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Neoadjuvant chemotherapy canimprove the survival of individuals with
borderline and unresectable pancreatic ductal adenocarcinoma; however,
heterogeneous responses to chemotherapy remain a significant clinical
challenge. Here, we performed RNA sequencing (n = 97) and multiplexed
immunofluorescence (n =122) on chemo-naive and postchemotherapy
(post-CTX) resected patient samples (chemoradiotherapy excluded)

to define the impact of neoadjuvant chemotherapy. Transcriptome
analysis combined with high-resolution mapping of whole-tissue sections
identified GATA®6 (classical), KRT17 (basal-like) and cytochrome P450 3A
(CYP3A) coexpressing cells that were preferentially enriched in post-CTX
resected samples. The persistence of GATA6" and KRT17" cells post-CTX
was significantly associated with poor survival after mFOLFIRINOX
(mFFX), but not gemcitabine (GEM), treatment. Analysis of organoid
models derived from chemo-naive and post-CTX samples demonstrated
that CYP3A expressionis a predictor of chemotherapy response and

that CYP3A-expressing drug detoxification pathways can metabolize

the prodrugirinotecan, a constituent of mFFX. These findings identify
CYP3A-expressing drug-tolerant cell phenotypes in residual disease that
may ultimately inform adjuvant treatment selection.

Pancreatic ductal adenocarcinoma (PDAC) is an increasing oncologi-
cal challenge that requires a deeper understanding of its resistance
to treatment. For all stages combined, the 5-year survival rate is only
11% for pancreatic cancer in the United States, which is the third most
frequent cause of death from cancer (https://gco.iarc.fr/overtime)’.
Despite modestimprovementsin survival due to treatments based on

systemic chemotherapy, most individuals with metastatic pancreatic
cancer will still die within 12 months, with no long-term survivors®™.
Thebest progress hasbeen madeinindividuals with locally resectable
tumors, whichisattributable toimprovementsin surgical techniques
and the use of adjuvant systematic chemotherapy®’. Despite having
increased estimated 5-year survival rates from 8% with resection alone
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t030-50% in conjunction with adjuvant chemotherapy, mostindividu-
als relapse within a median of 12.8-21.6 months (refs. 5,8,9).

Individuals with borderline resectable disease seem to have a
better survival benefit from neoadjuvant gemcitabine (GEM) with
capecitabine or mFOLFIRINOX (mFFX) rather than with chemo-
radiotherapy'® ™. Induction therapy may also increase resectability
and improve survival in individuals with otherwise unresectable
local disease®*', Although second-line cytotoxic therapies are also
delivered after disease progression or relapse in metastatic, locally
advanced and postresection settings, response to treatment and overall
survival are disappointing compared to other tumor types>*".

Dissociated responses are observed inindividuals with metastatic
disease, in which some metastases respond to treatment whereas
others remain stable or progress. Chemoradiotherapy may also be
implicated in the differential prognosis of pathological treatment
effectsinindividuals who have received neoadjuvant chemotherapy.
Single-nucleus and spatial transcriptomic profiling of chemo-naive and
post-therapy (chemoradiotherapy and chemotherapy) samples has
identified distinct neoplastic cell phenotypes that exist in untreated
samplesand persist after therapy'. Systematic profiling of metastatic
biopsies and matched organoid models has identified acontinuum of
transcriptional states spanning classical and basal-like phenotypes that
are joined by an intermediate coexpressor (IC) or ‘hybrid’ transcrip-
tional state”. Ex vivo studies have further revealed that transitions
between classical and basal-like phenotypes may significantly impact
drug responses, with basal-like states exhibiting broadly decreased
sensitivity to chemotherapy".

Despite these advances, the contribution of distinct neoplastic
cell phenotypes to outcomes following neoadjuvant chemotherapy
remains largely underexplored. Here, we identify GATA6-, KRT17- and
cytochrome P450 3A (CYP3A)-coexpressing cells that are enriched in
resected PDAC samples following neoadjuvant chemotherapy. We also
revealatumor cell-intrinsic role for CYP3A-expressing detoxification
pathwaysin the persistence of drug-tolerant cells in minimal residual
disease.

Results
The PDAC Heidelberg (PDAC-HD) sample cohort
To define the impact of neoadjuvant chemotherapy, we established a
PDAC-HD cohort with validated PDAC tissue and defined pathological
clinical characteristics, including long-term follow-up in171individuals
comprising (1) chemo-naive PDAC tissue after primary resection in
individuals with radiologically resectable tumors with most receiving
adjuvant chemotherapy (n = 115) after resection and (2) postchemo-
therapy (post-CTX) PDAC tissue after resection following neoadjuvant
therapy inindividuals with radiologically borderline resectable or unre-
sectable tumors (n =56 (refs.13,18); Fig. 1a). Individuals who received
chemoradiotherapy were excluded from the study.

RNA sequencing (RNA-seq) was performed on cryopreserved
PDAC tissues from 97 individuals, and multiplexed immunofluores-
cence (IF) was performed on PDAC formalin-fixed paraffin-embedded

(FFPE) tissues from 122 individuals and on normal pancreas tissues
from 9 organ donors. RNA-seq and multiplex IF were performed on
identical samples from48individuals. Laser-capture microdissection
(LCM) was performed on 32 chemo-naive samples, which were
analyzed by RNA-seq. Assessment of clinical stage'” demonstrated
that chemo-naive and post-CTX individuals had similar numbers of
late-stage tumors (stagellland1V), although a higher number of stage IIB
tumors were present in the chemo-naive group (Extended Data
Fig.1a). Chemo-naive samples selected for RNA-seq and IF analysis
received GEM monoadjuvant chemotherapy almost exclusively, witha
small number ofindividuals receiving either mFFX (RNA-seq: 5 of 60; IF:
110f76) or GEM nab-paclitaxel (RNA-seq:3 of 60; IF:50f 76). Post-CTX
samples received either mFFX or GEM nab-paclitaxel. Most individuals
who received adjuvant postoperative chemotherapy were placed
on the original neoadjuvant chemotherapy regimen. Demographic
characteristics are presented in Supplementary Tables 1and 4.

Post-CTX samples were also retrospectively reviewed for College
of American Pathologists (CAP) scoring for histological treatment
effectinresponse to neoadjuvant chemotherapy as aprognostic factor
forindividuals undergoing surgical resection for localized PDAC". CAP
scoring was performed by a specialist pancreatic cancer pathologist
(F.B.). Only one individual out of a total of 32 evaluable participants
receiving neoadjuvant chemotherapy exhibited a near-complete
response (score1),19 exhibited a partial response (score 2), and the 12
remainingindividuals exhibited no response (score 3; Supplementary
Table4).

RNA-seq profiling of chemo-naive and post-CTX PDAC-HD
samples

RNA-seqwasiinitially performed to define the neoplastic and stromal
changes associated with neoadjuvant chemotherapy (Supple-
mentary Table 6). Weighted gene coexpression analysis (WGCNA) of
bulk RNA-seq data demonstrated that neoadjuvant chemotherapy
profoundly impacted the composition of both tumor stroma
and neoplastic cell populations (Fig. 1, Extended Data Fig. 1e,f and
Supplementary Tables 7 and 8). Importantly, the removal of LCM-
derived samples from the analysis did not change the significance of
theresults, suggesting that sample preparation was not a confounding
factor in this study (Supplementary Table 8).

WGCNA identified 15 coordinately expressed gene programs
(GPs) representing distinct biological processes that could discrimi-
nate chemo-naive and post-CTX samples (Fig. 1b, Extended Data
Fig.1le,fand Supplementary Table 8). Nine core GPs encompassing the
regulation of 3-cell development, extracellular matrix organization,
collagen formation,immunoregulatory interactions and chemokine
signaling were significantly enriched in the post-CTX samples. By
contrast, six GPs encompassing cell cycle checkpoints, resolution of
sister chromatid cohesion, xenobiotics and phase I functionalization
of compounds, cell-cell communication and Eph-ephrin, RAF and
MAPK signaling pathways were significantly repressed in response
to neoadjuvant chemotherapy.

Fig.1| Transcriptomic profiling of chemo-naive and post-CTX PDAC-HD
samples. a, The PDAC-HD cohortincluded 171 unique samples representing

115 chemo-naive and 56 post-CTX resections. Post-CTX samples received

either GEM (n=23) or mFFX (n=33). These samples were analyzed by RNA-seq
or multiplexed IF. The RNA-seq set was composed of a total of n = 97 samples,
including n = 64 chemo-naive and n = 33 post-CTX samples. LCM was performed
on chemo-naive samples (n =32). Chemo-naive individuals received adjuvant
GEM (n=54) and mFFX (n =5). Post-CTX individuals received neoadjuvant GEM
(n=10) and mFFX (n = 23). b, WGCNA of RNA-seq data showing significantly
enriched GPs between chemo-naive and post-CTX PDAC-HD samples.
Significance was determined by two-sided Wilcoxon rank-sum test adjusted

for multiple testing (P < 0.05). The heat map shows relative module eigengene
expression between chemo-naive and post-CTX samples, with red (positive)

values associated with increased GP expression and blue (negative) values
associated with decreased GP expression. Molecular function and biological
processes associated with GPs and enriched in chemo-naive or post-CTX
samples are shown; Y, yes; N, no; TNF, tumor necrosis factor; MHC, major
histocompatibility complex. ¢, t-distributed stochastic neighbor embedding
(t-SNE) plots showing samples clustered according to the 2,000 top variably
expressed genes. Sample clustering isidentical between plots, with Moffitt
classification and PurIST scores indicated for each sample. d, Heat map showing
the classification of chemo-naive and post-CTX PDAC-HD samples by Moffitt
subtype. e, Kaplan-Meier survival analysis of chemo-naive and post-CTX PDAC-
HD samples. The log-rank Pvalues are annotated on the plots. Pvalues were not
adjusted for multiple testing.
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Enrichment analysis using gene signatures for established PDAC
subtypes demonstrated that classical, basal-like and ADEX (aber-
rantly differentiated endocrine exocrine) GPs persisted in selected
post-CTX samples (Fig. 1c and Extended Data Fig. 2a,b). Extending
this analysis to recently defined single-cell phenotypes' revealed a
significant enrichment of gene signatures encompassing ADEX-like
(neuroendocrine-like and acinar-like), squamous (mesenchymal and
squamoid) and neural-like progenitor cell phenotypes in post-CTX
resected samples (Extended Data Fig. 2c,d). Basaloid and classical-like
cell gene signatures were significantly enriched in chemo-naive sam-
ples but were depleted in post-CTX samples. A comparative analysis
of post-CTX GEM and mFFX samples demonstrated that neural-like
progenitor, mesenchymal and neuroendocrine-like cell types were
enrichedinsamplestreated preoperatively with mFFX, while the squa-
moid cell type was significantly enriched in GEM post-CTX samples
(Extended DataFig. 2c,d). Analysis of neoplastic cell state signatures'
demonstrated that cycling (G2/M), cycling (S), MYC signaling and
ribosomal cell states were all significantly enriched in GEM post-CTX
samples (Extended DataFig.2c,d). These findings suggest that different
chemotherapies may enrich for distinct neoplastic cell phenotypes.

Marked changes in cellular composition and tumor-stroma
interactions have been previously observed in post-CTX resected
samples®® ., Stromal GPs that were significantly enriched post-CTX
included those commonly associated with wound healing and fibro-
sis (that is, extracellular matrix deposition and inflammation; Fig. 1b
and Supplementary Table 8). Cancer-associated fibroblasts (CAFs),
endothelial cells and several immune cell subsets were significantly
enriched post-CTX (Fig. 2a,b). A comparison of neoadjuvant chemo-
therapy regimens revealed that mFFX ‘educated’ the tumor microen-
vironment (TME) in amarkedly different way than GEM (Fig. 2¢,d,f,g).
Preoperative treatment with mFFX preferentially enriched for CAF
signatures' (representingimmunomodulatory, myofibroblastic pro-
genitor, adhesive and neurotropic fibroblast programs), immune
signatures (representing common myeloid progenitors, granulo-
cyte-monocyte progenitors, T cell natural killer (NK) and T cell CD4*
naive) and immunomodulatory factors, including VEGFB, CD40LG
and PDCD1 (PD1; Fig. 2b-d,f,g). Immunosuppressive macrophage M2
enrichment was also significantly associated with poor outcomes in
the mFFX post-CTX group (Fig. 2e). Further, and consistent with earlier
studies, ‘deserted’ TME signatures were significantly upregulated in
post-CTX mFFX samples, suggesting that neoadjuvant mFFX prefer-
entially enriched for matrix-rich chemoprotective TMEs (Fig. 2¢)*.

Transcriptomic subtypes and outcomes post-CTX
Initial indications have suggested that transcriptomic subtypes can
prognosticate inindividuals with resectable and metastatic disease*?.

To determine whether PDAC subtypes prognosticate in PDAC-HD
samples, we performedsubtypinganalysisusing Collisson, Moffitt, Bailey
or Notta subtyping schemes (Fig. 1e, Extended Data Fig. 1b,c and
Supplementary Table 4)>*%7%5,

Subtyping analysis of chemo-naive PDAC-HD samples demon-
strated that Moffitt and Notta subtypes were prognostic for PDAC-HD
chemo-naive samples (Fig. 1e and Extended Data Fig. 1b,c). Consistent
with earlier findings, Bailey, Collison and Notta subtypes exhibited
considerable overlap with the Moffitt classical and basal-like sub-
types (Extended Data Fig. 1b). Notably, 71% (n = 45) of the PDAC-HD
chemo-naive samples were identified as belonging to the classi-
cal subtype, whereas the remaining 29% (n =19) were identified as
basal-like.

Subtyping analysis of post-CTX resected PDAC-HD samples dem-
onstrated that both classical and basal-like subtypes persisted after
therapy (Fig. 1c). In comparison to chemo-naive PDAC-HD samples,
the basal-like subtype was found to be significantly overrepresented
in post-CTX samples compared to the classical subtype (P < 0.001,
chi-squared test, two sided; Fig. 1d). Enrichment of the basal-like sub-
type in post-CTX samples was independent of clinical stage at time
of treatment (Extended Data Fig. 1d). Survival analysis revealed that
although MofTitt subtypes were prognostic for chemo-naive PDAC-HD
samples (log-rank P=0.016), they did not discriminate between good
and poor outcomes in PDAC-HD post-CTX samples (log-rank P= 0.38;
Fig. 1e and Extended Data Fig. 1c). Similarly, the Bailey (log-rank
P=0.43), Collisson (log-rank P=0.68) and Notta (log-rank P=0.061)
subtyping schemes did not predict outcome in post-CTX PDAC-HD
groups. To corroborate these findings, purity independent subtyping
of tumors (PurlST) was applied to the PDAC-HD cohort®. Although
high PurlST scores exhibited significant overlap with the Moffitt basal
subtype, high and low PurlST scores similarly did not prognosticatein
PDAC-HD post-CTX samples (log-rank P= 0.65: high 13 versus low 15).
These findings, although representative of the participants included
in this study, will require further validation in suitably matched inde-
pendent cohorts.

GATA6" and KRT17' cell phenotypes persist post-CTX

The persistence of subtype-specific programs in post-CTX samples
suggested that neoplastic cell phenotypes may contribute to outcomes
following neoadjuvant chemotherapy. To characterize neoplastic cell
phenotypesin PDAC-HD samples, we performed immunofluorescence
(IF) staining using validated antibodies to GATA6, HNF1A, KRT5,KRT17,
KRT81and S100A2 (Fig. 3a-c and Supplementary Table 13). Biomarker
expressionwas determined alone or in the context of KRT19 coexpres-
sion, a ductal biomarker that is significantly upregulated in atypical
ductal cells and PDAC (Fig. 3a—c).

Fig. 2| Neoadjuvant chemotherapy impacts the TME. a, Top, significantly
enriched immune cell types. Middle, significantly expressed immunosuppressive
genes. Bottom, significantly expressed immunostimulatory genes. Significance
was determined by two-sided Wilcoxon rank-sum test adjusted for multiple
testing (P< 0.05); T,;1, type 1 helper T cell. b, Immune cell types that exhibit
significant enrichmentin chemo-naive (n =32) and post-CTX (n =33) samples.
The heat map represents median immune cell enrichment, and the bar chart
represents significance of enrichment as -log,, (Wilcoxon rank-sum test
two-sided Pvalue adjusted for multiple testing (P,q;)); HSC, hematopoeitc

stem cell; aDC, activated dendritic cell; Ty, central memory T cell; GMP,
granulocyte-monocyte progenitor; T, regulatory T cell; CMP, common
myeloid progenitor. ¢, Bar charts showing significant enrichment of specific
stromal signatures in post-CTX samples; myCAFs, myofibroblast-like CAFs;
iCAFs, inflammatory CAFs. The significance is provided as -log,, (Wilcoxon
rank-sum test two-sided Pvalue adjusted for multiple testing). The dotted

line represents —log,, (P,q; < 0.05). d, Volcano plots showing the enrichment of
immunomodulatory and myofibroblastic cell signature genes in samples treated
preoperatively with GEM or mFFX. Genes significantly enriched (log, (fold change)

of >1and -log,, (P,q) of >2) in post-CTX mFFX samples are shown. P, represent
the significance of a two-sided Wald test adjusted for multiple testing; FC, fold
change. e, Kaplan-Meier survival analysis for high (greater than median) and

low (less than median) macrophage M2 enrichment values in post-CTX (GEM
and mFFX) and mFFX PDAC-HD samples. Participant numbers for each group

are provided under ‘Numbers at risk’. A log-rank (two-sided) P value of <0.05 is
considered significant. f,Immune cell types that exhibit significant enrichment
inmFFX post-CTX samples (n = 23) relative to GEM post-treated samples (n =10).
The heat map represents median immune cell enrichment, and the bar chart
represents the significance of enrichment as -log,, (Wilcoxon rank-sum test two-
sided Pvalue adjusted for multiple testing). g, Inmunostimulatory genes that
aresignificantly and differentially expressed between post-CTX GEM (n=10) and
mFFX (n=23) samples. The bar chart provides the significance of enrichment as
-log,, (Wilcoxon rank-sum test two-sided P value adjusted for multiple testing).
Correlation heat map showing correlations between immunomodulatory factors
in post-CTX samples. Pearson’s correlations are shown in the plot. Significance
was determined by two-sided Pearson’s correlation test. P values were not
adjusted for multiple testing. All correlations shown are significant.
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GATAG6 is broadly considered a surrogate marker of the classical-  in the adjuvant (chemo-naive) setting but not with adjuvant GEM*.
like subtype®*~**, GATA6 protein expression by immunohistochem-  KRTS5 (ref. 35), KRT17 (ref. 36), KRTS81 (ref. 37) and S1I00A2 (ref. 17)
istry is predictive of better survival with 5-fluorouracil/folinicacid  are biomarkers associated with basal/squamous cell phenotypes
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Fig. 3| Classical and basal biomarker analysis of chemo-naive and post-CTX
samples using multiplexed IF. a, Multiplexed IF images of representative
normal (n=9), chemo-naive (n =77) and post-CTX (n = 45) samples stained

with GATAG6 (red), HNF1A (red), KRT5 (red), KRT17 (red), KRT81 (red), SI00A2
(red) and KRT19 (green) antibodies. b, Box plots showing relative whole-section
protein expression of the indicated biomarkers in chemo-naive (n = 77) and
post-CTX (n = 45) samples. Biomarker protein expression is considered alone or
in the context of KRT19 coexpression. Kruskal-Wallis rank-sum test (two-sided)
Pvalues are provided at the top of each plot. ¢, Box plot showing relative
whole-section protein expression of nuclear GATA6 in KRT19" cells between
GEM (n=19) and mFFX (n = 25) post-CTX samples. The Kruskal-Wallis rank-sum
test (two-sided) Pvalue is provided at the top. d, Multiplexed IF images of
representative classical and basal post-CTX samples stained with GATA6 (red),

KRT17 (red) and KRT19 (green) antibodies. Representative images are
presented in rows, with the leftmost image showing the entirety of the imaged
region. The top rightimage and bottom right image show selected regions
(iandii) atincreased magnification. e,f, Kaplan-Meier survival analysis for
high, medium and low GATA6 and KRT17 protein expression tertiles in post-
CTX PDAC-HD samples. Kaplan-Meier survival analyses for post-CTX samples
representing combined (GEM and mFFX) treatment, GEM alone or mFFX alone
are shown. Participant numbers for each group are provided under ‘Numbers
atrisk’. Alog-rank Pvalue of <0.05 is considered significant. All box plots show
the median (line), the interquartile range (IQR) between the 25th and 75th
percentiles (box) and 1.5x the IQR + the upper and lower quartiles. P values
were not adjusted for multiple testing.

(although these biomarkers may not represent the full spectrum of
basal/squamous cell states).

GATAG6 protein expression was determined by IF in chemo-naive
and post-CTX PDAC-HD samples (Fig. 3b). This analysis demonstrated
that the percentage of nuclear GATA6 expression was significantly
elevated post-CTX (considering GEM and mFFX samples together)
compared to the chemo-naive group. This trend of increased GATA6
expressionwas also observed when the percent expression of nuclear
GATAG6 in KRT19" cells was considered. Stratifying post-CTX samples
by chemotherapy regimen demonstrated that GATA6/KRT19 expres-
sion was significantly higher in GEM samples thanin the mFFX group,
suggesting that chemotherapy regimen may influence the number of
GATA6-expressing cells (Fig. 3c). Imaging of representative classical
GATA6"KRT17°% and basal-like KRT17"GATA6"°" samples clearly dem-
onstrated dominantbiomarker expressioninpost-CTX samples (Fig.3d
and Extended Data Fig. 3a). Taken together, these data revealed that
GATA6" and KRT17" cell phenotypes persisted after chemotherapy.

To determine whether persistent GATA6" classical and KRT17"
basal-like phenotypes in resected post-CTX samples are associated
with outcomes, we categorized IF levels according to robust tertiles
of protein expression and performed a survival analysis (Fig. 3e,f).
High GATAG6 protein expression in post-CTX samples was associated
with significantly worse outcomes (Fig. 3e). To further understand
therelationship between GATA6 protein expression and neoadjuvant
chemotherapy, we examined whether the association between GATA6"
expression and poor outcome was common or unique to either GEM or
mFFX neoadjuvant chemotherapy. Importantly, we found that GATA6"
expression was associated with significantly worse outcomes after
mFFX, but not GEM, neoadjuvant chemotherapy (Fig. 3e). A similar
assessment of KRT17 IF expression tertiles demonstrated that KRT17"
samples were significantly associated with worse outcomes after mFFX,
butnot GEM, neoadjuvant chemotherapy (Fig. 3f). Exploratory survival
analysis using basal/squamous biomarkers KRT5, KRT81 and SI00A2
revealed additional significant associations, although validation in
independent cohorts will be required (Extended Data Fig. 4; please

note thatexploratory univariate analyses were not corrected for mul-
tiple testing). Collectively, these data demonstrate that GATA6" and
KRT17" phenotypes persist post-CTX and contribute to poor outcomes
inindividuals after neoadjuvant chemotherapy.

Complex neoplastic heterogeneity defines post-CTX samples
Classical and basal-like subtype cell populations may coexist intra-
tumorally'”?, Single-cell RNA-seq of chemo-naive and biopsied liver
metastases hasidentified hybrid or IC neoplastic cell states that share
biomarkers common to both the classical-like and basal-like/squa-
mous subtypes, namely GATA6 and KRT17 (ref.17). Enrichment analysis
using gene signatures for single-cell classical (scClassical), scBasal and
scIC cell states demonstrated that the scIC cell state is preferentially
enriched in post-CTX samples (Extended Data Fig. 5a,b), suggesting
that neoadjuvant chemotherapy may promote ‘hybrid’ cell states.

To assess whether GATA6" and KRT17" persister cell phenotypes
are mutually exclusive or coexist in PDAC-HD samples, we performed
multiplexed co-staining (colocalization) for GATA6, KRT17 and KRT19
(Fig. 4a and Supplementary Table 9). This analysis revealed complex
patterns ofintratumoral expression. Theseincluded individual samples
exhibiting dominant GATA6"KRT17"°" or dominant KRT17"GATA6'"
expression and samples with interspersed mosaic GATA6"KRT17"%
and KRT17"GATA6"" expression foci within the same tissue section. A
subset of individual samples also exhibited hybrid staining with GATA6
and KRT17 expressed in the same cells. Most strikingly, a number of
samples exhibited a gradient of biomarker expression wherein domi-
nant GATA6"KRT17"", GATA6"KRT17" hybrid and dominant KRT17"
GATA6"" expression foci were arranged serially within the same tissue
section (Fig. 4a).

Deconvolution of biomarker intensities in whole-tissue sec-
tions allowed us to count individual cells according to biomarker
expression with n,, = 7,545,622 cells designated as GATA6°KRT17",
GATA6 KRT17" or GATA6'KRT17"* (Fig. 4c,d). Comparison of cell-type
abundance between chemo-naive and post-CTX samples revealed
that GATA6'KRT17" cells are enriched in chemo-naive samples, while

Fig. 4 | Multiplexed GATA6 and KRT17 IF identifies complex intratumor
heterogeneity in post-CTX samples. a, Multiplexed IF images of post-CTX
samples stained with GATAG6 (red), KRT17 (green) and DAPI (blue). Left, whole-
sectionimages; scale bar, 200 pm. Arrows demarcate foci representing dominant
GATAG staining (GD), dominant KRT17 staining (KD) and ‘hybrid’ GATA6'KRT17*
(H) staining. Regions of interest (ROIs) demarcated by white boxes and labeled
byi, ii oriii are shown at higher magnification on the right; scale bar, 20 pm.

b, Kaplan-Meier survival analysis for high, medium and low ‘hybrid’ GATA6°KRT17*
protein expression tertiles in post-CTX PDAC-HD. Participant numbers for
eachgroup are provided under ‘Numbers at risk’. A log-rank Pvalue of <0.05 is
considered significant. ¢, Ternary plot showing the percent tumor content of
GATA6 and KRT17 cell populations in chemo-naive (n = 69) and post-CTX (n = 42)
patients. d, Pie stat plots and bar chart showing enrichment of GATA6"KRT17"
‘hybrid’ persister phenotypes in chemo-naive (n = 69) and post-CTX (n = 42)
samples. Pearson chi-squared test of independence (two sided) is highly

significant (P = 0) given alarge sample size (n,,, = 7,545,622 cells). e, Box plots
showing the relative protein expression of GATA6/KRT17 cell phenotypes
post-CTX GEM (n =18) or after mFFX (n = 24). Kruskal-Wallis rank-sum test
(two-sided) Pvalues are provided in the plot. Box plots show the median (line),
the IQR between the 25th and 75th percentiles (box) and 1.5% the IQR + the
upper and lower quartiles. f, Bar stat plot showing the percentage of GATA6/
KRT17 cell phenotypes in post-CTX samples (n = 42). g, Bar stat plots showing
the percentage of GATA6/KRT17 cell phenotypes enriched in samples treated
preoperatively with either GEM (n =18) or mFFX (n = 24) and associated with
long and short survival. With respect to bar stat plots, Pearson chi-squared test
ofindependence (two sided) is highly significant (P = 0) given the large sample
sizes (nq,s = 385,581 cells for GEM/mFFXin f, and n,, = 226,400 cells for GEM and
Ngys = 91,049 cells for mFFX in g). The Pvalues from a one-sample proportions test
(two sided) are displayed on the top of each bar. Pvalues were not adjusted for
multiple testing.
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GATA6'KRT17" and GATA6 KRT17" cell populations are preferentially
enriched post-CTX (Fig. 4c,d). Samples treated preoperatively with
mFFX exhibited significantly greater numbers of GATA6'KRT17" cells
than those treated preoperatively with GEM (Fig. 4e,f).
Survival analysis demonstrated no significant association
between GATA6'KRT17' cell enrichment and outcome in either
the chemo-naive or post-CTX groups (Fig. 4b). To disentangle the
relationship between participant outcomes and GATA6/KRT17 cell
phenotypes, post-CTX samples were dichotomized using GATA6
expression tertiles, as described earlier, and GATA6/KRT17 cell
populations were compared. In the context of mFFX neoadjuvant

chemotherapy, samples with low GATA6 expression (associated
with longer survival) had increased numbers of GATA6'KRT17~
cells, whereas samples with high GATA6 expression (associated
with shorter survival) had increased numbers of GATA6'KRT17*
hybrid cells but significantly fewer GATA6'KRT17 cells (Fig. 4g).
GATAG6 protein expression was not prognostic for GEM neoadjuvant
chemotherapy, and we failed to observe a similar shift toward higher
GATA6'KRT17" hybrid cell numbers or near loss of GATA6'KRT17~
cellsinthe GATA6" samples treated preoperatively with GEM. These
findings suggest that poor outcomes associated with GATA6" and
KRT17" expression in post-CTX samples involve a higher relative
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enrichment of GATA6"'KRT17" and GATA6 KRT17" cells and near loss
of GATA6'KRT17 cells.

Drug-tolerant persister cell phenotypes

Network analyses of GPs enriched in chemo-naive samples identified
asubnetwork of coexpressed genes that comprised key pancreatic
transcription factors GATA6, HNF4A, HNF1A, FOXA2 and FOXA3 and
genesinvolvedindrug metabolism, thatis, CYP450 enzymes and phasel
functionalization of compounds (Fig. 5a,b). The coexpression of this
subnetwork of genes, while highly expressed in chemo-naive samples,
was retained in a subset of post-CTX samples (Fig. 5a). Of particular
interest was theidentification of CYP450 family genes (CYP3A4, CYP3AS
and CYP2C9), whichwere coexpressed with transcription factors GATA6,
HNF4A and NR112 (also known as pregnane X receptor (PXR); Fig. 5a,b).
Transcription factors HNF4A and NR112 (PXR) have been shown toregu-
late both steady-state and substrate-induced expression of CYP3A5in
both classical and basal-like pancreatic cancer cell lines”. A reanalysis
of existing data® demonstrated that GATA6 and HNF4A are required
for the expression of not only CYP3AS5 but also several other genes
involved in drug detoxification (Fig. 5c).

The CYP3A subfamily (encoded by 4 genes, CYP3A4, CYP3AS,
CYP3A7and CYP3A43) hasbeen shown to metabolize common cytotoxic
chemotherapeutics, includingirinotecan, paclitaxel, docetaxel, anthra-
cyclines, vincaalkaloids and tyrosine kinase inhibitors, such as erlotinib
and gefitinib, in the liver and intestinal epithelia®”. The contribution of
these genes to extrahepatic drug tolerance is poorly understood**.
Recent evidence, however, suggests that tumor cell-intrinsic expres-
sion of CYP3A5 may underpin intrinsic drug resistance in colorectal
cancer and PDAC**?, CYP3AS5 activity has been associated with resist-
ance to paclitaxel in pancreatic cancer cell lines* and resistance to
irinotecanin colorectal cancer®. Given thatirinotecan, a constituent of
mFFX, is asubstrate of CYP3A family proteins, we surmised that CYP3A
family proteins might underpin the persistence of drug-resistant
GATA6" phenotypes in mFFX post-CTX samples.

Given the tight relationship between CYP3A4/CYP3A5 and CYP3A7
gene expression, we stained for CYP3AS5 protein (referred to herein
as CYP3A) as abiomarker reflecting expression of the broader CYP3A
network (Fig. 5d). CYP3A protein expression was initially assessed in
normal pancreatic donor tissue, chemo-naive and post-CTX PDAC-HD
samples (Fig. 5d, left, and Supplementary Table 5). Importantly,
we observed a significant increase in CYP3A protein expression in
samples treated preoperatively with mFFX, but not GEM, further
supporting therole of CYP3A as animportant mediator of mFFX drug
resistance (Fig. 5e).

To determine whether CYP3A protein expression was prognostic
inPDAC-HD samples, we performed a survival analysis using dichoto-
mized CYP3A valuesrepresenting high (highest 25% of IF values; n =11
participants) and low (remainder of IF values; n = 33 participants)
expression. This expression cutoff was used, as CYP3A values were

negatively skewed (Fig. 5f and Extended Data Fig. 6). In the post-CTX
group, high CYP3A protein expression was associated with significantly
worse outcomes. Mirroring the results obtained for GATA6, high CYP3A
protein expressionin mFFX, but not GEM, was associated with signifi-
cantly worse outcomes. Exploratory analysis using antibodies specific
to hENTI, an established biomarker of GEM resistance in PDAC, found
no significant association between hENT1 expression and participant
outcomein either setting, although validationinindependent cohorts
will be required*** (Extended Data Fig. 6; as before, exploratory
univariate analyses were not corrected for multiple testing).

CYP3A expressionis associated with worse outcome

To determine whether persistent GATA6/KRT17 cell types coex-
pressed CYP3A, we performed multiplexed CYP3A, GATA6 and KRT17
IF on PDAC-HD samples. As before, this analysis identified complex
spatial patterns of CYP3A, GATA6 and KRT17 coexpression (Fig. 5d,
right). Deconvolution of whole-tissue sections from chemo-naive
samples (n,,s = 9,968,668 cells) identified distinct subpopulations of
CYP3A-expressing cells (GATA6'CYP3A'KRT17', GATA6'CYP3A'KRT17",
GATA6 CYP3A'KRT17* and GATA6 CYP3A'KRT17°) and CYP3A-
non-expressing cells (GATA6°'CYP3A KRT17  and GATA6 CYP3A™
KRT17'; Fig. 6a—c). GATA6"CYP3A KRT17 cells (66%) were found to
make up the highest relative percentage in chemo-naive samples, fol-
lowed by GATA6'CYP3A'KRT17 (22%), GATA6'CYP3A KRT17" (5%),
GATA6'CYP3A'KRT17* (4%), GATA6 CYP3A'KRT17" (2%) and GATA6~
CYP3AKRT17* (1%) cells. Importantly, the enrichment of distinct cell
populationsin chemo-naive samples was associated with AJCC tumor
stage' (Extended Data Fig. 7a,b). GATA6'CYP3A KRT17 cells exhi-
bited the highest percent expressionin early-stage tumors (stagesIA,
IB, I1A and 1IB), whereas CYP3A-expressing cells, including GATA6"
CYP3A'KRT17°, GATA6 CYP3A'KRT17" and GATA6°CYP3AKRT17",
had the highest relative enrichment in later-stage tumors (stages IIB,
lllandIV).

Analysis of post-CTX samples (n,,, = 651,762 cells) revealed
that GATA6'CYP3A'KRT17* (39%), GATA6'CYP3A KRT17" (39%) and
GATA6 CYP3AKRT17 (17%) cells had the highest percent enrichment
(Fig. 6¢). By contrast, the percentage of GATA6°CYP3A KRT17 cells
was significantly reduced in the post-CTX group, which was con-
sistent with our early findings. Integration of RNA-seq and multi-
plexed IF data further demonstrated that the differential expression
of drug-metabolizing genes between chemo-naive and post-CTX
samples was associated with the enrichment of different GATA6/
CYP3A/KRT17-expressing subpopulations (Fig. 6a and Extended
Data Fig. 5). Chemo-naive samples exhibiting high CYP345 mRNA
expression and predominant scClassical transcriptomic profiles were
associated with a higher percent enrichment of GATA6'CYP3A'KRT17",
GATA6 CYP3A'KRT17 and GATA6°CYP3A KRT17" cells. By contrast,
downregulation of CYP3A5 mRNA expression and predominant
scIC transcriptomic profiles were associated with the emergence of

Fig. 5| CYP3A protein expressionin mFFX post-CTX samplesis associated
with patient outcome. a, Heat map showing mRNA expression of coexpressed
genes associated with drug metabolism and phase I functionalization of
compounds. b, Network of coexpressed genes that are enriched in classical-
like samples. Gene nodes (circles) are colored according to their annotated
molecular functions. K denotes annotated KEGG pathways, and R denotes
annotated REACTOME pathways. Transcription factors that regulate the
network of genes are shown in the adjacent box. ¢, RNA-seq reanalysis of GATA6
and HNF4A siRNA knockdown experiments performed in a classical human-
derived cell line (n = 3 control; n = 3siRNA) as described in Brunton et al.*'. Heat
map values represent -log,, (P values) x sign (coefficient). Blue color indicates
downregulation in siRNA-treated cells. Pvalues represent the significance of a
two-sided Wald test and were adjusted for multiple testing. d, Left, multiplexed
IF images of representative normal, chemo-naive and post-CTX PDAC-HD
samples showing spatial expression of CYP3A relative to KRT19-expressing

cells. Right, multiplexed IF images of a representative post-CTX sample
analyzed with antibodies to GATA6 (red), KRT17 (green) and CYP3A (yellow);
scale bar, 200 pm (whole-section image). ROls demarcated by white boxes and
labeled by i, i or iii are shown at higher magnifications; scale bar, 20 um. ROIs
represent dominant GATA6 staining (i), dominant KRT17 staining (ii) and ‘hybrid’
GATA6'KRT17°CYP3A" (iii) staining. e, Box plots showing protein expression by
IF of CYP3A according to treatment. Kruskal-Wallis rank-sum test (two-sided)
Pvalues are shown on the plots. Box plots show the median (line), the IQR
between the 25th and 75th percentiles (box) and 1.5x the IQR + the upper and
lower quartiles. Pvalues were not adjusted for multiple testing. f, Kaplan-Meier
survival analysis for high (highest 25% of IF values) and low CYP3A protein
expression (remainder of IF values) in post-CTX PDAC-HD samples combined
(GEM and mFFX) or in mFFX samples alone. Participant numbers for each group
are provided under ‘Numbers at risk’. A log-rank P value of <0.05 is considered
significant. Pvalues were not adjusted for multiple testing.
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GATA6'CYP3A'KRT17*, GATA6 CYP3A'KRT17*, GATA6 CYP3AKRT17*
and GATA6'CYP3AKRT17* cellsin post-CTX samples (Extended Data
Fig. 5a). These results, which are supported by recent single-cell

RNA-seq studies (Extended Data Fig. 3b-d), clearly suggest that
CYP3A-expressing subpopulations of cells present in chemo-naive
samples persist post-CTX.
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Fig. 6 | Multiplexed GATA6, KRT17 and CYP3A IF identifies CYP3A ‘hybrid”
persister phenotypes enriched in post-CTX samples. a, Top, heat map showing
the relative mRNA expression of coexpressed genes associated with drug
metabolism and phase I functionalization of compounds. Bottom, bar charts
showing the percent tumor enrichment of GATA6/CYP3A/KRT17 cell populations
asdetermined by multiplexed IF. Samples used to generate the data in the top
and bottom are identical (n =47) and are similarly ordered. ALOESS regression
line hasbeen added to each bar plot. b, Ternary plot showing the percent tumor
content of GATA6, CYP3A and KRT17 cell populations in chemo-naive (n = 69)
and post-CTX (n = 42) samples. Post-CTX samples show an enrichment for
CYP3A"‘hybrid’ persister phenotypes. ¢, Pie stat plots and bar chart showing
significant enrichment of GATA6/CYP3A/KRT17 ‘hybrid’ persister phenotypes
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of CYP3A, in the context of either GATA6 or KRT17, was significantly
associated with poor overall survival for neoadjuvant mFFX but not
GEM (Extended Data Fig. 6). Again, validation in suitably matched
independent cohorts will be required to support these findings.
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Fig.7| CYP3A protein expression is positively associated with irinotecan
drug tolerance. a, Multiplexed IF of representative PDOs showing high relative
CYP3A protein expression in resistant (h20) versus sensitive (h3) PDOs.

b, Multiplexed IF of anirinotecan-resistant PDO (h19) showing mosaic GATA6/
CYP3A/KRT17 protein expression. The ROl demarcated by a white box and
labeled withiis shown at higher magnification. ¢, Western blot showing protein
expression of CYP3A between PDOs exhibiting resistance or susceptibility to
irinotecan. GAPDH is used as aloading control. d, Drug response curves showing
half-maximalinhibitory concentration (IC,) values for bothirinotecan and SN-38

inselected PDOs that are either relatively resistant or relatively susceptible. The
resultsrepresent n =3 independent biological experiments. Data are presented
asmean values + s.e.m. e, Relative enrichment of CYP3A" ‘hybrid’ cell phenotypes
in PDOs. Top, heat map showing mRNA expression of coexpressed genes
associated with drug metabolism and phase I functionalization of compounds.
Bottom, bar charts showing the percent tumor enrichment of GATA6/CYP3A/
KRT17 cell populations as determined by multiplexed IF. PDOs in the top and
bottom are identical and are ordered according to increasing irinotecan ICy,
values. ALOESS regression line has been added to each bar plot.

Assessment of GATA6/CYP3A/KRT17-expressing subpopulations
in post-CTX samples (n,,, = 651,762 cells) revealed that mFFX treat-
ment resulted in greater relative numbers of GATA6'CYP3A'KRT17*
and GATA6" CYP3A KRT17* cellsand fewer GATA6'CYP3A KRT17 cells
than samples treated preoperatively with GEM (Fig. 6d). Dichoto-
mization of post-CTX mFFX samples using GATA6 expression ter-
tiles (high versus low) demonstrated that samples with low GATA6
expression (associated with longer survival) had increased numbers of
GATA6'CYP3A'KRT17" and GATA6'CYP3A KRT17 cells, whereas sam-
pleswith high GATA6 expression (associated with shorter survival) had
increased numbers of GATA6'CYP3A KRT17*and GATA6 CYP3A'KRT17*
cells but significantly fewer GATA6"CYP3A KRT17 cells (Fig. 6e). Taken
together, these data suggest that CYP3A-expressing cell phenotypes
may mediate resistance to mFFX neoadjuvant chemotherapy.

CYP3A protein activity is associated with drug tolerance

To test whether CYP3A mediates chemotherapy resistance, we used
alarge panel of patient-derived organoids (PDOs) generated from
chemo-naive, post-CTX and liver biopsy metastatic material (Extended
DataFig. 7c-g and Supplementary Tables 2 and 10). Thirty-one PDOs,
representing 24 chemo-naive, 6 post-CTX and 1 liver biopsy, were
characterized by RNA-seq (Supplementary Table 11), multiplexed
IF (Supplementary Table 12) and therapeutic response to standard
chemotherapies, including irinotecan, oxaliplatin, 5-fluorouracil,
GEM and paclitaxel (Extended Data Fig. 7e). Transcriptomic analysis
of PDAC-HD PDOs identified 25 PDOs exhibiting a classical subtype and
6 PDOs exhibiting a basal-like Moffitt subtype (Fig. 7e). Analysis using
single-cell transcriptomic cell signatures" identified PDOs exhibit-
ing predominant scClassical and scBasal profiles, with the majority
exhibiting scIC transcriptomic profiles (Extended DataFig. 8b). Multi-
plexed IF for GATA6/KRT17/CYP3Arevealed that PDOs, exhibiting scIC
transcriptomic profiles, were enriched for GATA6, KRT17 and CYP3A
coexpressing ‘hybrid’ cell phenotypes.

Consistent with previous studies, we observed heterogenous
responses in PDOs to different chemotherapies (Extended Data
Fig. 7e-g)*¢. Ranking of PDOs according to relative irinotecan sen-
sitivity identified seven PDOs exhibiting either relative resistance
(h12, h19 and h20) or sensitivity to irinotecan (h3, h4, h33 and h36).

PDOs resistant to irinotecan exhibited predominant Moffitt classical
transcriptomic profiles, whereas five of the six most susceptible PDOs
exhibited Moffitt basal transcriptomic profiles (Fig. 7e). Importantly,
CYP3A protein expression, as determined by western blotting and IF,
was positively correlated withirinotecanresistancein PDOs (Fig. 7a-e
and Extended Data Fig. 8). Similarly, genes involved in drug metabo-
lism and phase I functionalization of compounds were enriched in
irinotecan-resistant PDOs, suggesting that coordinated networks of
drug-metabolizing genes mediate irinotecan resistance (Fig. 7e).

Multiplexed IF data demonstrated a relative increase in
GATA6-, KRT17- and CYP3A-coexpressing ‘hybrid’ phenotypes in
irinotecan-resistant PDOs (Fig. 7e). In particular, the percent orga-
noid content of GATA6'KRT17°CYP3A"and GATA6 KRT17°'CYP3A" cells
was enriched in irinotecan-resistant PDOs. The enrichment of these
‘hybrid’ cell types was similarly observed in post-CTX samples treated
preoperatively with mFFX (Fig. 6a).

CYP3A has been shown to convert irinotecan into the inac-
tive metabolites 7-ethyl-10-[4-N-(5-aminopentanoic acid)-1-piper
idino]-carbonyloxycamptothecin (APC) and 7-ethyl-10-(4-amino-1
-piperidino)-carbonyloxycamptothecin (NPC) inboth liver and intes-
tinal epithelial cells (Fig. 8a)*. To further validate our hypothesis
that CYP3A-mediated activity is involved in irinotecan resistance,
we assessed CYP3A activity in selected PDOs (Extended Data Fig. 9d)
and performed validated ultraperformance liquid chromatography-
tandem mass spectrometry (UPLC-MS/MS) quantifications to track
the metabolism of irinotecan following exposure to non-cytotoxic
concentrations (Fig. 8a).

MS analysis demonstrated that resistant and susceptible PDOs
take up irinotecan. Exposure of PDOs to 2 uM irinotecan demon-
strated that less than 1% of the intracellular irinotecan was con-
verted to intracellular SN-38 (Extended Data Fig. 9f). Importantly,
irinotecan-resistant PDOs showed significantly lower metabolic ratios
(intracellular SN-38:intracellular irinotecan) thanirinotecan-sensitive
organoids, suggesting that the resistance phenotype involves lower
conversion of irinotecan to SN-38 (Fig. 8b,c), effects that were inde-
pendent of proliferation (Extended Data Fig. 9a—c). In addition,
resistant PDOs tended to show higher SN-38 concentrations in the
supernatant, suggesting that the active transport of SN-38 may also

Fig. 8| CYP3A activity mediatesirinotecan tolerance in CYP3A'PDOs.

a, Irinotecan is converted to the active metabolite SN-38 in liver and small intestinal
epithelial cells and also pancreatic cancer cells. CYP3A proteins may metabolize
irinotecan into inactive metabolites APC and NPC, leading to drug tolerance.
SN-38 may also undergo glucuronidation and be exported from cancer cells.
CYP3Ainhibitors, such as ketoconazole and cobicistat, may overcome irinotecan
drugtolerance by increasing the accumulation of SN-38. b, Compound analysis
by UPLC-MS/MS of irinotecan metabolites in relative resistant (n = 3) and relative
susceptible (n =3) PDOs showing intracellular irinotecan-to-SN-38 conversion
(left) and SN-38 accumulation in the supernatant (right). Biological replicates
(n=3)fortherepresentative PDOs are shown in the plots. Wilcoxon rank-sum test
two-sided Pvalues are shown on the plots. Pvalues were not adjusted for multiple
testing. ¢, Compound analysis by UPLC-MS/MS of relative resistant and relative
susceptible PDOs showing the accumulation of SN-38 or inactive metabolite APC
inthe supernatant following irinotecan treatment. The results representn=3
independent biological experiments. Data are presented as mean * s.d. One-way

analysis of variance (two-tailed) P values are shown on the plots. Pvalues were not
adjusted for multiple testing. d, Treatment of an irinotecan-resistant PDO (h20)
withirinotecan, paclitaxel and SN-38 in combination with either ketoconazole

or cobicistat asindicated. Combination treatment with ketoconazole increases
drug sensitivity to irinotecan and paclitaxel but not SN-38. The results represent
n=3independent biological experiments. Data are presented as mean +s.e.m.
ICs, values are provided for the indicated treatments. e, Alternative models to
explaindrugtolerance and persistence in post-CTX samples. Intrinsic resistance:
treatment-mediated selection of preexisting drug-tolerant phenotypes may
shaperesidual disease. This process may involve non-genetic mechanisms,
including intrinsic and/or drug-induced expression of drug-detoxifying genes
and/or a transition toward basal-like or ‘hybrid’ states from predominant classical
states due to intrinsic neoplastic plasticity. Acquired resistance: rare subclones
acquireadrug-resistant driver alteration before or during therapy. These
resistant clones expand and eventually drive relapse due the clonal acquisition

of the preexisting drug-resistant mechanism.
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contribute to irinotecan resistance (Fig. 8b,c). This was especially
true for the irinotecan-resistant PDO h20, which exhibited the high-
est concentration of SN-38 in the supernatant (Fig. 8b,c and Extended
DataFig. 9g).

The CYP3A-mediated metabolite APC was inconclusively quan-
tifiable in the majority of PDOs; however, physiologically relevant
amounts were recorded in the supernatant, suggesting that APC is
actively transported from PDOs (Fig. 8c). PDO h20 exhibited quanti-
fiable levels of APC in both cells and supernatant and had the highest
supernatant concentration of APC for the PDOs tested. Notably, PDO
h20 was derived from a participant who received neoadjuvant mFFX
andwas enriched for GATA6 CYP3A'KRT17"and GATA6 CYP3A'KRT17"
cell phenotypes. PDO h3, which shows relative susceptibility toirinote-
can and was derived from a metastatic liver recurrence after first-line
GEM monotherapy, was the only other organoid to produce high super-
natant concentrations of APC.

Toestablishadirectrole for CYP3Ainirinotecan drugresistance,
we treated selected resistant and susceptible PDOs with optimal con-
centrations of irinotecan in combination with either ketoconazole or
cobicistat, potent pan-CYP3A inhibitors (Fig. 8d and Extended Data
Fig.9d,e,h). Treatment of resistant PDOs with irinotecan in combina-
tionwith ketoconazole significantly increased sensitivity toirinotecan.
Importantly, the ability of ketoconazole to sensitize resistant cells to iri-
notecanwas notobserved when the active metabolite SN-38 was used as
asubstitute (Fig. 8d and Extended Data Fig. 9h). CYP3A activity has also
been shown to mediate paclitaxel resistance in pancreatic cancer cell
lines®. Consistent with these findings, ketaconzole-mediated inhibi-
tionof CYP3Aincreased sensitivity to paclitaxel inirinotecan-resistant
PDOs. Together these findings implicate CYP3A as animportant media-
tor of irinotecan drug resistance in PDAC.

Discussion
Drug resistance to standardized chemotherapy remains a significant
challenge for PDAC, with relapse occurring in most individuals®®’. Itis
currently unclear how drug-resistant clones emerge and evolve during
therapy. Two major mechanisms have been proposed to explain drug
resistance (Fig. 8e). The first of these supposes that drug resistance
arisesfromrare subclones thatacquire a drug-resistant driver alteration
(genetic) during therapy. Inresponse to therapy, these resistant clones
expand and eventually drive relapse due to the clonal acquisition of the
preexisting drug-resistant mechanism. The second model proposes
thatdrug-tolerantcells, or ‘persisters’, initially emerge froma preexist-
ing subpopulation of cells that do not harbor classical drug-resistant
driver alterations (non-genetic). These cells survive initial drug treat-
ments by an epigenetic and/or transcriptional adaption that allows a
drug-tolerant, slow-cycling ‘persister’ state to emerge. Clinically, this
persister state resembles minimal residual disease from which relapse
can occur if treatment is discontinued or if persister cells acquire a
drug-resistant driver alteration due to continued drug therapy*.
The evidence presented herein strongly suggests that preexist-
ing subpopulations of GATA6-, KRT17- and CYP3A-coexpressing cells
survive theinitial rounds of mFFX treatment to emerge as a persistent
population of drug-resistant cells. Recent evidence has revealed that
CYP3A expression in pancreatic cancer cells may mediate resistance
to paclitaxel and tyrosine kinase inhibitors®. Here, we extend these
findings to demonstrate that CYP3A activity is a mediator of irinote-
can resistance. Pharmacological inhibition of CYP3A activity using
the pan-CYP3A inhibitor ketoconazole sensitized resistant PDOs to
irinotecan but not the active metabolite SN-38, directly implicating
CYP3Aactivity inirinotecanresistance. Strikingly, GATA6-, KRT17- and
CYP3A-coexpressing ‘hybrid’ cells were enriched in resistant PDOs,
furtherimplicating these cell phenotypesin chemotherapy resistance.
Recent studies have demonstrated that classical and basal-like
phenotypes exist as a gene expression continuum with a ‘hybrid’ or
IC state acting as a plastic intermediate”. Modulation of cell state

by the addition of stromal cues or chemotherapy has been shown to
shift this continuum froma classical state toward aninduced ‘hybrid’
and/or basal-like (mesenchymal) state. Accordingly, the enrichment
of ‘hybrid’ and basal-like states at the expense of classical-like states
observed in post-CTX samples may reflect this underlying plasticity.
Understanding how resistant neoplastic cell populations emerge fol-
lowing chemotherapy will be critical for the development of effective
first-line and adjuvant therapies. Future studies comparing matched
before and after treatment samples should provide critical new
insightsinto the genetic and non-genetic mechanisms underpinning
therapy resistance.

The number of individuals pretreated with chemotherapy is
increasing. Neoadjuvant chemotherapy may improve outcomes for
individuals with locally advanced and borderline cancer, and studies
inresectable individuals are ongoing'® ™. Resected tumor material rep-
resents a unique opportunity to tailor adjuvant treatment to residual
cancer cells. Development of effective treatments for the persister
cells identified in this study is therefore of the utmost importance.
As increased CYP3A expression may increase resistance to both iri-
notecan and nab-paclitaxel, alternative chemotherapy combinations
without these drugs, such as GEM-capecitabine, might be considered.
Moreover, the enrichment of suppressive macrophage signatures
and/or specificimmunoregulators in neoadjuvant samples suggests
that combinationapproaches targeting myeloid cells***° and/or major
inhibitory checkpoint molecules™ may also enhance benefit.

Methods
Participant characteristics
The study was approved by the Ethics Committee of Heidelberg Univer-
sity for use of pancreatic cancer tissue (project numbers S-018/2020,
S-708/2019 and S-083/2021). Participants were selected according to
the following criteria: (1) individuals with locally advanced border-
line unresectable PDAC (without metastases) who received surgical
resection after mFFX or GEM-based therapy without any chemoradia-
tion neoadjuvant therapy and (2) individuals with resectable PDAC at
presentation who had upfront surgical resection without prior chemo-
therapy and/or chemoradiation (adjuvant chemo-naive). Participants
after resection could receive adjuvant chemotherapy, but those who
had chemoradiation were again excluded. Consecutive pseudoan-
onymized participants with prior consent and with usable samples of
sufficient quality for investigation were identified based on the eligibil-
ity criteria. Additional pseudoanonymized IDs were then ascribed to
each participant for experimental investigation, soblinded to all of the
investigators and investigations. Clinical correlates were only ascribed
once the experimental procedure results were obtained.
Cryopreserved and FFPE tissues were processed as described pre-
viously*2. Hematoxylin and eosin (H&E) staining of cryopreserved and
FFPE tissue was examined by a specialist pancreas pathologist (F.B.) for
staging® and tumor content in the Department of Pathology. RNA-seq
was performed on cryopreserved PDAC tissues, and multiplexed IF was
performed on PDAC FFPE tissues.

Organoid generation and propagation

Human PDOs were cultivated as previously described by Tuveson
and colleagues’* After being minced into pieces, the tumor tissue was
digested using collagenase XI (Sigma)-containing digestion medium
in a rotating shaker at 37 °C for 45 min. The dissociated cells were
embeddedin growth factor-reduced Matrigel and cultured in complete
medium (advanced DMEM/F12 medium supplemented with HEPES (1x,
Gibco), GlutaMAX (1%, Gibco), B-27 (1%, Gibco), Primocin (1mg ml™,
InvivoGen), N-acetyl-L-cysteine (1 mM, Sigma), WNT3A-conditioned
medium (50% (vol/vol)), RSPO1-conditioned medium (10% (vol/vol)),
human epidermal growth factor (50 ng ml™, Peprotech), gastrin |
(10 nM, Tocris), human fibroblast growth factor 10 (100 ng ml™, Pre-
potech), nicotinamide (10 mM, Sigma) and A83-01 (0.5 pM, Tocris)).
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Mediumwas changed twice aweek. For continued passaging, organoids
were recovered from the Matrigel using cold Cell Recovery Solution
(Corning), further dissociated into single cells using TrypLE (Gibco)
and embedded with fresh Matrigel. Organoid cell lines were checked
for KRAS mutations by DNA Sanger sequencing.

Sanger sequencing
DNA was extracted from snap-frozen human PDO cell pellets by the
Sample Processing Lab using an AllPrep kit (Qiagen). Primers sequences
for amplification and sequencing of exons of the KRAS gene that con-
tain the G12/13 codons are listed below:

KRAS G12/13 forward: 5-CTGGTGGAGTATTTGATAGTG-3’

KRAS G12/13 reverse: 5’-CTGTATCAAAGAATGGTCCTG-3".

Thefollowing PCR conditions were used as previously described**
and specifically noted in that paper: ‘94 °C for 2 min; three cycles of
94°Cfor30s,64 °Cfor30 sand 72 °Cfor30 s; three cycles of 94 °C for
305s,61°Cfor30sand72°Cfor30 s;threecyclesof 94 °Cfor30s,58 °C
for30sand72°Cfor30 sandthreecyclesof 94 °Cfor30s,57 °Cfor30s
and 72 °C for 30 s, followed by 72 °C for 5 min and a hold at 4 °C". PCR
products were purified using a QIAquick PCR purification kit and sent
toand sequenced by Eurofins. The resulting sequences were analyzed
using Mutation Surveyor software (SoftGenetics).

Pharmacological assay of organoids

Organoids were dissociated into single cells before being plated in 10 pl
of Matrigel with1,000 cells per wellinto white 96-well plates (Greiner).
Chemotherapeutics were tested in triplicate: 5-fluorouracil (Sigma),
irinotecan (Sigma) and oxaliplatin (Selleckchem) with concentrations
ranging from1.0 x 107 t0 1.0 x 10~ mol liter*, GEM (Sigma), paclitaxel
(Selleckchem) and SN-38 (Sigma) with concentrations ranging from
1.0 x107° t0 1.0 x 107® mol liter * and ketoconazole (Sigma) and cobi-
cistat (MCE) ranging from 1.0 x 107 t0 2.0 x 10~ mol liter’. In combi-
nation treatment, 5.0 x 10~® mol liter " ketoconazole or cobicistat was
combined withacorresponding dose of irinotecan, paclitaxel or SN-38.
Reagents were dissolved in DMSO and added 72 h after plating. All treat-
ment wells were normalized to 0.25% DMSO. After 96 h of treatment,
cell viability was assessed using the CellTiter-Glo 3D cell viability assay
(Promega), as per the manufacturer’s instructions, on a FLUOstar plate
reader (BMG Labtech). Therapeutic results (viability versus dose) were
analyzed with GraphPad software. A four-parameter log-logistic func-
tion with an upper limit equal to the mean of the DMSO values was fit
tothedrugresponse curve and IC, value calculated.

CYP3A activity assay in organoids

After 96 h of culture with or without CYP3A inhibitor, the pan-CYP3A
activity of organoids was measured using a P450-Glo kit (Promega), as
per the manufacturer’sinstructions, onaFLUOstar plate reader (BMG
Labtech). All activity measurements from each well were normalized
to cell numbers using the CellTiter-Glo assay mentioned above.

Histology for organoids

Organoids were fixed in 4% paraformaldehyde solution and embedded
in paraffin. Sections were subjected to H&E and IF staining. The follow-
ing primary antibodies were used for IF staining: KRT19 (ab7755, Abcam;
1:100), CYP3AS5 (ab108624, Abcam; 1:200), KRT17 (sc393002, Santa
Cruz; 1:50), GATA6 (AF1700, R&D; 1:100), Ki-67 (ab16667, Abcam; 1:200)
and DAPI (D9542, Sigma; 1:1,000). Images of H&E and IF staining were
acquired usingimaging system Tissue-FAXS software (TissueGnostics).
H&E images were acquired using a x20 objective lens in brightfield. IF
images were acquired using a x20 objective lens with light-emitting
diodes (LEDs) with specific light filters. IF images of negative-control
sections were used to set the appropriate gating to exclude background
IF and non-specific binding signals. The expression level of each protein
was calculated by the percentage of protein-positive-stained cells in
DAPI-positive cells.

Westernblotting

Protein samples from organoids were lysed in RIPA lysis buffer® with
protease inhibitor cocktail (Sigma) and phosphatase inhibitor (Sigma)
and quantified using a Pierce BCA protein assay kit (Thermo Fisher). Fol-
lowing SDS-PAGE and transfer to PVDF membranes (Bio-Rad, 1704273),
membranes were blocked in Tris-buffered saline containing 5% bovine
serum albumin (BSA) and 0.1% Tween 20 (TBS-T) for 1 h before incu-
bation with primary antibody (CYP3AS5, ab108624, Abcam, 1:1,000;
GAPDH, ¢s2118, Cell Signaling, 1:1,000) overnight at 4 °C. After wash-
ing three times in TBS-T and incubating with species-corresponding
secondary antibodies (anti-mouse IgG, LI-COR, 1:10,000; anti-rabbit
IgG, LI-COR, 1:10,000), membranes were visualized with an ODYSSEY
CLx (LI-COR) imaging system.

Compound analysis by UPLC-MS/MS

Organoids were treated for 96 hwith 0.1 pM or 2 pMirinotecan (<ICs,)
to prevent selection bias from killing most of the organoid population.
Non-lethal drug concentrations were chosen to allow metabolic pheno-
typing of intracellular and extracellular (supernatant) concentrations
ofiirinotecan, SN-38, APC and NPC.

Intracellular and supernatant concentrations were quantified with
avalidated UPLC-MS/MS assay following the guidelines of the Euro-
pean Medicines Agency (EMA) and US Food and Drug Administration
(FDA) and onbioanalytical method validation (http://www.ema.europa.
eu/docs/en_GB/document_library/Scientific_guideline/2011/08/
WC500109686.pdfand http://www.fda.gov/downloads/Drugs/Guid-
anceComplianceRegulatorylnformation/Guidances/ucm070107.pdf).
Each of four performed validation runs included blank and internal
standard controls, seven calibration samples (twofold) and four quality
control (QC) concentrations (sixfold). The assays fully complied with
theapplicable parts of the recommendations of the US FDA and EMA.

Optimized MS/MS parameters for the detection of irinotecan and
its metabolites can be found inSupplementary Table 3. The calibrated
range was 10-10,000 pg ml™, showing linear regression coefficients
of >0.99. Overall accuracies (interday and intraday) were between
90.0 and 114.0% with a corresponding precision of <15%. A Xevo-TQ-S
tandem mass spectrometer (Waters) coupled to an Acquity classic
UPLC (Waters) and equipped with a heated electrospray ionization
source was used for quantification. Determinations were performed
with selected reaction monitoring using collision-induced dissocia-
tion with argon in the positive ion mode. Chromatographic separa-
tion was performed on a BEH C18 column (50 x 2.1 mm and 1.7 pm,
Waters) with alinear gradient from 5 to 75% acetonitrile (ACN) + 0.1%
formicacidin1.2 min(corresponding decrease of aqueous eluent:19:1
water:ACN +0.1% formic acid) at a flow rate of 0.5 ml min™.

Organoids were lysed using 300 pl of 5% aqueous NH,, from which
100 plwas withdrawn for analysis (study samples). Calibrationand QC
samples were prepared by spiking 25 pl of calibration or QC spike solu-
tion (corresponding sample concentration calibration: 10,30,100, 300,
1,000, 3,000 and 10,000 pg ml™*; QC: 10, 30, 3,750 and 7,500 pg ml™)
into 100 plof cell lysate. All samples (Ilysed organoids or supernatants)
were spiked with 25 pl ofinternal standard solution (irinotecan-D4 and
SN-38-D), and study samples were additionally spiked with 25 pl of
blank solution for volume compensation. Irinotecan and metabolites
were extracted with protein precipitation using 300 pl of acetoni-
trile containing 0.1% formic acid. After shaking and centrifugation
at 16,100g for 5 min, extracts were transferred to 96-well collection
platesand evaporated with ablowdown evaporator (Ultravap, Porvair
Sciences). Afteradditionof100 plofamixture ofwater:ACN (3:1(vol/vol))
containing 0.1% formic acid, 20 pl was injected into the UPLC-MS/MS
system for analysis.

Measured drug concentrationsin cellular lysates were normalized
to protein content of the sample, which were evaluated using a com-
mercial BCA assay kit (Pierce BCA Protein Assay kit, Thermo Scientific).
Measurements were performed as previously described*. Specifically,
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as noted in that paper, a calibration curve with nine standard sample
concentrations of BSA (0-2,000 pg ml™) was prepared. Wells of a
96-well plate were loaded with 8 pl of BSA standard or the respective
sample and 64 pl of the working solution (a mixture of reagent A and
reagent B contained in thekit). After 30 min of light-protected incuba-
tionat 37 °C, absorption was read at 562 nm using a Spectramax plate
reader (Molecular Devices), and protein content was calculated.

Tissue processing and next-generation sequencing

LCM was performed on cryopreserved tissue samples fromindividuals
after resection and before any adjuvant therapy, according to previ-
ously described methods®**”. RNA from bulk and LCM tumor specimens
wasisolated using an AllPrep DNA/RNA/miRNA Universal kit (Qiagen).
RNA samples with an RNA integrity number of >8,a285/18S ratio of >1.0
and a DV200 of >70% were considered suitable for high-throughput
sequencing. High-throughput sequencing library preparation was
performed with an Illlumina TruSeq stranded mRNA kit (Illumina,
20020595) with IDT unique dual indices (Illumina, 20022371) follow-
ing the manufacturer’s recommendations. Five hundred nanograms of
total RNA was used asinput. For eachlibrary, atleast 57 million mapped
reads were produced for downstream analysis.

IF assays

IF staining was accomplished using 4-pum-thin FFPE tissue sections,
as described earlier®®. Whole sections were captured using a
TissueGnostics Fluorescence Imaging System (TissueGnostics), with
a fluorescence microscope unit (Observer. Z1, Zeiss) and a Lumen-
cor Sola SE 111 365- to 730-nm LED light source (AHF Analysentech-
nik). Captured images were analyzed using StrataQuest software
version 7.0 (TissueGnostics), which calculated the intensity of
the fluorescence signals in each single cell within individual tis-
sue sections. Cells containing high-intensity target signals were
selected by partitioning cell fluorescent scattergrams against DAPl or
otherreferenced co-stained target signalsinto upper expression quan-
tiles. The expression level of each marker protein was calculated as the
percentage of stained cells relative to DAPI and/or stated reference
protein. Biomarker protein expression in individual cells was
gated into high, medium or low expression tertiles, and cell-specific
expression was quantified for each sample. The antibodies used in
this study are listed in Supplementary Tables 13 and 14.

RNA-seq analysis

RNA-seq datawerealigned using STAR version 2.5.3aviaa DKFZ internal
next-generation sequencing data-processing pipeline*’. Downstream
transcriptomic analysis was performed as previously described*** ™,
Briefly, merged count data obtained from the DKFZ processing pipe-
line and representing chemo-naive and post-CTX samples were batch
corrected using the sva R package. Batch-corrected count data were
subsequently logR transformed using the DESeq2 R package to gener-
atenormalized gene expression values. The logR-normalized datawere
used for all downstream analyses unless otherwise specified.

Subtyping analysis

Subtyping analysis was performed on samples using gene expression
signatures representing Moffitt***¢, Collisson®®, Bailey” and Notta®®
subtypes. To classify samples according to subtype, logR-normalized
gene expression values were clustered using the ConsensusClusterPlus
R package.Samples were subsequently assigned to aspecific subtype
based onthe results of the clustering analysis. Heat maps representing
subtype clusters and showing representative subtype-specific genes
were generated using the ComplexHeatmap R package. The PurIST
algorithm was used as an orthogonal measure of basal-like subtype
statusin samples and was performed using normalized gene expression
data, as previously described®. PurlST scores approaching 1 indicate
anincreased likelihood that the sample is basal like.

Gene expression signatures representing Bailey GPs, single-cell
states or malignant lineage or state programs were obtained from Bailey
et al.”, Raghavan et al.” and Hwang et al.’, respectively. These gene
expression signatures were used to cluster samples and/or generate
gene set enrichment scores. Gene set enrichment scores were gener-
ated using the GSVA R package. t-SNE analysis of gene expression or
gene setenrichment scores was performed using the Rtsne R package.
Volcano plots were generated using the ggplot2 R package. These plots
represent the set of differentially expressed genes between post-CTX
samples treated with either GEM or mFFX. Hwang et al.’® malignant
lineage and state program genes significantly enriched in theindicted
sample group (log, (fold change) >1and -log,, (adjusted Pvalue) > 2)
were highlighted inrelevant plots using the gghighlight R package. The
ggstatsplot R package was used to assess the significance of single-cell
subtype signature enrichment.

WGCNA

WGCNA, as implemented by the WGCNA R package, was performed
using logR-normalized gene expression data. WGCNA was performed
as previously described”. Specifically, 'WGCNA clusters genes into net-
work GPs using a topological overlap measure (TOM) that represents
ahighly robust measure of network interconnectedness and provides
ameasure of connection strength between two adjacent genes and all
other genes in a network. Genes were clustered using1- TOM as the
distance measure and GPs defined as branches of the resulting cluster
tree using a dynamic branch-cutting algorithm. Module eigengene
values were used as ameasure of GP expressionin each sample. Module
eigengene values were used to identify GPs significantly enriched in
either chemo-naive or post-CTX samples. Pathway enrichment analysis
(see Supplementary Table 7 for the list of genes representing each GP)
was performed using the clusterProfiler and ReactomePA R packages.
Networks representing GPs (Fig. 4b) were generated using the Reac-
tome FI Cytoscape plugin 8.05 (https://apps.cytoscape.org/apps/
reactomefiplugin) in Cytoscape version 3.9.1 (https://cytoscape.org)®.

Stromal cell enrichment analysis

Stromal cell type and/or phenotype enrichment in samples was esti-
mate using xCell®, as implemented by the immunedeconv R package
(Fig. 2). The logR-normalized gene expression values were used to
obtain xCell enrichment scores. Enrichment scores for gene signa-
tures representing Griinwald subTMEs?, Ohlund CAF phenotypes®
or Hwang et al.”® fibroblast programs were generated using the GSVA
R package. Volcano plots were generated as described above using the
set of differentially expressed genes between post-CTX samples treated
witheither GEM or mFFX.Immunomodulatory gene expression values
were compared between samples as indicated. Correlations between
immunomodulatory factors were generated and visualized using the
corrplot R package.

Multiplexed IF cell-type analysis

GATA6,KRT17 and CYP3A cell counts obtained from StrataQuest image
processing, as described above, were used for enrichment analysis.
Bar and pie statistical plots were generated fromindividual cell counts
using the ggstatsplot R package. Ternary plots were generated using
the ggtern R package®. The relative percent enrichment of GATA6,
KRT17 and/or CYP3A protein expression was calculated by dividing
individual cell-type counts by the sum of all cell-type counts in each
sample and multiplying by 100. Bar plots representing percent tumor
cell enrichment were generated using the ggpubr R package.

Reanalysis of scRNA-seq data

Single-cell RNA-seq data published in Hwang et al.' was reanalyzed
using the scanpy Python package, version1.9.3 (https://scanpy.readthe-
docs.io/en/stable/api.html)®*. UMAP embeddings and dot plots were
generated using well-annotated scanpy functions.

Nature Cancer | Volume 4 | September 2023 | 1362-1381

1378


http://www.nature.com/natcancer
https://apps.cytoscape.org/apps/reactomefiplugin
https://apps.cytoscape.org/apps/reactomefiplugin
https://cytoscape.org
https://scanpy.readthedocs.io/en/stable/api.html
https://scanpy.readthedocs.io/en/stable/api.html

Article

https://doi.org/10.1038/s43018-023-00628-6

Survival analysis

Survival was estimated using the Kaplan-Meier method, as imple-
mented by the survminer R package. Participants were stratified by
transcriptomic subtype or protein expression values as indicated.
Forest plots were generated using the ggforestplot R package.

Statistics and reproducibility

No statistical methods were used to predetermine sample sizes, but
our sample sizes are similar to those published in previous publica-
tions'®'”**2¢?_ Participant selection was performed blind to clinical
variables. Data collection and analysis were not performed blind to
the conditions of the experiment. Informed consent was obtained
fromthe participants of this study. Research findings do not apply to
onesexorgenderonly. The gender of each participant was collected
by consent and was self-reported. Information on gender is provided
in Supplementary Tables 1, 2, 4 and 5. For tissue-based findings, 171
unique participants were included in the study, with 100 males and
71 females taking part. For RNA-seq, 56 males and 41 females were
included in the analysis (Supplementary Tables 1 and 4). For multi-
plexed IF (Supplementary Tables 1 and 5), 71 males and 51 females
were included in the analysis. For PDOs, organoids derived from 11
males and 20 females were included in the analysis (Supplementary
Table 10). No gender-based analyses are shown, and no significant
associations with gender were observed in the data. All source data
comprise a participant identifier that can be used to disaggregate
the data based on gender. All experiments are representative of at
least three independent biological experiments. H&E and IF images
for samples or PDOs are representative of at least threeindependent
IF experiments on the sameregion of interest or PDO. No data points
were excluded from the analyses. Data distributions were assumed
to be normal, but this was not formally tested. Pvalues of <0.05 were
considered significant. Further information on research design
is available in the Nature Research Reporting Summary linked to
thisarticle.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

All data relevant to this study are available from the corresponding
authorsuponrequest. All processed data, including normalized expres-
sion datafor participant samples and PDOs, multiplexed IF and experi-
mental results, are provided in the Supplementary Tables. RNA-seq data
areavailable at the European Genome-Phenome Archive under acces-
sion number EGASO0001007143. RNA-seq data published in Hwang
etal.”and Brunton et al.”’ were obtained from Gene Expression Omni-
bus accession number GSE202051 and BioProject accession number
PRJNA630992, respectively. Source data are provided with this paper.

Code availability

No custom algorithms were used in this study. Analyses used existing
code made available through referenced software packages. Code used
in this study is available upon request.
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Extended Data Fig. 1| See next page for caption.
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Extended Data Fig. 1| Subtype and transcriptomic analysis of PDAC-HD
samples. a) Bar stat plots showing the number of chemo-naive and post-CTX
samples belonging to a defined AJCC (8" Edition) Stage" in either the PDAC-
HD RNAseq or PDAC-HD IF sample cohorts. Stage (I-1V) and corresponding
sample number (n) are shown at the bottom of each plot. A Pearson x*test of
independence (two-sided) is provided at the top of each plot and P-values from
aonesample proportions test are displayed on the top of each bar (two-sided).
P-values are not adjusted for multiple testing. b) Heatmap showing Moffitt
classification of chemo-naive PDAC-HD samples using established subtyping
schemes. The heatmap is annotated with Bailey, Collisson and Notta subtyping
designations and PurlST scores. ¢) Kaplan Meier survival analysis of chemo-
naive PDAC-HD samples stratified by the Bailey, Collisson and Notta subtyping
schemes. The number of patients falling into one of the designated subtypes
isshowninthe ‘Number at risk’ table. Log-rank test (two-sided) P-values are
provided for each comparison. Log-rank P-values are not adjusted for multiple

correction. d) Bar stat plots showing the number of patient samples belonging
to a Moffitt subtype and grouped by AJCC Stage. Stage (I-1V) and corresponding
sample number (n) are shown at the bottom of each plot. Separate plots are
provided for chemo-naive and post-CTX samples. As above, a Pearson x>-test
ofindependence (two-sided) is provided at the top of each plot and P-values
from a one sample proportions test (two-sided) are displayed on the top of each
bar. P-values are not adjusted for multiple testing. ) WGCNA dendrogram of
co-expressed genes showing dissimilarity based on topological overlap and
assigned gene module colours. f) Heatmap showing the enrichment of gene
programs in chemo-naive and post-CTX patient samples. Samples are clustered
by module eigengene values with higher values (red) associated with increased
enrichmentand lower values (blue) associated with decreased enrichment of
agene moduleinasample. The gene modules presented are all significantly
enriched. LCM patient samples were removed from the analysis to provide a
direct comparison of chemo-naive and post-CTX bulk RNAseq samples.
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Extended Data Fig. 2| See next page for caption.
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Extended Data Fig. 2| Enrichment of subtype-specific gene programs (GP)
and neoplastic cell phenotypes in chemo-naive and post-CTX samples.

a) Heatmap and bar plot of previously defined Bailey GP signatures that are
significantly enriched in either the Classical/Progenitor/Immunogenic, Basal-
like/Squamous or ADEX subtypes. Heatmap z scores represent changes in

median GP scores between chemo-naive (n = 64) and post-CTX (n = 33) samples.

Bar plots represent -Log;, (Kruskal Wallis rank sum test two-sided P-value
adjusted for multiple testing (pAdj)). b) Single sample gene set enrichment
analysis using GP signatures (as shown in a) followed by tSNE. Sample clusters
areidentical between tSNE plots with individual samples highlighted according
to treatment type, chemotherapy regimen and indicated GP score. Analyses for

chemo-naive (n = 64) and post-CTX (n = 33) samples are shown. c¢) Bar charts
showing the differential enrichment of specific neoplastic cell populations
inchemo-naive and post-CTX samples asindicated. The significance of the
enrichment is provided as -Logl0(Wilcoxon rank sum test two-sided pAdj-value
adjusted for multiple testing). The dotted line represents -Log10(pAdj < 0.05).
d) Volcano plots showing the differential enrichment of genes associated with
the indicated neoplastic cell populations in post-CTX samples treated with
either GEM or mFFX. Genes significantly enriched (Log 2 Fold change >1and
-Log,,(pAdj) >2) insamples treated pre-operatively with GEM or mFFX are
shown. pAdj represent the significance of a two-sided Wald test adjusted for
multiple testing.
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Extended Data Fig. 3 | Multiplexed IF and single nuclei RNAseq identifies
complex intratumor heterogeneity. a) Multiplexed IF showing the spatial
expression of KRT17 and GATA6 in Classical subtype GATA6 High and Basal
subtype KRT17 High samples, respectively. These images correspond to whole
tissue sections shown in Fig. 2d. Scale bars are shown in the images. b) Reanalysis
of single nuclei RNAseq data first published in Hwang et al.” demonstrating

the presence of GATA6, KRT17 and CYP3AS co-expressing cells in chemo-naive
samples that persist following chemotherapy and nearly always radiotherapy.

UMAP embeddings of single nuclei gene expression profiles representing the
indicated cell types in chemo-naive and post-therapy patient samples. CRT
denotes chemoradiotherapy (FOLFIRINOX as the major chemotherapy regimen)
and CRTL denotes chemoradiotherapy (FOLFIRINOX as the major chemotherapy
regimen) plus losartan. ¢) Dot plot showing the relative enrichment of GATA6,
CYP3AS, and KRT17 in cell types comprising post-CRT samples. d) Dot plot
showing the relative enrichment of GATA6, CYP3AS, and KRT17 in chemo-naive
(untreated) and post-CRT or post-CRTL patient samples.
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Extended Data Fig. 4| GATA6" and KRT17" persister phenotypes are
associated with poor patient outcomes in mFOLFIRINOX but not
gemcitabine post-CTX patient samples. a) Forest plot and associated

table of discovery analyses showing univariate cox proportional hazards for
neoadjuvant post-CTX with patient samples dichotomized with high and low
protein biomarker expression. Analyses are shown for combined GEM and mFFX
(black) (n =44), GEM alone (cyan) (n =18) and mFFX alone (red) (n = 25) post-CTX
patient samples. Hazard Ratios (HR) are shown on the plot as the central measure
(symbol) with 95% Confidence Intervals (CI) shown as bars. Log-rank P-values
(two-sided) and Median Overall Survival (MOS) for high and low expressing

groups are provided for each comparison. Log-rank P-values were not adjusted
for multiple testing. b) Kaplan Meier survival analysis for dichotomized High and
Low GATA6 and KRT17 protein expression in chemo-naive PDAC-HD samples.

c) Kaplan Meier survival analysis for dichotomized High and Low GATA6 and
KRT17 protein expression in post-CTX PDAC-HD samples. Kaplan Meier survival
analysis of post-CTX patient samples representing combined (GEM and mFFX),
GEM alone or mFFX alone is shown. For panels b) and ¢), patient numbers for each
group are provided under ‘Numbers at risk’. Log Rank P-value < 0.05 is considered
significant. Log-rank P-values were not adjusted for multiple testing.
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Extended DataFig. 5| Intermediate co-expressor (IC) ‘Hybrid’ states are
significantly enriched in post-CTX samples. a) Top panel, heatmap showing
the expression of gene signatures derived from single cell analyses that define
distinct Classical (scClassical), Basal (scBasal) and Intermediate co-expressor
(IC) cell phenotypes. Patient samples are ordered according to increasing scBasal
ssGSEA enrichment scores. Bottom panel, bar charts showing the percent
tumor enrichment of GATA6/CYP3A/KRT17 cell populations as determined by
multiplexed IF. Patient samples in top panel and bottom panel are identical and
similarly ordered. ALOESS regression line has been added to each bar plot.

b) Box plots showing the enrichment of scClassical, scBasal and scIC signature
scores in chemo-naive and post-CTX patient samples. Sample numbers (n)
shown at the bottom of each plot. Two-sided Welch’s t-test was performed to

determine significance between treatment groups. Welch’s P-values were not
corrected for multiple testing. Two-sided Friedman rank sum test was performed
to determined significance between signature score in indicated treatment
group. Friedman P-values were adjusted for multiple testing. Boxplots show the
median (line), the interquartile range (IQR) between the 25th and 75th percentiles
(box) and 1.5x the IQR + the upper and lower quartiles. ¢) Bar stat plots showing
the number of GATA6/KRT17/CYP3A ‘hybrid’ cells observed (n) in Moffitt
subtypes Basal (n =20) and Classical (n =27). A Pearson x*-test of independence
(two-sided) is provided at the top of each plot and P-values from a one sample
proportions test (two-sided) are displayed on the top of each bar. P-values were
not adjusted for multiple testing.
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Extended Data Fig. 6 | CYP3A" persister phenotypes are associated with
poor patient outcomes in mFFX but not GEM post-CTX patient samples.

a) Forest plot and associated table of discovery analyses showing univariate
cox proportional hazards for post-CTX patient samples with the indicated
dichotomized High and Low protein biomarker expression. Univariate analyses
have not been corrected for multiple testing. Analyses are shown for combined
GEM and mFFX (black) (n =44), GEM alone (cyan) (n =18) and mFFX alone (red)
(n=25) post-CTX patient samples. Hazard Ratios (HR) are shown on the plot

as the central measure (symbol) with 95% Confidence Intervals (CI) shown as

bars. Log-rank P-values (two-sided) and Median Overall Survival (MOS) for

high and low expressing groups are provided for each comparison. Log-rank
P-values were not adjusted for multiple testing. b) Kaplan Meier survival analysis
for dichotomized High and Low CYP3A, ‘hybrid’ CYP3A/KRT17"* and CYP3A/
KRT17" persister phenotypes in post-CTX PDAC-HD samples. Kaplan Meier
survival analysis of post-CTX patient samples representing combined (GEM

and mFFX), GEM alone or mFFX alone is shown. Patient numbers for each group
are provided under ‘Numbers at risk’. Log Rank P-value < 0.05 is considered
significant. Log-rank P-values were not adjusted for multiple testing.
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Extended Data Fig. 7 | AJCC (8" Edition) Stage is associated with GATA6/
CYP3A/KRT17 ‘hybrid’ cell enrichment in chemo-naive PDAC-HD samples.

a) Bar stat plots showing the number of GATA6/KRT17/CYP3A ‘hybrid’ cells
observed in different AJCC stages for both chemo-naive (n = 69) and post-CTX
samples (n=42). As above, a Pearson x*test of independence (two-sided) is
provided at the top of each plot and P-values from a one sample proportions test
(two-sided) are displayed on the top of each bar. Number of observations (n) cells
are provided at the bottom of each bar. P-values were not adjusted for multiple
testing. b) Bar plot showing the percent tumor content of GATA6/KRT17/CYP3A
‘hybrid’ cells in chemo-naive samples (n = 69) for each AJCC stage. A LOESS

regression line has been added to each bar plot. ¢) Hematoxylin and Eosin (H&E)
stains of representative patient samples showing the histology of the parental
tissue and matched PDO. d) Table describing PDAC-HD organoids used in this
study. e) Pharmacotyping of PDOs showing heterogeneity of chemotherapy
response. PDOs are ranked by increasing Log (IC50) values for the indicated
drug treatments and concentrations. f) Line plot showing the heterogeneity

of chemotherapy responses for PDOs resistant and susceptible to irinotecan.

g) Line plot showing chemotherapy responses for PDAC-HD PDO h20 which
was generated from a patient sample that had received mFFX pre-operatively.
Numbersinline plots represent the Log (IC50) rank for the indicated treatment.
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Extended Data Fig. 8 | CYP3A protein expression in PDOs is positively
correlated withirinotecan resistance. a) Scatter plots showing the correlations
between CYP3A protein expression and Log (IC50) values for the indicated
chemotherapies. Winsorized correlations (two-sided) were performed to

reduce the effect of outliers. P-values are shown on each correlation plot with
P-value < 0.05 considered significant. The plots show a solid regression line and
error bands representing 95% confidence intervals. P-values were not adjusted

for multiple testing. b) CYP3A-positive ‘Hybrid’ cells overlap scClassical and scIC
gene signatures. Top panel, bar plots showing the percent tumour content of
GATA6/CYP3A/KRT17 hybrid cell typesin PDOs. A LOESS regression line has been
added to eachbar plot. Bottom panel, heatmap showing the relative expression
of gene signatures derived from single cell analyses that define distinct Classical
(scClassical), Basal (scBasal) and Intermediate co-expressor (IC) cell phenotypes.
PDOs are grouped by Moffitt subtype.
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Extended DataFig. 9| CYP3A activity mediatesirinotecan tolerancein
CYP3A-positive PDOs. a) Cell proliferation assay showing doubling time

for resistant (n = 3) and susceptible (n = 3) PDOs. The results representn=3
independent biological experiments. b) Bar plot showing doubling time
between resistant (n = 3) and susceptible (n = 3) PDOs. Mann-Whitney (two-
sided) P-value is shown on the plot. P-value was not adjusted for multiple
testing. Bar plots represent mean values +s.d. ¢) Bar plot of Ki67 protein
expression in selected resistant (n = 5) and susceptible (n = 6) PDOs. Mann-
Whitney (two-sided) P-value is shown on the plots. P-value was not adjusted

for multiple testing. Bar plots represent mean values +s.d. d) CYP3A enzyme
activity in selected PDOs as determined by luminescence assay. CYP3A enzyme
activity was normalized to total cell number. PDOs were treated with increasing
concentrations of the CYP3A inhibitors ketoconazole and cobicistat to
determine the optimum concentrations for combination treatments. Dunnett’s
multiple comparison test (two-sided) was performed to identify concentrations
sufficient to significantly inhibit CYP3A activity. P-values adjusted by

multiple correction are shown on the plot. Bar plots show mean valuesofn=3

independent biological experiments + s.d. e) Cell viability assays showing PDO
responses to increasing concentrations of the CYP3A inhibitors ketoconazole
and cobicistat. Dunnett’s multiple comparison test (two-sided) was performed
to identify concentrations sufficient to significantly reduce cell viability.
P-values adjusted by multiple correction are shown on the plot. Bar plots show
mean values of n = 3independent biological replicates + s.d. f) Compound
analysis by UPLC-MS/MS of relative resistant and relative susceptible PDOs
showingrelative irinotecan to SN-38 conversion. Bar plots show mean values
of n=3independentbiological experiments * s.d. g) Compound analysis by
UPLC-MS/MS of relative resistant and relative susceptible PDOs showing relative
SN-38in the supernatant. Bar plots show mean values of n =3 independent
biological experiments + s.d. h) Treatment of selected PDOs with irinotecan,
SN-38, or paclitaxel in combination with either ketoconazole or cobicistat as
indicated. Combination treatment with ketoconazole increases drug sensitivity
toirinotecan and paclitaxel but not SN-38.1C50 values are provided for the
indicated treatments. The results represent n = 3independent biological
experiments. Data are presented as mean values +/-s.e.m.
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included in the analysis (Supplementary S10). No gender-based analyses are shown, no significant associations with gender
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Population characteristics Patients with histologically verified Pancreatic Ductal Adenocarcinoma, without distant metastases, who underwent a
surgical resection from 2012 to 2020 with stored blood, and cryopreserved and/or FFPE sections, with complete clinical and
pathological data, and follow up of at least 24 months. The patients were all operated upon in the Department of General
Surgery at the University Hospital of Heidelberg, Germany. Patients initially were staged either as CT UNRESECTABLE disease
and had neoadjuvant chemotherapy then resection (including arterial and venous resection); or CT RESECTABLE disease
(including venous resection) and had adjuvant chemotherapy. Patients who died within 3 months were excluded. Patients
who had any chemoradiation at any time were also excluded. Patient characteristics are summarized in Supplementary
Tables S1,S2, S4 and S5.

Recruitment Patients were selected according to the following criteria: (i) patients with locally advanced borderline unresectable PDAC
(without metastases) who received surgical resection after mFOLFIRINOX or gemcitabine-based therapy without any
chemoradiation neoadjuvant therapy; and (ii) patients with resectable PDAC at presentation who had up-front surgical
resection without prior chemotherapy and/or chemoradiation (adjuvant chemo-naive). Post resection patients could receive
adjuvant chemotherapy but those who had chemoradiation were again excluded. Consecutive pseudo-anonymised patients
with prior consent, and with usable samples of sufficient quality for investigation were identified based on the eligibility
criteria. Additional pseudo-anonymised IDs were then ascribed to each patient for experimental investigation, so blinded to
all of the investigators and investigations. Clinical correlates were only ascribed once the experimental procedure results
were obtained.

Ethics oversight The study has been approved by the Ethics Committee of Heidelberg University for use of pancreatic cancer tissue (Project
Nos. S-018/2020, S-708/2019 and S-083/2021).
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Data exclusions

Replication

Randomization

Blinding

Data was not excluded from the study.

The data included in the study is representative of resected chemo-naive and post-chemotherapy patient samples. All antibodies used in this
study have been validated and inter-sample variability has been controlled where possible using internal controls. Multiple tumor sections
representing the sample patient sample have been analyzed to replicate findings. Analysis of patient-derived organoids are representative of
at least 3 independent experiments.

All experiments are representative of at least 3 independent biological experiments. H&E and IF images for patient samples or PDOs are
representative of at least 3 independent IF experiments on the same region of interest or PDO. The finalized figures represent at least 2
successful replicated experiments.

Patients were allocated into groups based on defined clinical criteria.

Consecutive pseudo-anonymised patients with prior consent, and with usable samples of sufficient quality for investigation were identified
based on the eligibility criteria, defined under "Patients Characteristics” in the Methods. Additional pseudo-anonymised IDs were then
ascribed to each patient for experimental investigation, so blinded to all of the investigators and investigations. Clinical correlates were only
ascribed once the experimental procedure results were obtained. Subsequent data collection and analysis was not performed blind to the
conditions of the experiment.
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Antibodies used

Validation

CYP3AS5 Company: Abcam; Catalogue No.:ab108624; Clone No: EPR4396; Dilution: 1/200; Source: Rabbit

GATAG6 Company: R&D System; Catalogue No.:AF1700 ; Clone No: NA; Dilution: 1/100; Source: Goat

hENT1 Company: Creative Biolabs; Catalogue No.:CBMAB-E2320-FY; Clone No: CBFYE-1652; Dilution: 1/100; Source: Mouse
HNF1A Company: Santa Cruz Biotechnology; Catalogue No.:sc-393925; Clone No: F-7; Dilution: 1/100; Source: Mouse

KRT17 Company: Santa Cruz Biotechnology; Catalogue No.: Sc-393002; Clone No: E-4; Dilution: 1/100; Source: Mouse

KRT19 Company: Abcam; Catalogue No.: ab7755; Clone No: BA-17; Dilution: 1/400; Source: Mouse

KRT19 Company: Abcam; Catalogue No.: ab52625; Clone No: EP1580Y; Dilution: 1/400; Source: Rabbit

KRTS Company: Thermo Fisher Scientific; Catalogue No.: MA5-12596; Clone No: XM26; Dilution: 1/200; Source: Mouse

KRT81 Company: Santa Cruz Biotechnology; Catalogue No.: sc-100929; Clone No: 36-Z; Dilution: 1/50; Source: Mouse

S100A2 Company: Abcam; Catalogue No.: Ab109494; Clone No: EPR5392; Dilution: 1/200; Source: Rabbit

Antibodies were validated by manufacturer and selected peer reviewed publications. Internal controls were used to validate the
positivity of the results.

CYP3A5 Company: Abcam; Catalogue No.:ab108624; Clone No: EPR4396; Dilution: 1/200; Source: Rabbit; Website: https://
www.abcam.com/products/primary-antibodies/cyp3a5-antibody-eprd4396-ab108624.pdf; Citation: Noll EM et al. Nat Med. 2016
Mar;22(3):278-87. doi: 10.1038/nm.4038. Epub 2016 Feb 8. PMID: 26855150; PMCID: PMC4780258.

GATAG Company: R&D System; Catalogue No.:AF1700 ; Clone No: NA; Dilution: 1/100; Source: Goat; Website: https://
www.rndsystems.com/products/human-gata-6-antibody_af1700?gclid=CjOKCQjw1rgkBhCTARIsAAHz7K2eqwoZ8c3IUo5rtykO-

VMKnmIWIj36Ki7ZFPuK04j4L5_QX_nRIAsaAiuDEALw_wcB&gclsrc=aw.ds#product-datasheets; Citation: Lee H et al. EBioMedicine.
2021 Mar;65:103218. doi: 10.1016/j.ebiom.2021.103218. Epub 2021 Feb 25. PMID: 33639403; PMCID: PMC7921470.
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hENT1 Company: Creative Biolabs; Catalogue No.:CBMAB-E2320-FY; Clone No: CBFYE-1652; Dilution: 1/100; Source: Mouse;
Website: https://www.antibody-creativebiolabs.com/anti-slc29a1l-monoclonal-antibody-cbfye-1652-45515.htm; Citation: NA

HNF1A Company: Santa Cruz Biotechnology; Catalogue No.:sc-393925; Clone No: F-7; Dilution: 1/100; Source: Mouse; Website:
https://datasheets.scbt.com/sc-393925.pdf; Citation: Taniguchi H et al Oncotarget. 2018 May 25;9(40):26144-26156. doi: 10.18632/
oncotarget.25456. PMID: 29899848; PMCID: PM(C5995239.

KRT17 Company: Santa Cruz Biotechnology; Catalogue No.: Sc-393002; Clone No: E-4; Dilution: 1/100; Source: Mouse; Website:
https://datasheets.scbt.com/sc-393002.pdf; Citation: Kathiriya JJ et al Nat Cell Biol. 2022 Jan;24(1):10-23. doi: 10.1038/
s41556-021-00809-4. Epub 2021 Dec 30. PMID: 34969962; PMCID: PMC8761168.

KRT19 Company: Abcam; Catalogue No.: ab7755; Clone No: BA-17; Dilution: 1/400; Source: Mouse; Website: https://
www.abcam.com/products/primary-antibodies/cytokeratin-19-antibody-ba-17-ab7755.pdf; Citation: Husanie H et al. Cell Death Dis.
2022 Dec 27;13(12):1074. doi: 10.1038/s41419-022-05519-9. PMID: 36572673; PMCID: PM(C9792466.

KRT19 Company: Abcam; Catalogue No.: ab52625; Clone No: EP1580Y; Dilution: 1/400; Source: Rabbit; Website: https://
www.abcam.com/products/primary-antibodies/cytokeratin-19-antibody-ep1580y-cytoskeleton-marker-ab52625.pdf; Citation: Aktas
RG et al Cells. 2022 Nov 27;11(23):3797. doi: 10.3390/cells112337397. PMID: 36497057; PMCID: PMC9741396.

KRT5 Company: Thermo Fisher Scientific; Catalogue No.: MA5-12596; Clone No: XM26; Dilution: 1/200; Source: Mouse; Website:
https://www.thermofisher.com/order/genome-database/dataSheetPdf?
producttype=antibody&productsubtype=antibody_primary&productld=MA5-12596&version=322; Citation: Hao S, et al mBio. 2020
Nov 6;11(6):02852-20. doi: 10.1128/mBi0.02852-20. PMID: 33158999; PMCID: PMC7649230.

KRT81 Company: Santa Cruz Biotechnology; Catalogue No.: sc-100929; Clone No: 36-Z; Dilution: 1/50; Source: Mouse; Website:
https://datasheets.scbt.com/sc-100929.pdf; Citation: Muckenhuber A, et al. Clin Cancer Res. 2018 Jan 15;24(2):351-359. doi:
10.1158/1078-0432.CCR-17-2180. Epub 2017 Nov 3. PMID: 29101303.

S100A2 Company: Abcam; Catalogue No.: Ab109494; Clone No: EPR5392; Dilution: 1/200; Source: Rabbit; Website: https://
www.abcam.com/products/primary-antibodies/s100-alpha-2s100a2-antibody-epr5392-ab109494.pdf; Citation: Chen Y, et al Front
Immunol. 2021 Nov 23;12:758004. doi: 10.3389/fimmu.2021.758004. PMID: 34887861; PMCID: PMC8650155.
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