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Abstract

Background: Mild cognitive impairment (MCI) is the early stage of AD, and about 10–12% of MCI patients will progress
to AD every year. At present, there are no effective markers for the early diagnosis of whether MCI patients will progress to
AD. This study aimed to develop machine learning-based models for predicting the progression from MCI to AD within 3
years, to assist in screening and prevention of high-risk populations.
Methods: Data were collected from the Alzheimer’s Disease Neuroimaging Initiative, a representative sample of cognitive
impairment population. Machine learning models were applied to predict the progression from MCI to AD, using
demographic, neuropsychological test and MRI-related biomarkers. Data were divided into training (56%), validation (14%)
and test sets (30%). AUC (area under ROC curve) was used as the main evaluation metric. Key predictors were ranked
utilising their importance.
Results: The AdaBoost model based on logistic regression achieved the best performance (AUC: 0.98) in 0–6 month
prediction. Scores from the Functional Activities Questionnaire, Modified Preclinical Alzheimer Cognitive Composite with
Trails test and ADAS11 (Unweighted sum of 11 items from The Alzheimer’s Disease Assessment Scale-Cognitive Subscale)
were key predictors.
Conclusion: Through machine learning, neuropsychological tests and MRI-related markers could accurately predict the
progression from MCI to AD, especially in a short period time. This is of great significance for clinical staff to screen and
diagnose AD, and to intervene and treat high-risk MCI patients early.
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Key Points

• Machine learning especially multi-model fusion strategies had great potential in distinguishing mild cognitive impairment
(MCI) and Alzheimer’s disease (AD) patients.

• The prediction power of models declined over time, with the highest area under ROC curve (AUC) of 0.98 in 0–6 month
prediction.

• Scores from Functional Activities Questionnaire, Modified Preclinical Alzheimer Cognitive Composite with Trails test and
ADAS11 (Unweighted sum of 11 items from The Alzheimer’s Disease Assessment Scale-Cognitive Subscale) were key
predictors for AD prediction.
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Introduction

Alzheimer’s disease (AD) is a common progressive neurode-
generative disease in older people with insidious onset and
slow deterioration in cognition, and functional ability. AD
accounts for about 60–80% of all dementia patients [1].
So far, there are no effective drugs and treatments that can
completely cure AD, but only delay its deterioration [2].
Mild cognitive impairment (MCI) is an early stage of AD,
epidemiological studies have shown that about 10–12% of
patients with MCI will progress to AD every year [3, 4].
Therefore, it is of great significance for the prevention of AD
to accurately predict whether MCI will develop into AD and
to formulate intervention plans.

Patients with MCI have noticeable declines in memory,
language and other cognitive functions, and some impair-
ment may also be found in clinical examination, but not
enough to affect daily living function [5]. However, MCI
patients show different heterogeneity over time [6], which
provides the possibility for early prediction. Previous studies
have identified some biomarkers for early prediction of AD,
such as hippocampus volume, tau and β-amyloid protein
aggregation, and neuropsychological test scale scores [7–
12]. While these studies have some limitations, for example,
utilisation of cross-sectional data [13], inclusion of too many
variables [14], utilisation of single model [15, 16] and lack
of model application [17]. Therefore, a simple, accurate and
reliable method is needed, which could assist clinical workers
in early detection and timely prevention.

Machine learning (ML) has shown outstanding perfor-
mance in disease risk prediction [18, 19]. It can learn com-
plex relationships among variables from large amounts of
data [20]. However, ML also faces major challenge such as
poor interpretability and limited applications. Interpretabil-
ity refers to the ability of a model to present its predictions
in a way that humans can understand [21]. For model
applications, nomogram is a simple and easy tool to make
diagnosis and assist clinical decision-making [22, 23].

The purpose of this study is to predict the risk of pro-
gression from MCI to AD within 3 years using the ADNI
database. We also examined the key predictors for AD pre-
diction in different time intervals.

Materials and methods

Participants

Data was obtained from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI, https://ida.loni.usc.edu) database, The
ADNI project aims to comprehensively assess the progress
of MCI and early AD by combining longitudinal mag-
netic resonance imaging (MRI), positron emission tomogra-
phy (PET) and biomarker data and clinical neuropsycholog-
ical scale assessment. The samples are from ADNI-1, ADNI-
GO, ADNI-2 and ADNI-3 queues. The diagnostic criteria
of MCI and AD can be found in Supplementary Table S1
and at the ADNI website (https://clinicaltrials.gov/ct2/sho
w/NCT02854033). The follow-up interval for ADNI was

6–12 months. The inclusion criteria of the samples in this
study were: (i) diagnosed with MCI at baseline; (ii) had a
follow-up time of 3 years; (iii) had outcome (cognitive sta-
tus) information. Participants diagnosed with bidirectional
changes during follow-up were excluded [24]. Finally, a total
of 627 patients with baseline MCI were screened, of whom
269 patients progressed to AD at a 3-year follow-up and
358 patients remained MCI. The detailed sample selection
process was shown in Supplementary Figure S1.

Predictors and data preprocessing

We evaluated multiple types of variables such as demo-
graphic, neuropsychological test, MRI-related markers, etc.
Some variables that are not helpful to model construc-
tion, such as patient id, MRI image id, test time etc.,
were excluded (Supplementary Table S2), and then variables
with a missing rate of more than 20% were also excluded
(Supplementary Table S3). For the remaining variables with
missing value (Supplementary Table S4), we used the miss-
Forest algorithm to fill it. MissForest algorithm is a non-
parametric imputation method, and is superior to traditional
filling methods, such as hot deck filling, mean filling, and
median filling, etc. [25]. Assignment of categorical variables
is shown in Supplementary Table S5. Finally, we included 29
variables in four categories, as shown in Supplementary Table
S6. In order to reduce model computation and generalise
model performance, we map all variables to the same dimen-
sional range (0–1) to ensure that they are in uniform and
comparable dimensions. Specifically, the Max-Min normal-
isation method was applied for continuous variables like age
and education. While the neuropsychological test variables
were normalised by dividing their scores by the total scores
of the corresponding scale. For the intracranial volume, due
to the inconsistency of cranial size in each individual, the
proportional method [26] was used to normalise it. For the
other MRI-related markers, we normalised the brain area
volume of different individuals by dividing the intracranial
volume of the individual.

Machine learning model

According to the No free lunch theorem, different ML
models have different performance in different tasks [27].
We selected as many as possible models related to traditional
machine learning, ensemble learning and artificial neural
network. Specifically, Logistic Regression, K Nearest Neigh-
bours, Decision Tree, Random Forest, Extra Trees, Support
Vector Machine, Multi-layer Perceptron, Gradient Boosting
Tree and eXtreme Gradient Boosting were included. The
principles of these ML models can be viewed in Supple-
mentary Method 1. In addition to applying the above single
model, we also tried to further improve the performance by
using multi-model fusion strategies such as Voting, Boosting
and Bagging. The detailed description of multi-model fusion
can be seen in the Supplementary Method 1.

All patients were firstly assigned to two parts (70% versus
30%). The 30% of data was used as test set, and was only
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applied to verify the performance of models. A 5-fold cross
validation was further used in the 70% of data, that is,
the 70% of data was equally divided into 5-fold (14% of
the whole data for each fold). Among the 5-fold, four of
them (56% of the whole data) were used as training set, and
another fold was used as validation set (14% of the whole
data). The training set (56%) and validation set (14%) were
used to do feature selection and hyperparameter tunning,
and the feature selection and hyperparameter tunning were
performed separately in the 70% of data with 5-fold cross
validation. After hyperparameter tunning, the prediction
models were refitted in the training set with optimal hyper-
parameters and validated in the validation set for five times,
and an average result was obtained to select the optimal
model. Finally, the test set (30%) was used to assess the per-
formance of optimal model. Hyperparameters of all models
were tuned with Bayesian optimization. In order to reduce
the number of features and avoid model overfitting, the Least
Absolute Shrinkage And Selection Operator (LASSO) was
applied to screen features [28]. More detailed information of
LASSO can be accessed at the Supplementary Method 2. All
models were constructed using Python (Version 3.6) on the
PyCharm professional (Version 2021.3.2) platform. The var-
ious packages and versions used are shown in Supplementary
Table S7, and detailed machine learning model construction
process is shown in Supplementary Figure S2.

Evaluation of model performance and variable
importance

Models were evaluated by accuracy, precision, recall, F1-
score and AUC. The calculation for these metrics is shown
in Supplementary Table S8. Calibration curve, expected cali-
bration error (ECE) and brier score were used to evaluate the
calibration results. More information about ECE, Brier score
and DCA can be found in the Supplementary Method 3.
For model interpretability, we applied the feature importance
and permutation importance to output the key predictors
of optimal model. Furthermore, we also evaluated model
performance at different time points, that is, the global
model was assessed by grouping the outcomes of the test data
at different time points (0–6, 6–12, 12–18, 18–24 and 24–
36 months). Further, we also visualised the logistic regression
with nomogram utilising the LASSO selected variables. All
the codes of model construction and evaluation can be
accessed through the following link https://github.com/jayso
nwong-maker/github.

Statistical analysis

SPSS (Version 26) was used for statistical analysis. Continu-
ous variable is expressed as mean±standard deviation (x ± s)
or median (interquartile range, IQR), categorical variable
is expressed as number and percentage (%). The t-test and
non-parametric Kruskal–Wallis test were used to compare
the groups for continuous variables. The x2 test was used to
compare the frequency of categorical variables. P value of
<0.05 was considered statistically significant.

Result

Baseline characteristics of the patients

Supplementary Table S9 summarises the differences of base-
line variables between the MCI and AD groups. The AD
group was older than MCI group. All neuropsychological
tests were statistically significant between two groups. There
was statistical significance between APOE genotypes. Except
for intracranial volume, other MRI-related features showed
statistical significance. Supplementary Table S10 summarises
the differences of baseline variables between the 70% of
data (training and validation sets) and 30% of data (test
set), and there was no statistical difference between the two
sets.

Performance evaluation of machine learning models

Table 1 shows the performance of machine learning models
in predicting AD within 3 years in validation set. In full-
variable set, RF ranked first with its accuracy, precision,
recall, F1-score and AUC reaching 0.80, 0.79, 0.79, 0.78
and 0.89, respectively. After using voting, bagging and
boosting fusion strategies, the performance had slightly
improved compared with single model, especially for
Bagging. Eight variables were selected by LASSO, that
is, ADAS11, RAVLT_immediate, RAVLT_learning, Func-
tional Activities Questionnaire (FAQ), Fusiform, MidTemp,
ICV and mPACCtrailsB. In LASSO set, MLP had the best
performance, with its accuracy, precision, recall, F1-score
and AUC being 0.81, 0.80, 0.78, 0.78 and 0.90, respectively.
After multi-model fusion, boosting fusion based on logistic
regression achieved best performance (accuracy: 0.83,
precision: 0.80, AUC: 0.91). Supplementary Table S11–
S14 showed the detailed results of model fusion. Generally,
Adaboost (base estimator: logistic regression) in LASSO set
was much better considering its higher performance and less
variables. Therefore, the AdaBoost model based on logistic
regression is taken as the final optimal model, and the
accuracy, precision, recall, F1-score and AUC of the final
model on the test set are 0.83, 0.82, 0.71, 0.76 and 0.89,
respectively.

Supplementary Figure S3 shows the ROC curve of the
nine single models and best fusion model (AdaBoost with
logistic regression as base estimator) in the validation set.
Supplementary Figure S4 shows the calibration curve of the
best fusion model on test set. The expected calibration error
and brier score of the best fusion model were 0.07 (stan-
dard deviation: 0.02), and 0.13 (standard deviation: 0.04),
respectively. The DCA of the best fusion model in the test set
was shown in Figure 1, a positive net benefit was observed
within the whole threshold, suggesting its value in clinical
application. Supplementary Figure S5 and Supplementary
Table S15 show the importance rank of variables by the best
fusion model. It could be seen that there is little difference
in the feature importance ranking of the output of the two
methods (feature importance and permutation importance).
Generally, FAQ, mPACCtrailsB, RAVLT_immediate and
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Table 1. Performance of prediction models on the validation set before and after feature selection

Model Full-variable set (x ± s) LASSO set (x ± s)

Accuracy Precision Recall F1-Score AUC Accuracy Precision Recall F1-Score AUC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LR 0.81 ± 0.05 0.81 ± 0.11 0.79 ± 0.04 0.79 ± 0.03 0.89 ± 0.04 0.80 ± 0.02 0.80 ± 0.05 0.77 ± 0.09 0.78 ± 0.03 0.90 ± 0.02
KNN 0.76 ± 0.05 0.73 ± 0.07 0.74 ± 0.09 0.73 ± 0.06 0.83 ± 0.04 0.77 ± 0.01 0.74 ± 0.04 0.76 ± 0.06 0.75 ± 0.03 0.85 ± 0.02
SVM 0.80 ± 0.04 0.79 ± 0.09 0.79 ± 0.05 0.78 ± 0.03 0.88 ± 0.04 0.79 ± 0.01 0.78 ± 0.04 0.76 ± 0.06 0.77 ± 0.02 0.89 ± 0.02
DT 0.74 ± 0.08 0.73 ± 0.13 0.71 ± 0.09 0.71 ± 0.09 0.74 ± 0.08 0.73 ± 0.03 0.71 ± 0.06 0.68 ± 0.03 0.69 ± 0.02 0.72 ± 0.02
MLP 0.77 ± 0.03 0.75 ± 0.05 0.74 ± 0.08 0.74 ± 0.04 0.85 ± 0.04 0.81 ± 0.02 0.80 ± 0.05 0.78 ± 0.08 0.78 ± 0.02 0.90 ± 0.02
RF 0.80 ± 0.03 0.79 ± 0.08 0.79 ± 0.04 0.78 ± 0.03 0.89 ± 0.02 0.79 ± 0.03 0.77 ± 0.07 0.76 ± 0.08 0.76 ± 0.02 0.88 ± 0.02
ET 0.80 ± 0.03 0.79 ± 0.09 0.78 ± 0.07 0.78 ± 0.03 0.89 ± 0.05 0.79 ± 0.04 0.78 ± 0.08 0.77 ± 0.03 0.77 ± 0.02 0.89 ± 0.02
GBT 0.79 ± 0.01 0.78 ± 0.05 0.76 ± 0.06 0.77 ± 0.02 0.88 ± 0.02 0.80 ± 0.03 0.79 ± 0.07 0.77 ± 0.07 0.78 ± 0.02 0.88 ± 0.02
XGB 0.79 ± 0.02 0.78 ± 0.04 0.75 ± 0.06 0.76 ± 0.03 0.88 ± 0.03 0.78 ± 0.02 0.75 ± 0.04 0.76 ± 0.04 0.75 ± 0.01 0.86 ± 0.02
Voting 0.79 ± 0.04 0.77 ± 0.10 0.77 ± 0.04 0.77 ± 0.04 0.89 ± 0.04 0.79 ± 0.04 0.77 ± 0.05 0.78 ± 0.07 0.77 ± 0.03 0.89 ± 0.02
Bagginga 0.80 ± 0.03 0.79 ± 0.07 0.77 ± 0.06 0.78 ± 0.04 0.90 ± 0.04 0.81 ± 0.03 0.79 ± 0.07 0.80 ± 0.07 0.79 ± 0.02 0.90 ± 0.02
AdaBoosta 0.82 ± 0.02 0.81 ± 0.07 0.80 ± 0.04 0.80 ± 0.02 0.89 ± 0.02 0.83 ± 0.03 0.80 ± 0.06 0.74 ± 0.11 0.76 ± 0.04 0.91 ± 0.03

All metrics were the average results by 5-fold cross validation. LR, logistic regression; KNN, K Nearest Neighbours; SVM, Support Vector Machine; DT, Decision
Tree; MLP, Multi-layer Perception; RF, Random Forest; ET, Extra Trees; GBT, Gradient Boosting Tree; XGB, eXtreme Gradient Boosting; LASSO, least absolute
shrinkage and selection operator; AUC, the area under the receiver operating characteristic curve. aOnly results of the optimal fusion models were shown, for detailed
fusion results, please see Tables S11–S14.

Figure 1. DCA curve for the best fusion model (AdaBoost with
logistic regression as the base estimator) on test set. The horizon-
tal coordinate is the threshold probability and the ordinate is the
net benefit. As can be seen from the figure, the final model has
positive benefits in the whole threshold interval, which means
that it has certain clinical value.

ADAS11 were important predictors, demonstrating their
stability in early prediction of progression to AD in patients
with MCI. Besides, we compared the distribution of proba-
bility score between high- and low-risk patients based on the
best fusion model. In the validation and test sets, the score of
the high-risk group was significantly higher than that of the
low-risk group (Figure 2), and the difference was statistically
significant (P < 0.05).

We further constructed a nomogram using the eight
variables selected by LASSO (Supplementary Figure S6),
and the calibration curve of the nomogram is shown in
Supplementary Figure S7, suggesting a good calibration
result.

Figure 2. Violin box diagram of prediction score. Score rep-
resents the predicted probability of the final model (AdaBoost
with logistic regression as the base estimator) for each individ-
ual, statistically significant differences of prediction scores were
observed between the MCI and ad groups in the validation
(left) and test (right) sets (independent samples T-test). It can be
seen that the final model has the ability to distinguish between
MCI and ad.

Model performance and variable importance at
different time intervals

We further examined the prediction power of optimal fusion
model (AdaBoost with logistic regression as base estimator)
in different time intervals. The results showed that model
had high AUC during the entire time intervals, among
which the prediction power in 0–6 month was the highest
(AUC: 0.98, Table 2). The results of importance ranking of
predictors at different time intervals are shown in Figure 3.
Generally, scores from the FAQ, ADAS11 and Modified
Preclinical Alzheimer Cognitive Composite with Trails test
(mPACCtrailsB) ranked top 3.
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Table 2. Performance evaluation of the best fusion model at different time intervals on test set
Time interval Sample Accuracy (x ± s) Precision (x ± s) Recall (x ± s) F1-score (x ± s) AUC (x ± s)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0–6 month 130 0.93 ± 0.05 0.59 ± 0.04 0.89 ± 0.08 0.71 ± 0.10 0.98 ± 0.01
6–12 month 135 0.92 ± 0.04 0.64 ± 0.08 0.89 ± 0.06 0.74 ± 0.17 0.94 ± 0.03
12–18 month 122 0.92 ± 0.11 0.31 ± 0.23 0.80 ± 0.04 0.44 ± 0.22 0.89 ± 0.09
18–24 month 140 0.86 ± 0.20 0.57 ± 0.12 0.52 ± 0.24 0.55 ± 0.12 0.84 ± 0.10
24–36 month 130 0.88 ± 0.01 0.44 ± 0.17 0.54 ± 0.27 0.48 ± 0.37 0.80 ± 0.15

Note: The best fusion model refers to AdaBoost (base estimator: logistic regression). AUC, the area under the receiver operating characteristic curve. The global
model was assessed by grouping the outcomes of the test data at different time intervals (0–6, 6–12, 12–18, 18–24 and 24–36 months). There are 13, 18, 5, 23,
and 13 patients with MCI progression in 0-6, 6-12, 12-18, 18-24, and 24-36 months, respectively.

Figure 3. Ranking of feature importance at different time
intervals. The same colours represent the same features. It can
be seen that the importance of features changes in different time
intervals, generally, FAQ, ADAS11 and mPACCtrailsB ranked
the top 3.

Discussion

Based on the ADNI database, this study constructed a
fusion model for AD prediction within different time inter-
vals. Meanwhile, key predictors were identified and easily
used nomogram was validated, which was valuable for risk
screening and prevention.

Neuropsychological tests play an important role in early
diagnosis and prediction of AD [29]. As a non-invasive and
simple evaluation tool, neuropsychological tests are widely
used in brain science research [30, 31]. Numerous neu-
ropsychological test variables were included in this study,
and were statistically significant between the MCI and AD
groups. After LASSO processing, five of the eight selected
variables were neuropsychological tests, which confirmed
the importance of neuropsychological tests. We found that
demographic characteristics were not statistically significant
between the MCI and AD groups except for age, which
was consistent with the results of Mouchet [31] et al. After
feature selection, no demographic variables were included,
indicating that age may not be accurate in distinguishing
MCI and AD.

A retrospective study of AD prediction pointed out
that the average accuracy of most studies using traditional
machine learning algorithm was 75.4%, and the average
accuracy of neural network was about 78.5% [32]. In the
current study, we demonstrated the prediction power of
machine learning models, especially for fusion strategies.
The AdaBoost fusion model based on logistic regression

achieved high AUC, especially in 0–6 month (AUC: 0.98).
In addition, we selected eight variables with LASSO method,
and a nomogram was further constructed to ensure the
convenience of practical application. Our results indicated
that the score of the high-risk group was significantly higher
than that of the low-risk group, which is similar to previous
finding [32]. The DCA curve shows that the optimal fusion
model has a positive net benefit within the whole threshold
probability interval, which indicates that our model has
certain clinical application value. For clinical implications,
our models were helpful to the early identification of high-
risk populations and the identified key predictors in different
time intervals were crucial for targeted prevention.

Feature importance ranking is an important method to
help people understand machine learning prediction results.
Two feature importance ranking algorithms were selected
to eliminate the differences brought by different methods.
Whatever feature importance ranking methods were utilised,
FAQ, mPACCtrailsB, RAVLT_immediate and ADAS11
are important predictors. The results in different time
intervals also prove the importance of FAQ, ADAS11 and
mPACCtrailsB. This suggests that the neuropsychological
tests were important differentiating factors between MCI
and AD patients. Although the differences of these predictors
between two groups may be small (feature importance is
< 0.1), ML is able to identify such small differences and
make accurate predictions, which are almost impossible for
medical professionals to tell apart. As one of the widely used
neuropsychological scales, FAQ scale is used to assess the
physical condition, psychological condition, completion of
social role functions and factors affecting daily performance
of patients in completing daily activities. The speed and
degree of FAQ changes have certain significance for the
assessment of clinical dementia function. Some studies have
pointed out that the score of FAQ is the most accurate
variable in predicting the progression from MCI to AD
(AUC > 0.9) [33], which is consistent with the results in this
study. mPACC test is one of the important variables in this
study. It is pointed out in previous study [34] that mPACC
test can reliably measure signs of cognitive decline at an early
stage, and our study also supports this view. The score of The
Alzheimer’s Disease Assessment Scale-Cognitive Subscale
(ADAS-Cog11) is also one of the important predictors.
Previous finding [35] has shown that ADAS-Cog11 can
predict the progression from MCI to AD within 18 months.
Our best fusion model shows that the accuracy was around
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0.89 in 18-month prediction, while it declined over time,
which may be related to a decline in the ranking of ADAS-
Cog11. Rey’s Auditory Verbal Learning is usually used
to measure episodic language memory. In this study, the
model finally incorporates two scales, instantaneous memory
and learning memory. The importance of the score of the
instantaneous memory scale is high, suggesting that the
instantaneous memory impairment may occur before AD.
Although the impaired memory function in patients with
MCI does not affect daily life, it may be an important
risk factor for the progression of MCI to AD, which may
require further study in the future. In addition, cranial
volume (ICV), volume of fusiform gyrus (Fusiform) and
volume of the middle temporal lobe (MidTemp) are also
important variables, which represent more changes in brain
region volume. The reason for these changes may be the
accumulation of changes in a single intracranial region or
multiple intracranial regions, such as changes in average
cortical thickness, atrophy of the hippocampus and atrophy
of the medial temporal lobe structure, which are often
associated with cognitive decline [36–38].

It can be seen from the identified important variables that
the neuropsychological scale can reflect the progress of MCI
patients in 3 years to a certain extent. Brain region volume
and other variables showed relatively low predictive power,
indicating that structural changes may not occur in the early
process from MCI to AD, but functional changes at the
cellular level. This is consistent with the findings of some
retrospective studies [39]. On the other hand, the limits
of the neuropsychological scale in assisting the diagnosis of
MCI to AD are not clear, and it is not clear whether it is
still valid at a long stage (e.g. 10 years), which needs further
research in the future.

Our study was also flawed. First, the overrepresentation
of whites and non-Hispanics/Latinos limited the applica-
tion of models in other populations, however race was not
included as a variable in the final model, and we also didn’t
introduce more variables such as genes and PET-CT images,
which are expensive and invasive [33]. Second, the included
population is older people, and the value of models in
other age groups is not yet clear. Third, the number of our
models and fusion methods are limited, and more advanced
algorithms are warrant to be studied. In addition, we only
forecast the risk of progression within 3 years, which may
need to be further extended to long-term prediction in the
future. Finally, it is necessary to be cautious of credibil-
ity when applying machine learning models, that is, the
performance of our model is subject to change outside of
this dataset, which needs to be refined in future studies to
explore the generalisability of our models in a wider range of
populations and regions.

Conclusion

In this study, we proposed an MCI progression prediction
model. Eight variables were selected by LASSO method,
the AdaBoost model based on logistic regression achieved

the best performance (AUC: 0.98) in 0–6 month predic-
tion. Scores from the FAQ, mPACCtrailsB and ADAS11
(Unweighted sum of 11 items from The Alzheimer’s Disease
Assessment Scale-Cognitive Subscale) were key predictors. In
future studies, long-term prediction with more variables and
advanced methods is needed, so as to provide clues for the
prevention and treatment of AD.
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