 0.1627
DDH estimate: 26.60%

Pseudomonas chlororaphis 
subsp. Chlororaphis NBRC 
3904

99.25 100 82.36 81.21 86.10 0.95255 Distance: 0.1651
DDH estimate: 26.30%

Pseudomonas mediterranea 
CFBP 5447

99.11 100 86.43 85.69 87.94 0.99189 Distance: 0.1313
DDH estimate: 32.10%

Pseudomonas mucoides 
P154a

99.03 84.4 82.24 81.12 85.84 0.96132 Distance: 0.1656
DDH estimate: 26.20%

Pseudomonas fluorescens 
DSM50090

98.97 100 80.52 79.13 85.37 0.9568 Distance: 0.1794
DDH estimate: 24.30% [22

Pseudomonas migulae NBRC 
103157

98.97 100 82.47 81.33 86 0.96416 Distance: 0.1636
DDH estimate: 26.50%

Pseudomonas kielensis 
MBT-1

98.97 100 82.41 81.31 86.11 0.97128 Distance: 0.1627
DDH estimate: 26.60%

Pseudomonas fred-
eriksbergensis JAJ28 / 
SAMN04490185/ BS3655

LMG 19851

98.97 100 82.42 81.45 85.89 0.96646 Distance: 0.1636
DDH estimate: 26.50%

Pseudomonas taetrolens DSM 
21104

98.9 100 78.82 77.32 84.75 0.90873 Distance: 0.1886
DDH estimate: 23.20%

Pseudomonas chlororaphis 
subsp. Aureofaciens NBRC 
3521

98.9 100 82.34 81.25 86.18 0.95117 Distance: 0.1655
DDH estimate: 26.20%

Pseudomonas chlororaphis 
subsp. Aurantiaca DSM 
19603

98.9 100 82.30 81.28 86.18 0.95328 Distance: 0.1643
DDH estimate: 26.40%

Pseudomonas chlororaphis 
subsp. Piscium DSM 21509

98.9 100 82.33 81.20 86.12 0.95268 Distance: 0.1654
DDH estimate: 26.20%

Pseudomonas arsenicoxydans 
CECT 7543

98.9 100 82.35 81.39 85.88 0.96866 Distance: 0.1647
DDH estimate: 26.30%

Pseudomonas salomonii 
CFBP 2022 / ICMP 14252

98.84 94.2 80.60 79.29 85.43 0.95021 Distance: 0.1780
DDH estimate: 24.50%

Pseudomonas prosekii LMG 
26867

98.83 100 82.10 80.73 85.69 0.8877 Distance: 0.1686
DDH estimate: 25.80%

Pseudomonas haemolytica 
DSM 108987

98.83 100 80.55 79.07 85.50 0.96933 Distance: 0.1789
DDH estimate: 24.40%
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acquisition, phytohormones biosynthesis, ACC-deaminase, 
and antioxidants defenses were detected in the genome of 
strain SWRIQ11.

Genes related to stress sensing and halotolerance 
in the genome of SWRIQ11

Bacteria apply the cell surface extracytoplasmic function 
(ECF) sigma factors for sensing and responding to the sur-
roundings. Moreover, ECF sigma factors can be a factor in 
establishing plants–bacteria interactions (Sheibani-Tezerji 
et al. 2015). The genome of SWRIQ11 contained at least 12 

genes of the ECF sigma factors subfamily. In addition, there 
were several genes related to stress sensing, signaling, and 
response, and also other stress sigma like RNA polymer-
ase sigma factors RpoE, RpoH, RpoS, serine phosphatase 
RsbU, outer membrane stress sensor protease DegS and 
DegQ (Table S1).

The adaptation mechanisms for tolerating salinity stress 
in SWRIQ11 can be attributed to the ion homeostasis, accu-
mulation of osmolytes, and synthesis of universal proteins 
related to salt stress tolerance (Goyal et al. 2019). Trans-
membrane proteins acting as Na+/H+ antiporters participate 
significantly in conserving intracellular pH, cellular sodium 

Table 1   (continued)

Species
(Type strain)

Similarity % 
(16S rRNA)

Complete-
ness% (16S 
rRNA)

ANI% 
(EzBio-
Cloud)

ANIb% 
(JSpe-
ciesWS)

ANIm% 
(JSpe-
ciesWS)

Tetra Cor-
relation 
(Z-Score)

DDH or GGDC ( based 
on Formula 2 (Recom-
mended))

Pseudomonas karstica HJ/4 / 
CCM 7891

98.76 99.3 80.65 79.18 85.41 0.97913 Distance: 0.1743
DDH estimate: 25.00%

Pseudomonas veronii DSM 
11331

98.7 100 81.07 79.57 85.64 0.96096 Distance: 0.1753
DDH estimate: 24.80%

Pseudomonas caspiana 
FBF102

98.7 100 77.38 76.02 84.58 0.90133 Distance: 0.1957
DDH estimate: 22.40%

Pseudomonas spelaei SJ/9/1 / 
CCM 7893

98.69 99.3 80.77 79.36 85.48 0.97797 Distance: 0.1774
DDH estimate: 24.60%

Pseudomonas yamanorum 
8H1 / LMG 27247

98.68 98.4 81.05 79.56 85.58 0.96659 Distance: 0.1749
DDH estimate: 24.90%

Pseudomonas marginalis 
ATCC 10844 / DSM 13124

98.67 92.7 80.96 79.72 85.64 0.96345 Distance: 0.1749
DDH estimate: 24.90%

Table 2   Genome features of strain SWRIQ11 and closely related species

Strains Genome size (bp) GC% Scaffolds No. of Genes No. of rRNA No. of tRNA No. CDSs 
(with pro-
tein)

Bio-Project ID

Pseudomonas sp. SWRIQ11 6,196,390 60.1 101 5,566 5 51 5420 PRJNA803818
Pseudomonas tehranensis 

SWRI196
5,993,891 60.46 531 5,458 4 49 5,353 PRJNA639797

Pseudomonas brassicacearum 
subsp. Neoaurantiaca 
CDVBN10

6,172,913 60.8 68 5712 6 53 5467 PRJNA546138

Pseudomonas bijieensis L22-9 6,730,360 60.9 1 6,002 16 66 5,676 PRJNA592828
Pseudomonas thivervalensis 

DSM 13194
6,581,995 61.2 25 Without published annotation PRJNA290438

Pseudomonas brassicacearum 
subsp. Brassicacearum 
DBK11 / CCUG:51,508

6,733,367 60.8 61 6307 13 60 6054 PRJNA563568

Pseudomonas viciae 11K1 6,704,877 60.3 2 5,894 16 64 5,741 PRJNA514417
Pseudomonas mediterranea 

CFBP 5447
6,319,692 61.1 32 5,545 2 53 5,355 PRJNA210952

Pseudomonas corrugata 
ATCC 29736 / DSM:7228

6,126,732 60.6 31 Without published annotation PRJNA290438

Pseudomonas kilonensis DSM 
13647

6,385,813 60.9 44 Without published annotation PRJNA290438
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amount, homeostasis, and cell volume (Goyal et al. 2019). 
Five types of Na+/H+ antiporters are known in prokaryotes, 
including NhaA, NhaB, NhaC, NhaD, and NapA (Kapoor 
and Kanwar 2019). Incitation of K+ uptake is the first quick 
reaction to an osmotic change by bacteria (Goyal et al. 
2019). There are three K+ uptake systems, including Kup, 
Trk, and Kdp (Goyal et al. 2019). The genome of strain 
SWRIQ11 contained genes related to ion homeostasis, con-
sisting of nhaA, nhaD, mrp, trkH, trkA, trkG, kup, kdpA, 
kdpB, kdpC, kdpD, and kdpE.

Osmolytes are accumulated either by intake from sur-
roundings or by de novo synthesis (Mishra et al. 2018). 
Several genes potentially related to the importing systems 
of compatible solutes were detected in the genome of 
SWRIQ11, like genes of osmoprotectant ABC transporter, 

spermidine/putrescine import ABC transporter, ectoine/
hydroxy ectoine ABC transporter, Omp family, EnvZ, NarL/
FixJ family, choline-binding ABC transport, choline ABC 
transport system, high-affinity choline uptake, osmotically 
activated L-carnitine/choline ABC transporter, betaine ABC 
transporter, glycine betaine transporter, glycine betaine ABC 
transport system, glycine betaine/L-proline ABC trans-
porter, L-proline/glycine betaine ABC transporter, glycerol 
ABC transporter, and glycerol uptake facilitator protein 
(Table S2).

Furthermore, the genes related to the synthesis of dif-
ferent osmolytes were present in the SWRIQ11 genome as 
well. Genes of proline synthesis in the SWRIQ11 genome 
included glutamate 5-kinase (proB), gamma-glutamyl phos-
phate reductase (proA), pyrroline-5-carboxylate reductase 

Fig. 1   Phylogenetic tree of the 
Pseudomonas sp. SWRIQ11 
and 30 closely related species 
based on 16S rRNA sequence 
analysis. Pseudomonas sp. 
SWRIQ11 clusters with Pseu-
domonas tehranensis SWRI196 
in the same clade. Evolution-
ary analyses were conducted 
in MEGA 10 by the Maximum 
Likelihood method, the Tamura-
Nei model, with 1000 bootstrap 
replications (Tamura et al. 
2021). Pseudomonas aerugi-
nosa DSM 50071 was applied 
as an outgroup
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(proC), and pyrroline-5-carboxylate reductase ProG-like 
(proG). The genome of the strain contained genes of the 
choline and glycine betaine synthesis pathway, includ-
ing the betC gene, which encodes a choline sulfatase that 
catalyzes the conversion of choline-O-sulfate into choline, 
the betA gene that encodes choline dehydrogenase that 

converts choline to betaine aldehyde, and the betB gene 
which encodes a betaine aldehyde dehydrogenase that par-
ticipates in the production of the osmoprotectant glycine 
betaine through the irreversible oxidation of betaine alde-
hyde. SWRIQ11 contained a SAMDC1 gene, which encodes 
S-adenosylmethionine decarboxylase proenzyme, a crucial 

Fig. 2   Phylogenetic tree of the Pseudomonas sp. SWRIQ11 and 20 
closely related species based on whole genome sequence analysis. 
Pseudomonas sp. SWRIQ11 clusters with Pseudomonas tehranensis 
SWRI196 in the same clade. Evolutionary analysis was conducted 

by Type (Strain) Genome Server (TYGS) using the Genome BLAST 
Distance Phylogeny (GBDP) method with 100 bootstrap replications. 
Differences in genome size, GC percent, and protein count are indi-
cated by color code (Meier-Kolthoff and Goker 2019)
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enzyme for the biosynthesis of polyamines. The genes of 
spermidine synthase (polyamine aminopropyl transferase) 
(speE), homospermidine synthase (hss), and gamma-
butyrobetaine dioxygenase, which are related to the synthe-
sis of spermidine, homospermidine, and carnitine, respec-
tively, were present in the SWRIQ11 genome. The genes 
of the biosynthesis pathway of ectoine which is mediated 
by three enzymes, including N-alpha-acetyl-L-2,4-diamino 
butyrate deacetylase (ectA), L-2,4-diaminobutyric acid 
transaminase (ectB) and L-ectoine synthase (ectC) were 
identified in the genome of SWRIQ11. Accordingly, a gene 
cluster with a high similarity to the ectoine biosynthesis was 
observed during antiSMASH analysis (Fig. S2). Further-
more, the genes of arginine decarboxylase (speA), agmatine 
deiminase (aguA), and N-carbamoyl putrescine amidase 
(CPA) for putrescine biosynthesis via the agmatine path-
way were identified in the SWRIQ11 genome. Five trehalose 
production pathways have been shown in bacteria consisting 
of TreS, OtsA/OtsB (Tps/Tpp), TreP, TreT, and TreY/TreZ 
(Liu et al. 2016; Nobre et al. 2008). The SWRIQ11 genome 
contained genes of trehalose synthesis pathways, including 
trehalose synthase (treS) from the TreS pathway, Malto-oli-
gosyltrehalose synthase (treY), and malto-oligosyltrehalose 
trehalohydrolase (treZ) from the TreY/TreZ pathway.

In addition to genes related to the accumulation of osmo-
protectants, the SWRIQ11 genome contained the aquaporin 
Z synthesis gene (aqpZ), a channel that adjusts the osmoti-
cally driven flow of water.

Heat-shock proteins (HSPs) or chaperones like DnaK, 
DnaJ, Clp family, GroES, GroEL, proteases, and sHSPs are 
upregulated upon osmotic stress. The SWRIQ11 genome 
contained genes of different chaperones like htrA, dnaJ, 
dnaK, grpE, groES, groEL, recN, djlA, cbp family, surA, clp 
family, hsc family, yidC, htp family, ccmE, mbtH, yegD, and 
mazG. Furthermore, the genome of strain SWRIQ11 con-
tained several genes related to RNA chaperones (Hfl operon) 
that bind small regulatory RNA (sRNAs), mRNAs and with 
high specificity to tRNAs to assist mRNA translational regu-
lation in reaction to environmental stress. (Rajkowitsch et al. 
2007; Arce-Rodriguez et al. 2015). Moreover, the genes of 
the universal stress protein family in the SWRIQ11 genome, 
including uspA, uspB, uspC, uspD, uspE, uspF, and uspG 
were observed.

Genes related to motility, chemotaxis, 
and colonization in the SWRIQ11 genome

Bacterial root colonization starts when bacteria sense par-
ticular compounds in the root exudates. The influencing 
factors in the specificity of interactions between plants and 
bacteria are the quantity, and composition of root exudates 
and soil conditions (Etesami 2020).

The interaction of bacteria with plants is associated with 
a widespread set of genes related to chemotaxis, motility, 
adhesion, and colonization (Eida et al. 2020; Levy et al. 
2018). A signal molecule, a chemoreceptor (such as the 
methyl-accepting chemotaxis protein [MCP]), a cytoplas-
mic signal transduction system, and a response regulator 
that regulates flagellar or pili activity involved in chemotaxis 
reaction (Levy et al. 2018). The SWRIQ11 genome con-
tained chemotaxis genes (che and cet), flagellar gene oper-
ons (fla, flb, fli, flg, flh, fle, and mot), adhesion genes (oprQ 
and aidA), colonization genes (tad, cpa, and flp), and pili 
synthesis-related genes (pil, fim, cpa, and tad) (Table S3).

The genomes of many rhizobacteria encode enzymes for 
the degradation of plant-derived carbohydrates (Levy et al. 
2018). The SWRIQ11 genome contained the genes related 
to cellulase M and xylanase.

Genes related to the nutrient acquisition 
in the SWRIQ11 genome

The genes related to nitrogen fixation (nif genes) were not 
identified in the genome of strain SWRIQ11. This strain 
contained genes of denitrification, including the nar gene 
cluster (nitrate reductase), nir gene cluster (nitrite reduc-
tase), nor gene cluster (nitric oxide reductase), and the nos 
gene cluster (nitrous oxide reductase). Furthermore, the 
genome contained the genes of dissimilatory nitrate reduc-
tion to ammonium (DNRA) process, which consists of two 
steps, nitrate is reduced to nitrite in the first step like deni-
trification (nar gene cluster), and then reduction of nitrite 
to ammonium by nitrite reductase, encoded by nrfA gene 
(Table S4) (Bu et al. 2017).

Siderophores are metal-chelating compounds produced 
by most PGPR with a vast chemical diversity. Bacterial 
siderophores consist of four main classes, including phenol 
catecholates, hydroxamates, carboxylate, and pyoverdines 
(Crowley 2006).

The antiSMASH analysis of the strain SWRIQ11 genome 
showed the existence of two gene clusters with high similar-
ity to pyoverdine siderophore biosynthesis (pvd) (Figs. S3 
and S4). Accordingly, the genes of pvd were identified in 
the genome of SWRIQ11 during annotation with different 
software and databases (Table S5). Achromobactin (ACR) is 
related to a group of non-peptide siderophores comprising a 
citrate core that is connected to diamino butyrate and etha-
nolamine, which are both condensed with α-ketoglutarate 
(Berti and Thomas 2009). The genes related to achromo-
bactin siderophore synthesis were present in the genome of 
SWRIQ11 (acsABCDEF). Further, the strain genome con-
tained the gene associated with ferrichrome (a hydroxamate-
type siderophore)-iron receptor (fhuA).

Bacterial organic acids release phosphate. The most prev-
alent organic acids consist of gluconic acid (GA) and 2-keto 
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gluconic acid. Glucose-1-dehydrogenase (gcd) synthesizes 
GA, and pyrrolo-quinolone quinine (PQQ) acts as its cofac-
tor. Besides, GA dehydrogenase (gad) plays a role in GA 
synthesis and its transformation to 2-ketogluconate (Olen-
ska et al. 2020). In addition, PGPR hydrolyze P-organic 
substrates enzymatically by non-specific acid phosphatases 
(NSAPs), including phytases, acid and alkaline phosphomo-
noesterases (phosphatases), phosphonatases, and C-P lyases 
(Olenska et al. 2020, Suarez et al. 2019). Pseudomonas sp. 
SWRIQ11 contained genes related to GA synthesis (gcd and 
pqqBCDEF) and different phosphatases (Table S6).

Genes related to phytohormones in the SWRIQ11 
genome

Phytohormones support plants against abiotic stresses, and 
PGPR can modulate the level of endogenous phytohormones 
in plants by producing similar hormones (Mohammadipanah 
and Zamanzadeh 2019). PGPR hormones can trigger the 
division and growth of plant cells, alter root characteristics 
and play a significant role in organizing an array of genes, 
their regulators, and several signal transduction pathways 
when plants are under abiotic stresses conditions and make 
crops tolerant to the stresses (Etesami 2020). The main phy-
tohormones produced by bacteria are abscisic acid (ABA), 
gibberellins (GA), auxins, ethylene, and cytokinins (Olenska 
et al. 2020).The amount of ABA increases under osmotic 
stress through elevated expression of multiple genes of ABA 
production, including genes of aldehyde oxidase, zeaxanthin 
epoxidase, 9-cis-epoxy carotenoid dioxygenase, and molyb-
denum cofactor sulturase (Khan et al. 2020). Genes related 
to different subunits of aldehyde oxidase were identified in 
the SWRIQ11 genome.

The pathways for auxin production in bacteria are cat-
egorized according to their intermediate, including indole-
3-pyruvate (IPyA), indole-3-acetamide (IAM), indole-3-ace-
tonitrile (IAN), tryptophan side-chain oxidase, tryptamine, 
and tryptophan independent (Gamalero and Glick 2011). 
IAM and IPyA are two main microbial pathways (Gupta 
et al. 2016), while most PGPR apply the IPyA pathway 
(Khatoon et al. 2020). The Pseudomonas sp. SWRIQ11 
genome contained genes related to tryptophan synthesis as 
a precursor of auxin synthesis (anthranilate synthase, anthra-
nilate phosphoribosyltransferase, phosphoribosyl anthra-
nilate isomerase, different chains of tryptophan synthase, 
isochorismatase, indole-3-glycerol phosphate synthase, 
tryptophanyl-tRNA synthetase, phosphoribosylformimino-
5-aminoimidazole carboxamide ribotide isomerase, para-
aminobenzoate synthase, and aminodeoxychorismate lyase). 
The genes of the IPyA pathway, including the pyridoxal 
phosphate-dependent aminotransferase genes, which trans-
forms tryptophan to IPyA, indole-3-pyruvate decarboxylase 
that changes IPyA to indole-3-acetaldehyde (IAAld), and 

indole-3-acetaldehyde dehydrogenase which synthesizes 
IAA, were identified in the SWRIQ11 genome. Furthermore, 
the SWRIQ11 genome contained the genes of the IAM 
pathway for IAA production, including the genes of tryp-
tophan monooxygenase that transforms tryptophan to IAM 
and indole acetamide hydrolase (iaaH), which hydrolyzes 
IAM into IAA. Moreover, the SWRIQ11 genome contained 
the amidase gene, which contributes to the IAM pathway 
through the transformation of indole-3-acetamide to IAA.

Environmental stresses increase ethylene synthesis in the 
plant, which hampers the plants growth (Kumari et al. 2016). 
The ACCD-synthesizing bacteria can lessen the deleterious 
impact of the different stresses on plants by catabolizing 
ACC (precursor of ethylene) to α-ketobutyrate (precursor of 
leucine) and ammonia (Kumari et al. 2016, Jaya et al. 2019). 
ACCD is a pyridoxal phosphate-dependent enzyme encoded 
by the acdS gene (Kumari et al. 2016). acdS genes have 
been modulated through the leucine-responsive regulatory 
protein (LrP) and AcdB protein (Kumari et al. 2016). The 
SWRIQ11 genome contained the genes of ACCD (acdS), 
LrP (acdR), and several genes related to pyridoxal phos-
phate synthesis. In addition, the genes related to pyridoxal 
phosphate-dependent deaminase and D-cysteine desulfhy-
drase (dcyD) (homolog of ACCD) were identified in the 
SWRIQ11 genome.

Genes related to volatile organic compounds (VOCs) 
synthesis in the SWRIQ11 genome

Acetoin and 2,3-butanediol as VOCs are produced when 
two pyruvate molecules are compressed into acetolactate 
and transformed to acetoin via acetolactate decarboxylase, 
and lastly, acetoin reductase catalyzes 2,3-butanediol from 
acetoin (Liu et al. 2016; Suarez et al. 2019). Pseudomonas 
sp. SWRIQ11 genome contained the encoding gene of ace-
tolactate synthase (ilv) but not genes related to acetolactate 
decarboxylase and acetoin reductase.

Genes related to antioxidant defense mechanism 
in the genome of strain SWRIQ11

Plants are equipped with antioxidant defense systems, 
including enzymatic and nonenzymatic mechanisms 
against the deleterious effects of reactive oxygen species 
(ROS) (Arora et al. 2020). There were genes related to 
antioxidant enzymes in the SWRIQ11 genome, including 
bifunctional enzyme catalase-peroxidase (katG), catalase 
(katE), glutathione reductase (gor), glutathione peroxidase 
(gpo), superoxide dismutase (sod), and alkyl hydroperoxide 
reductase subunit C-like protein (ahpC). Additionally, the 
SWRIQ11 genome contained genes related to nonenzymatic 
mechanisms (cysteine, glutathione, carotenoids, tocopherol, 
and ascorbate) (Table S7).
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Genes related to exopolysaccharides (EPS) synthesis 
in the SWRIQ11 genome

EPS production by PGPR forms hydrophilic biofilms 
conferring desiccation protection, regulates nutrients and 
water flow across plant roots, binds to Na+ and decreases 
the bioavailability of the ion, aggregates root-adhering 
soils (RAS), and stabilizes soil aggregates (Etesami 2020; 
Jiang et al. 2021). The SWRIQ11 genome contained the 
genes of the alginate production pathway, including 
algF, algJ, algX, algG, algK, algE, algP, algQ, algR, 
and algB. Moreover, the genes of capsular polysaccha-
ride biosynthesis protein (capD), mannose-1-phosphate 
guanylyltransferase, mannose-6-phosphate isomerase, and 
glycosyl transferase from the exopolysaccharide biosyn-
thesis pathway were detected in the SWRIQ11 genome. 
A schematic summary of metabolic pathways related to 
plant growth promotion and stress alleviation character-
istics attributed to the SWRIQ11 genome has been shown 
in Fig. 3.

Existence of virulence genes in the genome of strain 
SWRIQ11

Previously, type III secretion systems (T3SSs) have been 
extensively investigated for their essential roles in bacte-
rial pathogenesis in animals and plants. T3SSs have lately 
been known as a vital characteristic of an extensive range of 
symbioses in most Gram-negative bacteria that are closely 
associated with eukaryotes (Mavrodi et al. 2011; Zboralski 
et al. 2022). Genes of the T3SS cluster are conserved in 
both pathogenic and saprophytic species of pseudomonads 
(Mavrodi et al. 2011). The roles of T3SSs in plant-benefi-
cial Pseudomonas spp., are not completely elucidated and 
seem as a determinant tool of rhizobacteria-plants interac-
tions (Zboralski et al. 2022). According to RAST subsystem 
information, there is not any subsystem related to virulence 
and pathogenicity in the genome of strain SWRIQ11. Some 
genes of the hrp/hrc gene cluster, which encode T3SSs 
that are not complete gene cluster, were identified in the 
SWRIQ11 genome (Table S8). Several secreted proteins 
which cause disease in susceptible plants, including harpins 
and avirulence proteins (Avr) (Hueck 1998), were also not 
present in the genome of SWRIQ11.

Fig. 3   Schematic proteins and metabolic pathways involved in plant growth promotion and salinity stress alleviation identified in the genome of 
Pseudomonas sp. SWRIQ11. ECF Extracytoplasmic function (ECF) sigma factors, OmpA Outer membrane protein A
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Genes related to further functions in the SWRIQ11 
genome

The Pseudomonas sp. SWRIQ11 genome contained the 
genes related to the synthesis of antibiotic compounds like 
phenazine and 4-hydroxybenzoate, which act as biocontrol 
agents and suppress plant pathogenic microorganisms. Fur-
thermore, the gene cluster with similarity to the synthesis 
of herboxidiene was identified in the SWRIQ11 genome. 
Herboxidiene is a polyketide with herbicide and antitumor 
capabilities (Miller-Wideman et al. 1992; Hasegawa et al. 
2011). Moreover, herboxidiene triggers the expression of 
genes related to responses to abiotic stress in plants (AlSha-
reef et al. 2017). Furthermore, the SWRIQ11 genome con-
tained the genes related to different pathways of aromatic 
compound degradation.

Discussion

The application of PGPR as an alternative solution for pro-
viding increasing nutrition needs and remediation of stress-
affected soil is among the strategies triggered by the trend 
in climate change. For the use of PGPR as stress-alleviating 
biofertilizer, the molecular mechanisms of action in PGPR-
plants interactions need to be revealed. Accordingly, the 
number of genomes of rhizobacteria assembled, biopro-
jects, and articles on this subject in PubMed have increased 
16, 5, and 6 times in 2022 compared to 2010, respectively. 
However, because of the genetic and metabolic diversities of 
rhizobacteria and the complexity of their interactions, there 
are still unidentified gaps in molecular mechanisms of action 
by which PGPR protect the plants.

Pseudomonas spp. are one of the most ubiquitous plant-
associated and metabolically versatile group of bacteria. 
Currently, the genome sequences of 348 species (13,521 
strains) of the pseudomonas members have been deposited 
in the NCBI database upto September 2023. Eighty-five spe-
cies (11,670 strains) are pathogenic, opportunistic patho-
genic, and responsible for spoilage. Two hundred sixty-three 
species (1851 strains) have been isolated from the environ-
ment, from which, 87 species (1150 strains) have shown 
the potential for application as PGPR or for bioremediation 
purposes.

In this study, the genome of a new Pseudomonas sp. 
(SWRIQ11) that promote plant growth and alleviate salin-
ity stress in olive seedlings, was sequenced and mined to 
reveal the molecular mechanisms of action and potential 
functional capabilities of this new strain. The genome 
data of SWRIQ11 supported the results of lab and green-
house studies, indicating the PGP ability of this halotoler-
ant strain. Through genome annotation and analysis, more 
than 825 CDSs related to plant growth-promoting and 

stress-alleviating traits were recognized in the genome of 
SWRIQ11. Among 30 species of Pseudomonas, which had 
more similarity with SWRIQ11 (according to EzBioCloud 
and JSpeciesWS servers), 10 species have records on plant 
growth promotion, and genes related to plant growth-pro-
moting traits have been analyzed in 5 species, including 
P. corrugata (Zachow et al. 2017), P. chlororaphis subsp. 
Aurantiaca (Zhang et al. 2020), P. thivervalensis (Nasci-
mento et al. 2021), P. fluorescens (Cho et al. 2015), and P. 
veronii (Montes et al. 2016).

Pseudomonas sp. SWRIQ11 was halotolerant (could 
grow in 6% NaCl), and the presence of several genes related 
to stress response sigma factors, ECF sigma factors, stress 
sensors, signaling and regulation proteins, chaperones, 
universal stress protein family, ion homeostasis including 
genes of Na+/H+ antiporters and K+ uptake systems, and 
the genes of osmoprotectants accumulation in the genome of 
SWRIQ11 confirmed the capability of this strain to tolerate 
the salinity. The genes related to osmoprotectants accumula-
tion in the SWRIQ11 genome included different osmolytes 
import systems and de novo synthesis of proline, choline, 
glycine betaine, polyamines, spermidine, homospermidine, 
putrescine, carnitine, ectoine, and trehalose. Interestingly, 
Pseudomonas sp. SWRIQ11 contained two pathways (TreS 
and TreY/TreZ) for trehalose synthesis. The presence of sev-
eral trehalose biosynthetic pathways can be due to the severe 
requirement to accumulate trehalose under stressful environ-
mental conditions. Accordingly, the genes related to the syn-
thesis of several osmoprotectants and two pathways of tre-
halose synthesis (TreS and TreY/TreZ) have been identified 
in the genomes of P. thivervalensis SC5 (Nascimento et al. 
2021) and P. fluorescens PCL1751 (Cho et al. 2015), which 
were halotolerant species. In the SWRIQ11 genome, like 
many rhizobacteria, a high number of characterized CDSs 
were involved in the establishment of interaction with plants, 
including genes related to chemotaxis, motility, ECF sigma 
factors, adhesion, colonization, and enzymes for degrading 
plant-derived carbohydrates. The genomes of all of the five 
species of Pseudomonas (more similar to SWRIQ11) con-
tained these indicated genes.

Genes related to ammonium production, including genes 
of dissimilatory nitrate reduction to ammonium (DNRA) 
process, were identified in the SWRIQ11 genome. For high 
efficiency iron uptake, this strain contained genes related 
to biosynthesis and transport of two siderophores, includ-
ing pyoverdine and achromobactin, and a gene of the fer-
richrome siderophore (fhuA) receptor for using xenofer-
richrome. Pyoverdine biosynthesis genes have been the 
most predominant siderophore among the five species of 
Pseudomonas. The genes related to gluconic acid synthe-
sis (gcd and pqq) as the most prevalent agent for releasing 
phosphate by phosphate-solubilizing bacteria and different 
phosphatases were found in the genome of SWRIQ11. The 
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genomes of P. thivervalensis SC5 (Nascimento et al. 2021) 
and P. fluorescens PCL1751 (Cho et al. 2015), which could 
tolerate salinity stress, contain the genes gcd and pqq. The 
existence of genes associated with phosphate solubilization 
in these halotolerant Pseudomonas spp. can be correlated to 
the decrease in the bioavailability of phosphorus in saline 
soil (Xie et al. 2022).

The genes related to tryptophan synthesis as a precur-
sor of auxin synthesis and two IAA synthesis pathways 
(IPyA and IAM pathways) were identified in the SWRIQ11 
genome. PGPR support plants to moderate the abiotic 
stresses and prompt plant growth by supplying auxins which 
are synthesized and excreted by more than 80% of the rhizo-
bacteria. However, the most common auxin (IAA) induces 
the expression of the ACC (precursor of ethylene) synthesiz-
ing enzyme gene at high concentrations. Therefore, IAA can 
enhance plant growth synergistically with ACC deaminase 
(ACCD). The ACCD gene that is key to the efficiency of 
PGPR in mitigating stress, its modulator, and the homolog of 
ACCD were present in the SWRIQ11 genome. All of the five 
mentioned species and several other assessed plant growth-
promoting Pseudomonas spp. like P. putida LWPZF (Jin 
et al. 2022), P. chlororaphis GP72, P. fluorescens Pf-5, P. 
stutzeri A1501 (Shen et al. 2013), and P. aeruginosa FG106 
(Ghadamgahi et al. 2022), harbor the acdS gene, which indi-
cates the high prevalence of this pivotal gene in PGPR.

There were genes related to different antioxidant enzymes 
and nonenzymatic antioxidant mechanisms in the SWRIQ11 
genome, which enabled the strain to tolerate different 
stresses. The SWRIQ11 genome included the genes of the 
alginate exopolysaccharide biosynthesis pathway. Interest-
ingly, two halotolerant species (P. thivervalensis SC5 (Nas-
cimento et al. 2021) and P. fluorescens PCL1751 (Cho et al. 
2015) among five species, contained the genes associated 
with alginate EPS, which is efficient in salinity stress tol-
erance. However, further studies are needed to determine 
the expression and regulation of identified genes in the 
SWRIQ11 genome.

The absence of virulence genes and any subsystem 
related to virulence and pathogenicity in the SWRIQ11 
genome was approved by the negative result in the HR 
biosafety assay and non-hemolytic activity of this strain. 
Some genes of the hrp/hrc gene cluster encode T3SSs 
(these protein appendages are found in many eukaryotes-
associated Gram-negative bacteria), but no complete 
gene cluster was found in the SWRIQ11 genome. Sev-
eral secreted proteins which cause disease in susceptible 
plants, including harpins and avirulence proteins (Avr), 
were not identified in the SWRIQ11 genome. Accordingly, 
Shariati et al. (2017) showed only the Pantoea agglomer-
ans strain with pathogenic activity contained the complete 
hrc/hrp gene cluster. The genomic results of the assay of 
pathogenicity of SWRIQ11 are according to the negative 

result of the HR test Furthermore, the identification of 
genes related to the antibiotic, antitumor, and herbicide 
compounds biosynthesis and degradation of aromatic 
compounds in the SWRIQ11 genome shows more possible 
capabilities in this bacterium, which need to be experi-
mentally proven.

By applying several methods and indices for identifica-
tion of this strain because pseudomonas species are closely 
related, and regarding the threshold of species defini-
tions (≥ 95% ANI, ≥ 0.99 TETRA signature, and > 70% of 
dDDH or GGDC), Pseudomonas sp. SWRIQ11 is a new 
species candidate clustered with Pseudomonas tehranensis 
SWRI196 in the same clade based on phylogenetic analysis.

Conclusions

Pseudomonas sp. SWRIQ11 is a PGPR that can alleviate 
salinity stress in olive seedlings. Comprehensive analysis of 
the Pseudomonas sp. SWRIQ11 genome confirmed obser-
vations of its PGPR characteristics in lab and greenhouse 
studies. SWRIQ11 is introduced as a new potent halotolerant 
plant growth-promoting and stress-alleviating rhizobacte-
rium, which contained a high number of CDSs (more than 
825) associated with tolerating salinity stress, interaction 
with plants, enhancing plant growth, and mitigating the 
salinity stress similar to assessed halotolerant plant growth-
promoting Pseudomonas spp. However, further studies 
are needed to determine the expression and regulation of 
these genes. Regarding the salinity stress alleviation and the 
absence of any virulence genes in the SWRIQ11 genome, 
the strain can be applied as a potential safe plant stress pro-
tector. Furthermore, considering the identification of genes 
related to the antibiotic, antitumor, and herbicide compounds 
biosynthesis and degradation of aromatic compounds in the 
SWRIQ11 genome, further additional microbial, herbicidal 
or pesticidal activity may increase the competency of this 
strain as a biofertilizer.
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