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Abstract
The fisheries sub-sector of aquaculture—i.e., the pisciculture industry, contributes significantly to a country’s economy, 
employing a sizable proportion of the population. It also makes important contributions to household food security because 
the current demand for animal protein cannot be fulfilled by harvesting wild fish from riverines, lakes, dams, and oceans. 
For good pond management techniques and sustaining fish health, the fisherfolk, and the industry require well-established 
regulatory structures, efficient disease management strategies, and other extended services. In rearing marine fish, infections 
resulting from disease outbreaks are a weighty concern because they can cause considerable economic loss due to morbidity 
and mortality. Consequently, to find effective solutions for the prevention and control of the major diseases limiting fish pro-
duction in aquaculture, multidisciplinary studies on the traits of potential fish pathogens, the biology of the fish as hosts, and 
an adequate understanding of the global environmental factors are fundamental. This review highlights the various bacterial 
diseases and their causative pathogens prevalent in the pisciculture industry and the current solutions while emphasising 
marine fish species. Given that preexisting methods are known to have several disadvantages, other sustainable alterna-
tives like antimicrobial peptides, synthetic peptides, probiotics, and medicinal treatments have emerged to be an enormous 
potential solution to these challenges.
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Introduction

The production of seafood has been transformed by the aqua-
culture sector, which is one of the world’s fastest-growing 
food production technologies in recent decades. As a result, 
seafood is now a more significant food source on a global 
scale. The world’s population is expected to reach 10 billion 
by 2050, and to meet the growing and increasingly affluent 
population’s dietary needs, food production needs to expand 
by up to 56 per cent globally (“The State of World Fisheries 
and Aquaculture 2022,” 2022). In response to the increas-
ing demand for marine protein, marine aquaculture offers a 
chance to boost seafood production.

Mariculture, or the farming of marine species, is an 
emerging industry that has drawn a desire for its potential 
to grow and diversify food systems, with approximately 
249 different species farmed (Gentry et al. 2023). It is 

primarily known to be a major sub-sector of the aqua-
culture industry by offering possibilities for sustainable 
food production and the local communities’ economic 
development.

Commercial mariculture production is currently active 
in 102 different countries and on all the continents except 
Antarctica. The most recent annual production of more 
than 30 million metric tonnes reflects a nearly five-fold 
growth in mariculture productivity throughout the past 
30 years (Gentry et al. 2023). However, it is primarily 
concentrated in fewer countries, with China exclusively 
accounting for more than one-third of the world’s total 
production (Gentry et al. 2023). The global food supply, 
in addition to per-capita consumption of fish and its asso-
ciated products, continues to increase more rapidly than 
the world’s population. Thus, aquaculture production in 
marine waters expanded at a compound annual rate of 5.2 



World Journal of Microbiology and Biotechnology (2023) 39:317	

1 3

Page 3 of 24  317

per cent from 2000 to 2018, while the whole aquaculture 
industry had yearly growth of 5.6 per cent (World Aqua-
culture 2022—A Brief Overview—Bartley, D.M.—Google 
Books). In 2020, 178 million tonnes of aquatic animals 
were projected to be produced worldwide, out of which 
63 per cent (112 million tonnes) of the total production 
was cultivated in marine waters with 70 per cent through 
capture fisheries and 30 per cent from aquaculture (“The 
State of World Fisheries and Aquaculture 2022,” 2022).

Figure 1 demonstrates that the number of fish produced 
from marine areas increased to 84.4 million tonnes in 2018 
from 81.2 million in 2017, with marine capture fisheries 
contributing to much of the growth (“The State of World 
Fisheries and Aquaculture 2022,” 2022). For numerous fish 
species, capture fisheries in marine waters continue to be the 
primary production source (they are projected to account for 
44% of all aquatic animal produce in 2020). After several 
decades of progressive expansion, marine capture fisheries 
have remained consistent since the late 1980s at around 80 
million tonnes, and in 2020, global marine captures were 
78.8 million tonnes (“The State of World Fisheries and 
Aquaculture 2022,” 2022).

In 2020, a projected 58.5 million people were employed 
in fisheries and aquaculture. Aquaculture accounted for 35 
per cent of employment, while capture fisheries accounted 
for 65 per cent (“The State of World Fisheries and Aquacul-
ture 2022,” 2022). Albeit the mariculture industry provides 
sustenence to various communities, it still encounters sig-
nificant obstacles that, in some situations, make it intricate 
to provide sustainable results (Naylor et al. 2021).

Despite the considerable influence the industry has had 
on food supply, various environmental and health variables 
can influence and cause illnesses in marine fish, leading to 

huge financial losses. These illnesses include those brought 
on by pathogenic bacteria, more especially by the Gram-
negative bacterial genera and, to a lesser extent, the Gram-
positive bacterial genera (Maldonado-Miranda et al. 2022). 
Due to the enormous number of species raised in various 
aquaculture systems, research on novel illnesses and the 
range of susceptible host species frequently lags advance-
ments in aquaculture. Furthermore, those who are account-
able for preserving biosecurity frequently take a slow col-
lective awareness of emerging dangers (“The State of World 
Fisheries and Aquaculture 2020,” 2020). There is frequently 
a paucity of fundamental information regarding the patho-
gen—pathogenicity and transmission channels—and its 
host(s)—species, life stages infected, immunity, and genet-
ics. Several bacterial infections in fish species, including 
Aeromonas salmonicida, Pseudomonas anguilliseptica, 
Vibrio harveyi and V. anguillarum, Moritella viscosa, 
Tenacibaculosis, and Lactococcus garvieae, have profoundly 
affected a variety of economically important fish species 
reared in marine and brackish water aquaculture produc-
tion around the world causing heavy financial losses for the 
aquaculture industry worldwide (Irshath et al. 2023). This 
paper outlines the common bacterial infections in marine 
fish and highlights the need for more sustainable solutions 
by elucidating on the current and upcoming solutions, both 
in pre-clinical and commercial stages of use.

Major bacterial diseases in marine fish

Disease occurrences are now a ruling obstacle to the produc-
tion and trade of sustainable aquaculture products, impacting 
fisherfolk’s socioeconomic standing in developing nations 

Fig. 1   A bar graph indicating 
the overall increasing trend 
of world capture fisheries 
and aquaculture production 
spanning about seven decades 
between 1950 and 2018. (“The 
State of World Fisheries and 
Aquaculture 2020,” 2020)
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worldwide. Outbreaks by opportunistic pathogens can be 
brought on by a multitude of stress conditions such as the 
inadequate physicochemical and microbiological quality 
of water used in aquaculture farms, poor nutritional status, 
and high stocking density. These parameters are also exces-
sively influenced by interactions among the host, pathogens, 
and the kind of environment they are bred in = (Burge et al. 
2014). A change in any one of these factors or climatic con-
ditions can significantly affect the likelihood of an intense 
disease outbreak. (Burge et al. 2014). An acute concentration 
of contaminants and suspended particles can cause deformi-
ties and deaths in adult and seed fish (Kumari and Teacher 
2020). Marine fish, particularly, are susceptible to various 
environmental challenges, such as toxins, and natural and 
biological intruders. These challenges are the primary risk 
factors for the prolonged suppression of immunity of marine 
aquatic species in the impacted marine environment which 
can lead to the occurrence of various bacterial infections 
(Olafsen 2001).

Numerous marine fish species worldwide, especially sea-
bass (Vandeputte et al. 2019), suffer from tenacibaculosis, 
an ulcerative illness with significant mortality rates. Tenaci-
baculum maritimum is the primary causative agent of this 
disease. External clinical symptoms might include tail rot, 
superficial ulcerations, mouth erosion, and fin necrosis 
(Mabrok et al. 2023). Another one of the most common bac-
terial illnesses affecting various marine fish and shellfish is 
vibriosis. It can cause up to 50% of fish mortality and affects 
all stages of fish growth. The symptoms of this disease 
are seen as lethargic movement, skin ulcerations, fin rot-
ting, loss of appetite, haemorrhage and congestion in liver, 
kidney, and spleen (Mohamad et al. 2019). Furthermore, 
overall systemic infections result in fish death (Deng et al. 
2020). Vibrio harveyi, Vibrio vulnificus, Vibrio parahaemo-
lyticus, Vibrio alginolyticus, and Vibrio anguillarum are a 
few of the Vibrionaceae species that are responsible for 
the disease. Freshwater and marine fish are susceptible to 
infection caused by an opportunistic bacteria Mycobacte-
rium marinum. This infection results in morbidity and death 
in fish and necrotic granuloma resembling tuberculosis 
(TB). It is regarded as the most significant fish pathogen. 
It is linked to a variety of symptoms, including incoherent 
swimming, abdominal expansion, weight loss, skin ulcers, 
and the development of white nodules as granulomas in the 
liver, kidney, and spleen (Hashish et al. 2018). Among the 
highly recognized non-tubeculous mycobacterium (NTM) 
species linked to fish mycobacteriosis are M. marinum, M. 
fortuitum, and M. chelonae. About 200 species of marine 
and freshwater fish across an extensive range spanning from 
the subarctic zone to the tropical one are susceptible to the 
fatal piscine mycobacteriosis (Irshath et al. 2023).

The Aeromonas species are found to be quite prevalent 
among marine fish as seen in a study done by Yücel et al. 

2010, where 97.3% of all their marine fish samples had been 
infected with Aeromonas species (Yücel and Balci 2010). 
Among the species, A. hydrophila is a major cause of death 
in fish and shellfish (Aberoum and Jooyandeh 2010). Symp-
toms are seen as—haemorrhages and petechiae on internal 
and external organs, enlarged spleen, anorexia, and intersti-
tial renal tissue necrosis (Menanteau-Ledouble et al. 2016). 
The Cytophaga-Flavobacterium (C-F) clusters cause the 
other less-known bacterial infections in marine fish. Fish 
that have been infected typically have acute necrotic lesions 
such as fin and tail rot, ulcerated skin, stomatitis, or jaw 
erosion and may even be septicaemic (Bernardet 1998). 
Further, Aeromonas salmonicida, known to affect salmo-
nids in particular, causes lethal diseases, namely furunculo-
sis which leads to severe septicemia, resulting in mortality 
especially in coldwater fishes. This disease is often marked 
by ulcerations in the dermal layer, subsequently leading to 
a septicemic condition along with haemorrhage (Cipriano 
and Bullock 2001).

Reared fish are subjected to high stress from intensive 
farming methods, which weaken their natural immune sys-
tems’ ability to fight off different bacterial and viral infec-
tions that can cause sickness. Regardless of whether a single 
species of fish is produced in dense populations or several, 
appropriate husbandry, and overall management, including 
biosecurity, nutrition genetics, system management, and 
water quality, are essential for their production.

Current solutions

Antibiotic administration

Antibiotic treatments have been widely used against bacte-
rial illnesses in aquaculture for several years (Gram et al. 
2001). According to Lulijwa et al (2020), around 73 per cent 
of the major aquaculture-producing nations use oxytetra-
cycline, florfenicol, and sulphadiazine, while 55 per cent 
use erythromycin, amoxicillin, sulphadimethoxine, and 
enrofloxacin. They also noted that the use of antibiotics in 
Asian aquaculture output (constituting the largest produc-
ing nations), has increased by approximately 44.77 million 
tonnes between 2006 and 2016. Selective pressures from the 
usage of antibiotics fuel antimicrobial resistance (AMR). 
Over the past ten years, the availability of evidence around 
antimicrobial resistance has broadened (Buschmann et al. 
2012; Schar et al. 2020; Thornber et al. 2022; Caputo et al. 
2023).

A growing volume of research has connected AMR in 
marine fish with productivity loss and illnesses that are 
resistant to treatment, which has negative effects on fish and 
human health (Buschmann et al. 2012; Schar et al. 2021). 
The treatment options available in commercial rearing of 
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marine fish may be reduced due to pathogen resistance, 
which could have an impact on food security and nutrition 
(Watts et al. 2017). The forthcoming sections of this review 
aim to elaborate on the developing resistance in pathogenic 
bacteria and high residue accumulation in the environment 
due to the incessant usage of antibiotics.

Antibiotic resistance in pathogenic bacteria

Finfish aquaculture’s rapid expansion has led to several 
changes that are harmful to the environment and public 
health. The latter is demonstrated by the industry’s wide-
spread and unrestricted use of prophylactic antibiotics, 
particularly in developing economies, to prevent bacterial 
illnesses brought on by unsanitary fish farming practises 
(Cabello 2006). The extensive use of antibiotics and the 
delayed progress in discovering and creating substitutes, 
such as vaccines and virulence inhibitors, are two of the fun-
damental issues with antibiotics (Griffin et al. 2020). More 
than 90 per cent of bacteria that developed in saltwater are 
multi-antibiotic resistant, and 20 per cent are at least resist-
ant to a single antibiotic.

An examination of the presence of antibiotic resistance 
in native aquatic species is significant as it can reveal how 
human activity alters aquatic ecosystems (Baquero et al. 
2008). Antimicrobial antibiotic accumulations in edible 
tissues can result in allergies and harmful effects, changes 
to the gut microbial fauna, and development of medication 
resistance (Ina-Salwany et al. 2019). Aeromonas salmoni-
cida was the first fish pathogen to be identified as being 
resistant to sulphathiazol and tetracycline (Snieszko and 
Bullock 1957). Over time, many antibiotic resistance inves-
tigations have focused on Vibrio and Aeromonas because of 
their peculiar biofilm production and antibiotic resistance. 
Tetracycline, Streptomycin, and Kanamycin resistance genes 
were found in abundance in Edwardsiella tarda—a Japa-
nese flounder (Yu et al. 2012). Mycobacterium, an important 
zoonotic fish pathogen that causes mycobacteriosis in both 
marine and freshwater fish, shows notable drug resistance 
(Guz et al. 2013). In a recent study, Shigella spp. isolated 
from saltwater fish were resistant to gentamicin, ciprofloxa-
cin, and tetracycline 28 (17%) (Marijani 2022).

Studies have also demonstrated that human bacte-
rial infections become resistant to antibiotics due to the 
exchange of antibiotic-resistance genes between bacteria in 
aquaculture and terrestrial environments. Shewanella algae 
and Vibrio, for instance, are aquatic bacteria that have been 
shown to cause antibiotic quinolone resistance in human 
Gram-negative pathogens (Ina-Salwany et  al. 2019). In 
Japan and Chile, quinolone-resistance has been found in V. 
parahaemolyticus—an emerging human pathogen (Cabello 
2006).

The World Health Organization (WHO) has declared that 
a number of antibiotics used in agriculture and aquaculture, 
including the antibiotic families tetracyclines, quinolones, 
and penicillin, are essential for human medicine (Done and 
Halden 2015). Many different bacteria, including those 
dangerous to humans, have been found to exhibit resistance 
to all antibiotic classes (Marijani 2022). Antibiotics in the 
aquatic environment may cause human pathogens that from 
the microbiota to develop resistance. The high level of con-
tamination of seawater and freshwater with untreated sew-
age and agricultural and industrial wastewater containing 
normal intestinal flora and pathogens of animals and humans 
typically resistant to antibiotics in many aquaculture set-
tings in developing countries has increased the possibilities 
of these exchanges. Large amounts of antibiotics entering 
and remaining in the environment of water and sediments 
in aquaculture have the potential to alter the presence of the 
typical flora and plankton in those niches, leading to changes 
in the diversity of the microbiota. This may have an impact 
on fish and human health by, for example, promoting algal 
blooms and anoxic environments (Cabello 2006). Table 1 
is a collection of country-wise data on various diseases in 
marine fish, their causative microbes, and antibiotics used 
for their treatment. It depicts the extensive usage of prophy-
lactic antibiotics across the globe, and highlights the reason 
for an upsurge in antimicrobial resistance.

Antibiotic residue accumulation

Antibiotic resistance has recently been identified as an 
emerging environmental issue (Griffin et al. 2019). Through 
excrement and leftover medicated feed, 75 per cent of the 
antibiotics used in pisciculture farms seep into the environ-
ment and build up as sediments. In a study by Lalumera et al 
(2004), priority chemicals for a monitoring programme in 
Italy examining potential environmental effects of the pis-
ciculture industry included flumequine and oxytetracycline. 
Furthermore, Xiong et al (2015) detected concentrations of 
chlortetracycline, ciprofloxacin, doxycycline, enrofloxacin, 
norfloxacin, oxytetracycline, sulfametoxydiazine, sulfamet-
hazine, and sulfamethoxazole in sediment and water samples 
at quantities of up to 446 μg kg−1 and 98.6 ng L−1, respec-
tively. According to their investigation, the sediment and 
water samples contained a variety of taxa linked to oppor-
tunistic infections. Some of these genera, like Arcobacter 
and Treponema, are opportunistic human and animal dis-
eases, whereas others, like Clostridium and Acinetobacter, 
are opportunistic human pathogens, causing diseases such 
as diarrhea and colitis. Since people who are frequently 
exposed to fish—such as consumers or those who work in 
the fish processing industry—are at high risk, the presence 
of pathogen-associated taxa in the fishponds could pose 
health risks.
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Even subtherapeutic concentrations of antibiotics in 
aquatic environments have a key influence in the mainte-
nance and enrichment of antibiotic resistance genes since 
most antibiotics were significantly accumulated in sediment 
samples of reservoirs in pisciculture environments (Cabello 
2006). The use of antibiotics in aquaculture sectors is now 

subject to more stringent national laws and regulatory 
requirements because of the issue’s emergence as a public 
concern. Through a tripartite alliance between WHO, FAO, 
and The World Organisation for Animal Health (WOAH), 
formerly the Office International des Epizooties (OIE), the 
WHO adopted the "One Health Strategy" to address the 

Table 1   A summary of the country-wise division of various diseases in marine fish and their respective causative agents along with the antibiot-
ics generally used for their treatment

Diseases Fish Species Effected Causative Microbes Antibiotics used for 
treatment

Country References

Vibriosis Fin fish Salmon V. alginolyticus
V. cholerae
V. fluvialis
V. hollisae
V. anguillarum
V. ordalii
V. parahaemolyticus
V. metschnikovii

Ampicillin
Carbenicillin
Kanamycin
Cefalothin

Italy
Turkey
Spain
Algeria

Laganà et al. (2011); Ibra-
him et al. (2020); Arab 
et al. (2020)

Enteric red mouth dis-
ease (ERM)

Salmonids Yersinia ruckeri Erythromycin
Florfenicol
Sulfonamid
Trimetophrin

Turkey
France

Onuk et al. (2019); Ibra-
him et al. (2020)

Furunculosis Salmonid
Turbot

Aeromonas salmonicida Sulfamerazine
Nalidixic acid
Oxytetracycline
Ampicillin
Amoxicillin,
Ephalothin
Erythromycin
Streptomycin
Sulfadiazine Trimetho-

prim
Gentamicin
Ofloxacin

Spain
Turkey
Italy
Coratia

Ortega et al. (2006); Onuk 
et al. (2019); Ibrahim 
et al. (2020)

Hemorrhagic septicemia Catfish Aeromonas veronii Sulfamerazine
Nalidixic acid
Oxytetracycline
Ampicillin
Amoxicillin,
Ephalothin
Erythromycin
Streptomycin
Sulfadiazine Trimetho-

prim
Gentamicin
Ofloxacin

Spain
Turkey
Italy
Coratia

Ibrahim et al. (2020)

Rickettsial septicaemia Salmon Piscirickettsia salmonis Tetracycline
Trimethoprim
Chloramphenicol
Sulfamethizole

Canada Rozas and Enríquez 
(2014); Shah et al. 
(2014); Saavedra et al. 
(2018)

Bacterial coldwater 
disease

Salmonids Flavobacterium
psychrophilum

Florfenicol
oxytetracycline, chlora-

mine T

Turkey
Spain

Sekkin and Kum (2011); 
Saticioglu et al. (2018)

Bacterial kidney disease Salmonids Renibacterium salmoni-
narum

Erythromycin United 
States of 
America

Chile
Iceland
Japan

Sekkin and Kum (2011); 
Delghandi et al. (2020)
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ABR problem worldwide. In collaboration with its alli-
ances, the WHO released the "Global Action Plan (GAP) 
on AMR" in 2015 (WHO Library Cataloguing-in-Publica-
tion Data Global Action Plan on Antimicrobial Resistance, 
2015). Many nations, including Japan, the United States, 
and Colombia, as well as the EU’s Denmark, the Nether-
lands, and Sweden, have put in place national objectives to 
minimize antibiotic use, as well as benchmarks for antibiotic 
use at the farm level and antibiotic stewardship (Walia et al. 
2019). Furthermore, The Progressive Management Path-
way for Improving Aquaculture Biosecurity (PMP/AB) also 
focusses on enhancing disease prevention at the farm level 
by ethical fish farming (including lowering antimicrobial 
resistance in aquaculture and applying appropriate antimi-
crobial alternatives) and other science and technology-based 
strategies (“The State of World Fisheries and Aquaculture 
2020,” 2020).

If the usage of antibiotics is inevitable due to rapidly 
spreading critical illness, it should have effective control 
and monitoring protocols to minimize the concerns out-
lined above. Alternative and more sustainable ways can be 
applied through various farming practices, such as optimiz-
ing water quality (RAS Roundtable: Feeding Strategies to 
Maintain Optimal Water Quality and Fish Performance) and 
reducing stocking densities to reduce stress and disease risk 
(Mohanty et al. 2018). The sustainable alternatives further 
increase customer knowledge and demand for ecologically 
and responsibly farmed seafood, which can affect marine 
fish rearing and disease management practices. Consumer 
demand for antibiotic-free fish, as well as certification of 
sustainable farming practices, can encourage farmers to use 
more ecologically friendly and antibiotic-free methods. The 
notion of a large marine ecosystem seeks to manage oceans 
sustainably. Apropos this, detection and treatment of emerg-
ing diseases becomes imperative, with focus on sustainable 
disease management techniques.

Phage treatment

A bacteriophage is a virus that grows and divides inside a 
bacterium, destroying it.. It consists of proteins that encase 
a DNA or RNA genome and replicate inside the bacterium 
after the genome is injected into the cytoplasm (McGrath 
et al. 2004). Seawater is one of the most abundant natural 
sources of bacteriophages and other viruses (Keen 2012). 
Unlike terrestrial animals, pisciculture species and their sur-
rounding environment can be subjected to bacteriophages 
to simultaneously remove diseases in the organism and its 
immediate habitat. Therapeutic results can be influenced by 
treatment plans, which include the quantity and frequency of 
bacteriophages used as and their method of administration 
(Richards 2014). Many experimental studies of experimental 
in vivo phage treatments focusing on Vibrio, Aeromonas, 

Pseudomonas, Acetobacter, and Flavobacterium have previ-
ously demonstrated the efficacy of bacteriophage therapy in 
marine fish (Park et al. 2000; Laanto et al. 2015; Silva et al. 
2016; Assefa and Abunna 2018).

Studies on fish immunity, however, have only infrequently 
documented the specific interactions between members of 
the genera Vibrio and Edwardsiella and bacteriophages 
(Ramos-Vivas et al. 2021). By minimising the loss of phage 
activity, phage-loaded edible whey protein isolate coatings 
improve fish therapy. According to the results of a simu-
lated testing for gastric-intestinal digestion, this technique 
increases phage stability while lowering bacterial levels. 
Additionally, it enables the regulation of phage release in 
seawater and safeguards them until they get to their intended 
target (Huang and Nitin 2019). The solution to a positive 
outcome is believed to be early therapy (Ramos-Vivas et al. 
2021).

Phage therapy may be a good substitute for antibiotics in 
the treatment of fish pathogenic bacteria, but it must be used 
with knowledge of kinetics phenomena. Silva et al (2014) 
conducted a study to determine the impact of the physical 
and chemical characteristics of aquaculture waters—pH, 
temperature, salinity, and organic matter content—on the 
effectiveness of phage therapy in carefully controlled experi-
mental settings. The observed that the fluctuation of salin-
ity and organic matter concentration had the greatest influ-
ence on the effectiveness of phage therapy. Phage therapy 
appeared as a good option for marine aquaculture systems 
because its efficacy rises with the salt concentration of the 
water. When salt addition is a feasible choice and does not 
negatively impact the survival of aquatic organisms being 
grown, phage therapy may potentially be more effective in 
non-marine environments. Furthermore, they also noticed 
that the native bacterial populations in aquaculture waters 
should not be significantly affected by the bacteriophages’ 
ability to inactivate harmful bacteria.

Vaccine administration

In the Norwegian fish farming business, for example, anti-
biotic use has reduced by more than 90% since the 1980s. 
Grave et al. (1996) described how bacterial illnesses such 
as vibriosis and cold water vibriosis generated a significant 
increase in the usage of antibacterial agents in Norwegian 
aquaculture during the growth of industrialized salmon 
farming in the 1980s. The quick drop in antibiotic con-
sumption was due to the cooperative efforts of the Norwe-
gian fish farming sector and the Norwegian government in 
researching and promoting fish vaccine immunization pro-
cedures (Grave et al. 1990). This demonstrates that large-
scale production of farmed fish is viable without the use 
of antibacterial medications on a regular basis, which is a 
crucial factor for the sustainability of any industrialised fish 
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production system. However, fish vaccination also has its 
drawbacks. According to a study by Ma et al (2019), vac-
cinations include or create a material called an antigen that 
causes an aquatic creature to mount an innate or adaptive 
immune response against a specific pathogenic organism. 
The immune reaction defends against illness and fends off 
upcoming illnesses. Only in the mid-1970s was there more 
interest toward using vaccines in fish farming to boost the 
hosts’ ability to fight illness. Since then, there have been 
myriad studies over the course of 1970 to 1990 and up wards 
on different species of fish (Amend et al. 1983; Braaten and 
Hodgins 2011; Cipriano 2011; Cipriano and Starliper 1982; 
Michel 1979; Paterson and Fryer 2011; Thune and Plumb 
1982). There are several different vaccinations that have pre-
viously been created, including bacterin, toxoid, DNA, subu-
nit, live attenuated, whole-cell, and anti -idiotypic vaccines. 
Currently, killed whole-cell vaccines are the most widely 
utilized commercially available and approved vaccinations 
in the aquaculture sector. Other vaccinations are being cre-
ated; however, they are either still in the experimental or 
clinical trial stages (Mohd-Aris et al. 2019).

During the past twenty years, several nucleic acid vac-
cines have been created for use in aquaculture. These vac-
cines have been said to combine the beneficial qualities of 
both live attenuated and subunit vaccinations (Ulmer and 
Geall 2016). Subunit vaccines can tailor immune responses 
against certain microbial determinants and allow the inser-
tion of unnatural components. Since subunit vaccines cannot 
reproduce in the host, there is no possibility of pathogenicity 
to the host or non-target species. Subunit vaccines benefit 
from employing just antigenic components for immunisation 
(Hansson et al. 2000; Holten-Andersen et al. 2004). Reviews 
of the effects and applications of DNA vaccines have been 
published several times (Kurath 2008; Hølvold et al. 2014; 
Dalmo 2018). In most fish species, including those of marine 
origin, these vaccines are administered via intramuscular 
(IM) injection since the genetic material must be reasonably 
protected to enter host cells (Heppell et al. 1998).

Finding the ideal bacterial strain is essential to produce a 
vaccine, but there are many challenges to overcome because 
of different serotypes which has slowed the development of 
a vaccines against bacterial infections (Ina-Salwany et al. 
2019). Standardized in vivo disease challenge models that 
closely resemble the pathogen’s natural exposure pathway 
are necessary to test the effectiveness of vaccinations. Fur-
thermore, the variety of fish species themselves is a hur-
dle for vaccine development since each fish species needs 
reagents or primers to help explain host–pathogen interac-
tions. Additionally, although injection is frequently used 
for marine fish such as the Atlantic salmon, it might not 
be practical for certain species, such as pangasius. There is 
also a dearth in efficient commercial immersion adjuvants 
for fish (Adams 2019).

Problems that impede the creation of multivalent, afford-
able vaccination programmes have not yet been overcome 
(Mondal and Thomas 2022). Adverse side effects following 
vaccination are another major constraint in fish vaccines 
regime (Ina-Salwany et al. 2019). Additionally, while there 
are various modes of vaccine delivery, one of which includes 
utilizing modified live vaccines via an active, viable patho-
gen, the method has significant safety drawbacks due to the 
possibility of insufficient vaccine death (Shoemaker et al. 
2009). Another issue commonly faced is the challenges with 
respect to the usage of unlicensed vaccines and their abun-
dance in the market. Furthermore, a systematic evaluation 
of their effectiveness against local strains is understudied 
(Sommerset et al. 2005).

Biosurfactants

Microorganisms naturally create surface-active chemicals 
known as microbial surfactants or biosurfactants (BS). They 
include both hydrophilic and hydrophobic components, such 
as acids, peptides, mono-, di-, and polysaccharides, and satu-
rated and unsaturated hydrocarbon chains and fatty acids 
(Rodríguez-López et al. 2019). The amphipathic character 
of BS causes them to cluster at surfaces and lower interfacial 
tension, enhancing the solubility of hydrophobic chemicals 
in the water.

Currently, BS are an essential component in various 
industrial applications (Giri et al. 2020). BS have been inves-
tigated to strengthen marine fish defence systems against dif-
ferent infections and have been employed as immunostimu-
lants in marine fish production (Giri et al. 2020).

In a study by Hamza et al (2017), Vibrio harveyi and 
Pseudomonas aeruginosa biofilms were inhibited by the 
biosurfactant (at a concentration of 20 µg) by 80.33 ± 2.16 
and 82 ± 2.03%, respectively. At this concentration, it was 
also effective at dislodging mature biofilms of P. aer-
uginosa (81.7 ± 0.59%) and V. harveyi (78.7 ± 1.93%). 
Ibacache-Quiroga et al (2013) focussed on a study where 
the fish pathogen Cobetia sp. strain MM1IDA2H-1 cre-
ated a biosurfactant that disrupted Aeromonas salmoni-
cida’s ability to sense quorums through signal hijack-
ing Giri et  al (2017) noted that Bacillus licheniformis 
VS16-derived biosurfactant proved successful in prevent-
ing the growth of biofilms in Aeromonas hydrophila up 
to 54.71 ± 1.27%. In a study by Rajeswari et al. (2016), 
O. Mossambicus was intraperitoneally injected with dif-
ferent amounts of a water-soluble secondary metabolite 
(biosurfactant) of Staphylococcus hominis, and the results 
showed a boost in immunity along with facilitating a 
potential solution toward the pisciculture industry’s devel-
opment. The impact of feeding poly-β-hydroxybutyrate 
(PHB)-enriched Artemia nauplii on the immunological 
responses and survival of post-larvae of the European sea 
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bass (Dicentrarchus labrax) was examined by Franke et al 
(2017). The expression of the relative growth indicator 
insulin-like growth factor 1 (Igf1) was elevated, despite 
the survival of the larvae being unchanged. Large yellow 
croakers fared better when PHB was used as a feed sup-
plement, according to Wang et al (2019).

The market for biosurfactants is underdeveloped because 
of the excessive cost of substrates, downstream processing, 
and biosurfactant yield. Purifying products with the same 
polarity against organic solvents is difficult and expensive, 
which is the primary limitation to the product recovery pro-
cess. Additionally, biosurfactant screening procedures are 
time-consuming and labour-intensive (Gaur et al. 2022).

Current antimicrobials and other alternative 
solutions

With the issues associated with antibiotics as the existing 
prophylactic or therapeutic agents and vaccines, being avail-
able only for a limited number of species of fish, there is an 
increasing shift towards the use of antimicrobial peptides 
(AMPs) due to their antimicrobial and immunomodulatory 
properties (Colwell and Grimes 1984; Haney and Hancock 
2013).

The mechanism of these antimicrobial peptides depends 
on several things, including but not limited to the sequence 
of the amino acids, their charge, amphipathic property, the 
secondary structure (Kumar et al. 2018). The mechanism of 
AMPs from various sources has been extensively studied. 
There appear to be two major mechanisms causing the anti-
microbial activity—direct killing and immune modulation. 
The direct killing mechanism of action can be divided fur-
ther into membrane targeting and non-membrane targeting. 
The membrane-targeted approach could either be receptor-
mediated or non-receptor mediated (Kumar et al. 2018).

Most AMPs derived from vertebrates and invertebrates 
have non-receptor-mediated mechanisms of action. For the 
cationic ones, the difference in their charge and that of the 
negatively charged membrane of Gram-negative bacteria 
helps initiate the interaction. The mammalian cells do not 
contain anionic molecules oriented pointing outwards of the 
cell, making the peptides selective (Epand and Vogel 1999). 
However, it has been observed in some cases that there may 
not necessarily be a relation between membrane perturbation 
and the antimicrobial activity of the peptide and that it may 
just be an enabler for the peptide to reach its actual target 
inside the cell (Wu et al. 1999).

Other mechanisms that may be involved in inducing anti-
microbial activity interfere with metabolic processes—inhi-
bition of cell walls, and proteins, nucleic acid, or enzyme 
synthesis, consequently making it difficult for the bacteria to 
develop resistance against them (Pletzer and Hancock 2016).

Antimicobial peptides

Antimicrobial peptides form a part of the innate host defence 
system in various organisms, including fish. Figure 2 depicts 
their mechanism of action—direct and immune modulation 
strategies are employed by these peptides. As discussed 
above, they have a broad-spectrum activity against variety of 
pathogens, remain potent under various conditions, includ-
ing extremities of temperature, saliva, marine environments, 
and possess a low capacity to develop resistance against bac-
teria (Cole et al. 1997a). This creates a plethora of opportu-
nities to develop naturally produced peptides into therapeutic 
agents. Thus, a detailed analysis of the structure, function, 
and activity of various kinds of pathogens is necessary.

There are five major known classes of peptides—Pisci-
dins, Defensins, Hepcidines, Cathelicidins, and Histone-
derived peptides. Table 2 is a detailed representation of them 
alongside their corresponding antibacterial properties.

Synthetic peptides

Albeit several studies have been performed using natural 
AMPs using their antibacterial, antifungal, and antiparasitic 
properties (Jia et al. 2000; Chettri et al. 2017), there con-
tinue to exist inherent disadvantages associated with natural 
AMPs such as instability due to presence of proteolytic sites 
and high manufacturing cost (Hancock and Scott 2000).

Thus, there has been a shift towards designing and 
manufacturing more stable, shorter peptides with higher 
efficiency. RY12WY is a novel peptide designed based on 
a knowledge-based approach and considering the various 
physiochemical properties. Unlike natural amino acids, it is 
shorter and contains only hydrophobic, positively charged 
amino acids. It has shown antimicrobial activity against S. 
aureus, A. hydrophila, and A. salmonicida, known anti-
biotic-resistant fish pathogens. It also showed activity 
against E.coli and S.parasitica (Hussain Bhat et al. 2020).

Recently, the 2022 iGEM Team of MIT_MAHE (AMPI-
FIN | MIT_MAHE-IGEM 2022) designed an antimicro-
bial peptide—AMPifin—against V. parahaemolyticus. The 
peptide was designed based on the interaction between 
the membrane protein Multivalent Adhesion Molecule 7 
(MAM7)—present on the surface of the bacteria and the 
host cell ligands. Despite the several advantages of antimi-
crobial peptides as therapeutics, some species of bacteria 
have developed resistance against them. The bacteria employ 
any of the various mechanisms—bacterial cell envelope 
modification, bacterial proteins degrading or sequestering 
the peptides, and expelling of the AMPs (Abdi et al. 2019). 
They may also require additional delivery mechanisms to 
account for their instability, easy degradation by proteases, 
and to work effectively (Martin-Serrano et al. 2019). These 
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reasons make the application of antimicrobial peptides as 
therapeutic agents difficult.

Probiotics

The idea of using probiotics or other beneficial microorgan-
isms as a disease bio-control strategy in aquaculture is based 
on their advantageous roles in improving water quality, regu-
lating fish health, altering the microbial community in the 
aquatic environment and within the GI tract, and promoting 
non-specific immune response and resistance against patho-
gens (Li et al. 2019), which have positive effects on growth 
performance and nutrient utilisation (Martínez Cruz et al. 
2012).

These advantageous bacteria can colonise and grow in the 
gut of the host following injection and carry out a variety of 
positive effects by modifying the host’s biological mecha-
nisms (Skjermo and Vadstein 1999; Nayak 2010; Akhter 
et al. 2015). Probiotics’ general mode of action involves a 
probiotic organism colonising the gut and preventing harm-
ful bacteria from doing the same. Pathogenic organisms 
are hampered by specific inhibitory compounds produced 
by probiotic organisms. Then, probiotic organisms use the 
resources, making them unavailable to pathogens. Probiotics 
create substances that work against the quorum sensing sys-
tem, and increased macrophage activity and antibody levels 

improve immunity. Probiotics can increase the digestibility 
of feed, the net availability of critical nutrients, and the host 
animals’ immunity and gastrointestinal health (Rohani et al. 
2022). Figure 3 is a schematic representation of the mecha-
nism of action with respect to the usage of probiotics in fish.

In trials using probiotics as dietary supplements, many 
metrics, including weight gain, specific growth rate, feed 
conversion ratio, and protein efficiency ratio, are routinely 
evaluated to examine changes in growth and feed efficiency 
(El-Dakar et al. 2007; Jahan et al. 2021; Putra et al. 2017; 
Rohani et al. 2022). In addition to enhancing feed digestion, 
probiotics also help larvae absorb and use nutrients from 
their yolks before their first meal, which is one way they 
help probiotics increase feed digestion (Irianto and Austin 
2002a). Probiotics are known to improve epithelial barrier 
function through their interaction with toll-like receptors 
(TLRs), which stimulates cytokine production and starts 
innate and adaptive immune responses in the host body, 
even though the immunomodulatory effects of probiotics 
are not fully understood (Pillinger et al. 2022). To augment 
innate immune responses, probiotics interact with immune 
cells such as mononuclear phagocytic cells (monocytes, 
macrophages), polymorphonuclear leucocytes (neutrophils), 
and NK cells. Some probiotics can increase the number of 
erythrocytes, granulocytes, macrophages, and lympho-
cytes in certain fish, similar to higher vertebrates (Irianto 

Fig. 2   A schematic representation of the mechanism of action of antimicrobial peptides highlighting their direction action and methods of 
immune modulation. (Kumar et al. 2018; Singh et al. 2022)
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and Austin 2002b; Kumar et al. 2008; Kuebutornye et al. 
2019; Kong et al. 2020; Rohani et al. 2022; Zhu et al. 2023). 
Table 3 is a summary of recent studies in marine fish with 
varied experimental designs to test antioxidant status, immu-
nity, and disease resistance post probiotic administration. 
Their activity may be explained by the presence of a special 
probiotic component, such as β-glucan in yeast cell walls. 
Probiotics also contain specific phagocytic cells receptors 
that help to bind receptors molecules on the cell surface of 
the phagocyte, which will help to release signal molecules 
and ultimately stimulate the production of new WBCs.

It has been reported that multi-strain probiotics are more 
effective than single-strain probiotics at preventing illness 
(Vazirzadeh et al. 2020), and they have been suggested for 
use in aquaculture (Melo‐Bolívar et al. 2021). Such advice 
is justified by the idea that combining different microbes will 
synergistically affect the host’s health. However, only a few 
studies have compared the efficacy of multi-strain probiot-
ics with that of each individual strain in their composition, 

and even fewer studies have investigated their impact on 
fish immune, particularly when confronted with pathogens. 
The technique of introducing these diverse feed additives is 
not easy or simple. In addition to adding to costs, new feed 
additives also require attention to ensure that novel microbial 
strains are applied safely and as effectively as possible. To 
prevent potential injury or unfavourable side effects, strict 
restrictions should be put in place to create suitable pro-
cedures of manufacture and application of these chemicals 
(Ayisi et al. 2017). Probiotics are also known to play a major 
contributing factor in the decomposition of organic matter, 
reduction of nitrogen and phosphorus levels as well as con-
trol of ammonia, nitrite, and hydrogen sulfide (Kim et al. 
2012).

In a recent study, the development, survival, and innate 
and adaptive immune systems of cobia fish (Rachycentron 
canadum) were all greatly improved by the combination of 
autochthonous strains, Bacillus sp. RCS1, Pantoea agglom-
erans RCS2, and Bacillus cereus RCS3 (Amenyogbe et al. 

Fig. 3   Probiotic, prebiotic, and synbiotic therapeutics’ mechanisms for conferring pathogen resistance and enhanced immunity in fish. (Talukder 
Shefat 2018; Wuertz et al. 2021; Dawood and Koshio 2016; Huynh et al. 2017; Nayak 2010; Wee et al. 2022)
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2022). In recent work, Paul et al. (2022) focussed on uncov-
ering native autochthonous bacteria from the catfish gut 
and assessing their effects on Aeromonas veronii infection 
in Clarias batrachus, a freshwater fish and Heteropneus-
tes fossilis, a marine fish in a lab setting. All fish treated 
with probiotics had faster growth rates than controls. Both 
Lactobacillus sp. and Bacillus sp. considerably (p < 0.05) 
increased growth and survival in catfish, with Lactobacil-
lus sp. Having the strongest benefits in H. fossilis and C. 
batrachus, respectively. Fish treated with probiotics showed 
higher survival rates after intramuscular (IM) injection with 
A. veronii, according to the study. Additionally, recent stud-
ies discovered that “autochthonous” or host-derived probiot-
ics may also be employed as quorum quenching probiotics, 
conferring health advantages, enhancing defensive systems, 
and safeguarding fish against vibriosis (Ghanei-Motlagh 
et al. 2021b). Autochthonous probiotics, or species-specific 
strains that are suited to the intestinal microhabitat of the 
cultivated target species, must be isolated and developed. 
Because it may enhance the growth efficiency, immune sys-
tem, and defense against illnesses in situ, the isolation and 
selection of native strains drives the development of the pro-
duction of native species. There seems to be a broad opinion 
that lactic acid bacteria strains (LABs) are more likely to 
have the qualities and features required to colonize the gut 
and promote host health among the autochthonous probiotics 
(Yamashita et al. 2020).

In addition to probiotics, there is also ongoing research 
on prebiotics, which are usually expected to improve the 
number of beneficial gut microbiota in the form of indigest-
ible fibres. This improves innate immunity by increasing 
the phagocytic cell activation, augmenting lysozyme activity 
and activating the alternative complement system in fishes 
(Yilmaz et al. 2022). They inhibit the adhesion of organisms 
to the organism by competing for the same glyco-conjugates, 
increasing mucus production, inducing cytokine release and 
producing short chain fatty acids (Cavalcante et al. 2020).

Furthermore, a synergistic amalgam of prebiotics and 
probiotics that are usually in the form of live cells of benefi-
cial microbes and a selective substrate (Rohani et al. 2022). 
They positively effect the health and welfare by implanting 
live microbial supplements in the host’s gastro-intestinal 
tract and thus increasing survival rates (Yilmaz et al. 2022). 
They also sometimes improve the feed digestibility and total 
intestinal enzyme activity which enhances the growth per-
formance of the host (Rohani et al. 2022).

Medicinal plants

Medicinal plants were introduced as a viable and alterna-
tive strategy for treating fish sickness due to the negative 
effects of veterinary pharmaceuticals used in aquaculture, 
either on fish or the environment and human health. Indeed, 

due to their abundance of minerals and chemical compo-
nents, medicinal plants are utilised in aquaculture not only as 
chemotherapeutics but also as feed additives (Chang 2000; 
Wang et al. 2015). Marine fish growth enhancement, hunger 
stimulation, immunological stimulation, antibacterial prop-
erties, and stress reduction have all been linked to medicinal 
herbs (Chitmanat et al. 2005; Citarasu 2010; Chakraborty 
and Hancz 2011). Medicinal plants can modulate the innate 
immune system by enhancing the protease inhibitors and 
lytic enzymes of immune cells and molecules to react 
against the invading pathogen (Sakai 1999; Van Hai 2015).

Several studies have reported the enhancement in immu-
nological parameters in many species after administration 
of medicinal plants or extracts including phagocytic activ-
ity, respiratory burst activity, nitrogen oxide, myeloperoxi-
dase content, complement activity, lysozyme activity, total 
protein (globulin and albumin) and antiprotease activity 
(Dügenci et al. 2003; Wu et al. 2010; Talpur and Ikhwanud-
din 2012; Talpur 2014). Traditional medicinal plant items 
also provide immunomodulation, defence against bacte-
rial infections, and suppression of infections. With the use 
of Solanum nigrum, it was discovered that spotted snake-
heads’ resistance to Aeromonas hydrophila infections was 
boosted, and their death rate was decreased (Rajendiran et al. 
2008). According to Harikrishnan et al (2012), Epinephe-
lus bruneus had improved defences against Vibrio harveyi 
when fed kudzu vine Moreover, extracts of mango, pep-
permint, turmeric, jasmine, neem, and other plants are 
among the other effective treatments for bacterial infections 
in aquatic species brought on by Aeromonads and Vibrios 
(Newaj-Fyzul and Austin 2015). Wang et al (2011) investi-
gated the effects of adding polysaccharides from Angelica 
sinensis (0.5 and 3 g kg−1) to the Epinephelus malabaricus 
diet. Both immunological parameters and disease resistance 
were assessed at the conclusion of the feeding trial, and the 
results showed that cellular immunity had been stimulated 
and there was greater protection against Edwardsiella tarda 
(Wang et al. 2011). Pan et al. (2013) examined the effects of 
20 g/kg of the medicinal plant Astragalus membranaceus on 
red drum (Sciaenops ocellatus) and found that it increased 
immunological parameter activation and resistance to Vibrio 
splendidus.Asian sea bass (Lates calcarifer) fingerlings were 
used in a study by Talpur and Ikhwanuddin (2012) to exam-
ine the effects of different amounts of garlic supplement 
(5, 10, and 20 g kg−1) on immunological parameters and 
resistance to V. harveyi. Results showed that Asian sea bass 
given garlic had significantly higher levels of immunological 
parameters and a higher survival rate after being challenged 
with V. harveyi (Talpur and Ikhwanuddin 2012). Table 4 is a 
summary of recent studies in marine fish with varied experi-
mental designs to test antioxidant status, immunity, and dis-
ease resistance post medicinal plant extract administration.
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Essential oils

Since the medieval period, essential oils (over 250 oils) have 
been used for several medicinal, cosmetic and pharmaceu-
tical purpose (Baptista-Silva et al. 2020), (Wińska et al. 
2019). Although they are most commonly used for their 
cosmetic purposes, in recent years, scientists and researchers 
around the world have been experimenting with their anti-
microbial properties. The antibacterial properties of essen-
tial oils are now well recognised to be correlated with their 
chemical makeup, particularly the phenolic components. 
By interfering with and impairing the phospholipid bilayer 
of bacterial cell membranes, enzyme systems, and genetic 
material, essential oils also exhibit an antibacterial effect 
(Abdollahzadeh et al. 2014). These essential oils inhibit the 
production of toxic bacterial metabolites and sometimes 
even their growth. This usually occurs due to the interac-
tion between the essential oils and the cytoplasm and/or the 
bacterial membrane which in turn affects their quorum sens-
ing systems, i.e., bacterial pheromones (Anastasiou et al. 
2019). Essential oils can be obtained from various parts of a 
plant such as twigs, bark, wood, roots, fruits, flowers, herbs, 
leaves, buds, and buds. Some examples of essential oils are 
fennel (Foeniculum vulgare Miller), cypress (Cupressus 
sempervirens L.), thyme (Thymus vulgaris L.), herb-of-the-
cross (Verbena officinalis L.) and pine (Pinus sylvestris) 
(Gómez-Estaca et al. 2010). Table 5 is a summary of the 
different essential oils along with their source and effective-
ness against different bacterial strains that afflict marine fish.

In a study including 14 different essential oils against 
different fish pathogens, it was observed that most essen-
tial oils exhibited antimicrobial properties. Aeromonas spp. 
was susceptible to all antimicrobials that were used in that 
study. Cinnamommum camphora exhibited the most activ-
ity against most of the isolates with strong antimicrobial 
activity against Gram-positive and Gram-negative bacteria 
(Klūga et al. 2021). Several studies conducted in this field 
show that Gram-positive bacteria fish pathogens are more 
susceptible to essential oils than Gram-negative bacteria 
(Wu et al. 2014). Most of the research studies done in this 
field is conducted under the food preservation and food-
borne pathogens. Research toward using essential oils as an 
antimicrobials for pathogens in the pisciculture industry is 
upcoming and ongoing.

Conclusion and future prospects

Bacterial diseases in the pisciculture industry are com-
monplace. While efficient mitigation methods exist, it has 
become increasingly easy to understand that they possess 
harmful, severe effects and are far from sustainable. Emerg-
ing dangers, such as antibiotic-resistant strains, biomagnifi-
cation, and water pollution, have become a reality. Vaccines 
are uneconomical, may be labour-intensive, and have not 
been developed for several fish pathogens. Thus, while they 
function as an effective prevention option, there continues 
to be a deficit.

Table 5   A summary of studies highlighting various essential oils against different bacterial fish pathogens and their antimicrobial activity range

Legend: +  +  +  = highly effective; +  +  = effective; +  = minimally effective

Essential oil Source Bacterial strain Antimi-
crobial 
activity

References

Clove oil (Syzygium aromaticum) Clove flower bud Proteus mirabilis  +  +  Wińska et al. (2019)
Staphylococcus aureu  + 

Eucalyptus oil Fresh leaves and branch tops of the 
eucalyptus plant

Staphylococcus aureus
Streptococcus iniae
Vibrio harveyi

 +  +  Wińska et al. (2019)

Lavender oil, also known as 
Lavandula angustifolia

Flower spikes of certain species of 
lavender

Staphylococcus aureus
Clostridium perfringens

 +  +  +  Wińska et al. (2019)

Shigella sonnei  +  + 
Listeria monocytogenes  + 

Rosemary essential oil Derived from the aromatic herb Ros-
marinus Officinalis

Shigella sonnei
Yersinia enterocolitica
V. anguillarum

 +  +  +  Gómez-Estaca et al. (2010)
; Anastasiou et al. (2019)

Vibrio parahaemolyticus
E. anguillarum

 +  + 

Shewanella putrefaciens  + 
Orange oil Cells within the rind of an orange fruit V. anguillarum  +  +  Mancuso et al. (2019)

Photobacterium d. P
S. aureus 790

 + 
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As discussed, antimicrobial peptide administration is an 
emerging alternative, and some preliminary studies show 
promise. However, it requires efficacy improvements, better 
delivery mechanisms and other features necessary for wide-
spread commercial application of the treatment method. The 
use of probiotics, medicinal plants, and essential oils to treat 
diseases in fish has also seen a rise in recent years. Their 
immunomodulatory properties could prove highly advanta-
geous to prevent and cure various fish bacterial illnesses in 
the coming years.

It is imperative to note that the applicability of each 
method is subjective and may depend on the fish species, 
the causative pathogen, the stage of development of the dis-
ease, the state of the cultivation set-up, and several other 
factors making it rather difficult to draw concrete lines over 
which method of treatment may triumph. Notwithstanding, 
it is well established that in the forthcoming decade, it is 
of vital importance to move towards better and more sus-
tainable practices while dealing with bacterial fish diseases 
in the mariculture industry to ensure a safer environment 
for consumers and producers and food security for an ever-
increasing population.
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