
Redox Biology 67 (2023) 102891

Available online 17 September 2023
2213-2317/© 2023 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Novel insights into anticancer mechanisms of elesclomol: More than a 
prooxidant drug 

Jialing Gao a,1, Xiaoxue Wu a,1, Shuting Huang b, Ziyi Zhao c, Weiling He c,d,**, Mei Song a,* 

a Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China 
b School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China 
c Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China 
d Department of Gastrointestinal Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China   

A R T I C L E  I N F O   

Keywords: 
Elesclomol 
Cuproptosis 
Oxidative stress 
Copper metabolism 
Cancer therapy 

A B S T R A C T   

As an essential micronutrient for humans, the metabolism of copper is fine-tuned by evolutionarily conserved 
homeostatic mechanisms. Copper toxicity occurs when its concentration exceeds a certain threshold, which has 
been exploited in the development of copper ionophores, such as elesclomol, for anticancer treatment. Ele
sclomol has garnered recognition as a potent anticancer drug and has been evaluated in numerous clinical trials. 
However, the mechanisms underlying elesclomol-induced cell death remain obscure. The discovery of cuprop
tosis, a novel form of cell death triggered by the targeted accumulation of copper in mitochondria, redefines the 
significance of elesclomol in cancer therapy. Here, we provide an overview of copper homeostasis and its 
associated pathological disorders, especially copper metabolism in carcinogenesis. We summarize our current 
knowledge of the tumor suppressive mechanisms of elesclomol, with emphasis on cuproptosis. Finally, we discuss 
the strategies that may contribute to better application of elesclomol in cancer therapy.   

1. Introduction 

Redox active copper functions as a structural and catalytic cofactor 
for a diverse array of biological processes, including mitochondrial 
respiration, antioxidant defense, DNA damage response, and lipid 
metabolism [1]. Although copper is a physiological necessity, excess 
amounts of copper can lead to cytotoxicity by generating reactive oxy
gen species (ROS) through Fenton or Fenton-like reactions, a process of 
Cu + catalyzing H2O2 to produce highly oxidized HO● (Cu+ +H2O2 
→Cu2+ +HO● +HO− ). Thus, intricate homeostatic systems have 
evolved in both prokaryotic and eukaryotic organisms to maintain 
intracellular copper levels [2]. The connection between copper and 
cancer has been acknowledged for over a century, with numerous ob
servations indicating a higher demand for copper in tumors compared to 
healthy tissue [3]. Studies have reported elevated copper concentrations 
in tumors or serum of patients with different types of cancer [4]. Copper 
could fuel tumorigenesis by facilitating angiogenesis, proliferation, and 
metastasis [5–9]. However, the finely tuned homeostatic system would 

be overwhelmed by disease or copper ionophores-induced copper 
overload, leading to cell death. 

Elesclomol is a copper ionophore, originally developed as a chemo
therapeutic adjuvant by Synta Pharmaceuticals [10]. It is a novel, 
first-in-class investigational drug that exerts anticancer activities pri
marily by generating deleterious ROS and triggering mitochondrial 
apoptosis in a copper-dependent manner [11]. Over the past decade, 
elesclomol has been evaluated in various clinical trials engaging patients 
with melanoma, acute myeloid leukemia or some solid tumors, either 
alone or in combination with paclitaxel [11–15]. However, the under
lying mechanisms responsible for the cytotoxic effects of elesclomol 
have not yet been fully elucidated, which contributes to its suboptimal 
anticancer efficacy in clinical studies. Given that tumor cells with a 
higher reliance on mitochondrial metabolism are more susceptible to 
elesclomol, the identification of the most relevant cancer settings and 
screening patient populations using biomarkers, such as indicators of 
tumor hypoxia, may help achieve favorable clinical trial results. In 
addition, combinations of elesclomol with other drugs, such as 
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chemotherapeutic agents, proteasome inhibitors, and glycolysis in
hibitors, may synergistically enhance the anticancer efficacy. However, 
the rationale for this combinatory regimen heavily relies on a compre
hensive understanding of the cytotoxic mechanisms of elesclomol. 
Encouragingly, the characterization of cuproptosis as a copper-triggered 
modality of mitochondrial cell death opens a door to exploring the 
reapplication of elesclomol in clinical settings. Despite a high safety 
profile demonstrated by clinical data, the challenging pharmacokinetics 
of elesclomol poses a barrier to its utilization in anticancer treatment. 
Recently, the application of nanomedicine in elesclomol-induced 
cuproptosis for cancer therapy invigorates studies on developing 
advanced nanotechnology to modulate the pharmacological properties 
of elesclomol. Here, we review the tumor suppressive mechanisms and 
the clinical therapeutic applications of elesclomol. We then discuss the 
rationale behind strategies aimed at achieving tangible clinical benefits 
through elesclomol-based therapy. 

2. Copper homeostasis is fine-tuned at multiple levels 

Copper is an essential micronutrient that plays a crucial role in a 
wide range of physiological processes, including mitochondrial respi
ration, antioxidant defense, energy metabolism and bio-compound 
synthesis [16]. It is a double-edged sword as even modest increases 
can cause cytotoxicity, leading to cell death [17]. Thus, copper ho
meostasis is tightly regulated by a series of copper transporters, chap
erones, and metallochaperones. Genetic variation that causes copper 
accumulation results in life-threatening pathological conditions [18,19]. 

2.1. Systemic copper homeostasis 

In the body, the absorption of dietary copper occurs mainly at the 
duodenum and small intestine. Subsequently, copper is transported to 
the liver by serum carriers including albumin, alpha2 microglobulins, 
histidines, and transcuprein [16,20]. About 75% of portal copper is 
stored primarily in the liver, which serves to distribute copper to pe
ripheral organs via blood or to excrete from the body through the bile. 
Copper ions are transported by binding to proteins rather than being free 
and ceruloplasmin (CP) functions as the primary carrier for exchange
able copper in the blood. Due to the rapid degradation of CP when it is 
metal-free, the abundance of CP in plasma serves as a biomarker for 
systemic copper deficiency. This biomarker has been widely used in 
clinical trials investigating therapeutic copper depletion in cancer pa
tients [21]. Excess copper is stored within liver cells by metallothionein 
1 (MT1) and MT2 or utilized for the synthesis of copper-dependent en
zymes [22,23] (Fig. 1). Other pathways for copper elimination such as 
urine, sweat, and menses play a relatively minor role in copper loss [16]. 

At the cellular level, a sophisticated network of copper-dependent 
proteins works together to coordinate the intake, release, and intracel
lular utilization of copper. This ensures the levels of copper maintain 
within a safe and optimal range, preventing harmful effects. Extracel
lular Cu(II) is reduced by the metalloreductases such as STEAP (six- 
transmembrane epithelial antigen of the prostate) to Cu(I), which is then 
transported into the cell mainly through copper transporter 1 (CTR1) 
[24]. CTR1 encoded by the SLC31A1 gene is structurally and function
ally conserved from yeast to humans, and is responsible for the majority 
of copper uptake into cells [25]. Moreover, both in vitro and in vivo 
studies reported a negative-feedback regulatory loop of CTR1 expression 
by copper [26,27]. Another copper transporter, called CTR2 (encoded 
by SLC31A2), functions as a low-affinity copper importer and also plays 
a role in maintaining intracellular copper homeostasis [28,29]. Besides, 
several studies demonstrated that CTR1 and divalent metal transporter 1 
(DMT1) would compensate for each other for copper uptake in 
mammalian cells, although different types of cells may use either one as 
a predominant copper importer under certain physiological circum
stances [28,30]. More receptors involved in copper uptake need to be 
identified. 

2.2. Copper balance is crucial for cellular maintenance and metabolism 

Within the cytoplasm, copper trafficking is precisely orchestrated by 
a meticulously organized network of high-affinity copper chaperons: (1) 
copper chaperone for superoxide dismutase (CCS) and superoxide dis
mutase 1 (SOD1) are localized in both the cytoplasm and mitochondrial 
intermembrane space (IMS), where they detoxify mitochondria-derived 
ROS [31,32]. CCS delivers copper to SOD1 for the detoxification of ROS 
and maintain copper homeostasis; (2) cytochrome C oxidase copper 
chaperone 17 (COX17) located in the IMS, plays a key role in delivering 
copper to either synthesis of cytochrome c oxidase 1 (SCO1) or cyto
chrome C oxidase copper chaperone 11 (COX11). These two chaperones 
then transfer copper to the cytochrome C oxidase (CCO) subunit, 
thereby activating the enzyme activity within the respiratory chain [33, 
34]; (3) Antioxidant-1 (ATOX1) transports copper to the nucleus, where 
copper binds to transcription factors and drives gene expression [35]. 
Additionally, ATOX1 is responsible for transferring copper to the copper 
transporting ATPase1 (ATP7A and ATP7B) in the trans-Golgi network 

Fig. 1. Overview of systemic and cellular copper homeostasis. 
The human body primarily absorbs copper through the small intestine, which is 
then transported to the liver via the bloodstream and excreted into bile. CP 
serves as the main protein carrier for exchangeable copper in the blood plasma, 
while excess copper is stored in hepatocytes by MT1 and MT2. At the cellular 
level, the metal reductase STEAP and the copper transporter CTR1 enable high- 
affinity copper uptake. Copper is transported to different subcellular organelles 
through various copper-binding proteins, such as COX17, CCS, and ATOX1. 
These proteins play a crucial role in ensuring the availability of copper within 
the cell. Ultimately, ATP7A and ATP7B transfer copper from the cytosol to the 
TGN lumen. When intracellular copper levels are high, ATP7A and ATP7B exit 
the TGN, facilitating the efflux of copper from the cell. CP, ceruloplasmin; MT1, 
metallothionein 1; STEAP, six-transmembrane epithelial antigen of the prostate; 
CTR1, copper transporter 1; COX17, cytochrome C oxidase copper chaperone 
17; CCS, copper chaperone for superoxide dismutase; ATOX1, antioxidant-1; 
SOD1, superoxide dismutase 1; SCO1, synthesis of cytochrome c oxidase 1; 
COX11, cytochrome C oxidase copper chaperone 11; CCO, cytochrome C oxi
dase; ATP7A, ATPase Copper Transporting Alpha; TGN, trans-Golgi network. 
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(TGN) and facilitating the synthesis of cuproenzymes such as cerulo
plasmin [35–37]. Mice lacking the Atox1 gene were found to be peri
natal lethal due to disrupted copper balance, highlighting the central 
role of this chaperone plays in copper homeostasis [38]. Finally, ATP7A 
and ATP7B transfer copper from the cytosol to the TGN lumen. When 
cytosolic copper levels increase, these efflux proteins exit the TGN to 
export copper by fusing with the plasma membrane [39] (Fig. 1). 
Importantly, previous studies have documented that mutations in 
ATP7A and ATP7B cause inherited disorders of copper metabolism, 
which are recognized as Menkes disease (MD) and Wilson disease (WD), 
respectively [40]. 

3. Copper metabolism involves in carcinogenesis 

The inability to maintain a proper balance of copper at both systemic 
and subcellular levels has been linked to various pathologic conditions. 
For example, malfunctions of ATP7A cause Menkes disease, which is an 
X-linked recessive disorder characterized by impaired copper absorption 
across the intestinal epithelium and severe systemic copper deficiency 
[41–43]. In contrast, mutations in ATP7B, primarily expressed in the 
liver, give rise to Wilson disease in which defective biliary copper 
excretion causes excess copper deposit in the brain, liver, and other 
tissues, ultimately leading to systemic poisoning [44,45]. In addition, 
defects in the mitochondrial and cellular distributions and homeostasis 
of copper lead to severe neurodegenerative conditions (such as Alz
heimer’s disease, Parkinson’s disease, and Huntington’s disease), 
mitochondrial myopathies, and metabolic diseases [46]. Notably, cop
per exhibits a dual nature in carcinogenesis, acting as both a promoter of 
tumor growth and an inducer of redox stress in cancer. 

3.1. Protumor activities of copper and corresponding anticancer strategies 

The notion that tumor cells have a higher demand for copper than 
normal tissues and non-dividing cells has been increasingly acknowl
edged [3]. Increased copper levels have been reported in tumor tissues 
and serum obtained from patients with various types of cancer [4]. 
Further, elevated levels of serum copper (ceruloplasmin-bound copper) 
in patients have been positively correlated with tumor stage and disease 
progression of breast, colorectal, and lung cancers [47–49]. The 
tumor-promoting effects of copper have been revealed in preclinical 
models for breast, pancreatic and lung cancers involved in regulating 
protein kinase cascade, such as EGFR/ERK/c-Fos, MEK-ERK1/2 
[50–52]. Copper directly binds or activates EGFR, PDK1 or PI3K to 
promotes tumorigenesis. Copper also affects MAPK and autophagic 
pathways or indirectly changes c-Myc stability to influence tumor 
growth [53–55]. The pro-angiogenic properties of copper were initially 
raised with the observation that copper could induce endothelial cell 
migration which was further supported by the finding that copper 
induced corneal neovascularization in rabbits [5,6]. Copper primarily 
promotes angiogenesis by regulating angiogenic molecules, such as 
IL-1α, vascular endothelial growth factor (VEGF), and hypoxia-inducible 
factor 1 (HIF-1) [7–9]. Additionally, copper chaperons like SOD1 and 
ATOX1 have been found to facilitate tumor angiogenesis [56]. Copper 
enhances epithelial-mesenchymal transition (EMT) by activating 
metastasis-related enzymes and signaling cascades. For instance, a 
single-cell tracking analysis suggested that ATOX1 mediates breast 
cancer migration via coordinated copper transport in the ATP7A-LOX 
(copper-dependent protein lysyl oxidase) axis [57]. The secreted 
copper-binding glycoprotein SPARC (secreted protein acidic and 
cysteine-rich, or osteonectin) has been shown to modulate cell-matrix 
interactions and promote tumor invasion and metastasis [58]. It worth 
mentioning that independent of their canonical function in copper 
transport, endothelial CTR1 and ATP7A have been shown to promote 
angiogenesis through vascular endothelial growth factor receptor type 2 
(VGEFR2) signaling pathway [59,60]. Intriguingly, copper also plays a 
role in modulating the expression of immune checkpoint protein 

programmed death-ligand1(PD-L1). Specifically, copper depletion 
expedited the degradation of PD-L1, thereby reducing tumor growth and 
improving survival in a neuroblastoma xenograft mouse model [61]. 

The fact that cancer cells typically exhibit a higher demand for 
copper compared to quiescent healthy cells can be leveraged by utilizing 
copper chelators to hinder tumor progression and manage copper 
overload in Wilson disease. Indeed, chelation therapy is well tolerated 
for long-term use in chronic genetic diseases of copper misregulation 
[62]. Therefore, several copper-chelating agents (e.g., tetrathiomo
lybdate, trientine, and D-penicillamine) have been developed and eval
uated for their antitumor effectivity in preclinical animal models and 
clinical trials (Table 1). The utilization of chelators to deplete copper has 
demonstrated the ability to delay cancer metastasis by impeding lesion 
vascularization in various animal models for different types of cancer 
[63–65]. In line with the molecular mechanisms of copper-promoted 
angiogenesis, copper chelators inhibit angiogenesis by targeting key 
angiogenic factors, including VEGF, HIF-1α, CD31, IL-1α and IL-18. 
Among the various copper chelators, tetrathiomolybdate (TTM) has 
been extensively studied and assessed in different phases of clinical trials 
as an anti-angiogenic drug [66,67]. 

3.2. Harnessing copper-induced cytotoxicity for cancer treatment 

While copper is essential for cell survival and constitutes an 
exploitable dependency in cancer, excess copper levels may cause 
cytotoxicity, although a clear picture of the underlying mechanisms has 
not yet emerged. Over the past 30 decades, numerous studies have 
revealed that copper ionophores such as disulfiram (DSF) and ele
sclomol, exhibit anticancer properties by elevating intracellular copper 
levels. 

DSF, an irreversible inhibitor of aldehyde dehydrogenase (ALDH) 
that was approved by the Food and Drug Administration (FDA) in 1951 
for the treatment of alcoholism, has been demonstrated to potentiate the 
efficacy of certain anticancer drugs [68]. In acidic environments like the 
stomach, DSF is reduced to diethyldithiocarbamate (DDTC), which is a 
strong chelator of divalent transition metal, including Cu(II) [69]. The 
DDTC–Cu (II) complex preferentially displayed cytotoxicity to ALDH+

cancer stem cells by induction of ROS and abolishing ALDH activity [70, 
71]. It can activate PI3K-AKT signaling in breast cancer by suppressing 
PTEN expression [72], or induce apoptosis through inhibition of the 
proteasomal activity in xenograft breast cancer model [73]. In addition, 
DDTC–Cu (II) complex functions as a potent proteasome inhibitor, 
impairing DNA repair pathways and augmenting the therapeutic effects 
of DNA-damaging agents (temozolomide and radiation) for the treat
ment of glioblastoma [74]. Due to its ability to penetrate the blood-brain 
barrier, extensive clinical trials assessing the effectiveness of DSF in 
treating glioblastomas have been conducted. A phase I clinical trial 
(NCT01907165) demonstrated that the combination of DSF and temo
zolomide resulted in improved progression-free survival (PFS) for pa
tients with glioblastoma [75]. And a phase II study (NCT03034135) 
suggested that a combination of DSF-copper to temozolomide for 
treating glioblastoma patients resistant to other therapies was well 
tolerated (Table 2). However, further research is needed to determine 
the patient populations that would respond better to this treatment 
regimen [76]. Overall, DSF has shown strong anticancer and chemo
sensitization activities through multiple mechanisms. 

Elesclomol [N-malonyl-bis (N′-methyl-N′-thiobenzoyl hydrazide)] is 
another copper ionophore originally identified through a cell-based 
phenotypic screen for small molecules with potent pro-apoptotic activ
ity. Due to its demonstrated antitumor activity against a wide range of 
cancer cell types and substantial enhancement of chemotherapeutic 
agents’ efficacy, such as paclitaxel, it was further developed into a 
chemotherapeutic adjuvant by Synta Pharmaceuticals [10,77]. It is 
known that heightened oxidative stress beyond the threshold in cancer 
cells can induce apoptosis [78]. The anticancer mechanism of elesclomol 
has long been interpreted to involve the generation of intracellular ROS 
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in cancer cells, and this process could be abrogated by the antioxidant 
N-acetylcysteine (NAC) [79]. However, the exact anticancer mecha
nisms of elesclomol are not yet fully elucidated. 

4. The anticancer mechanisms of elesclomol 

4.1. The toxicity of elesclomol to cancer cells is reliant on copper 

Cu(I) is regarded as the predominant form in the reducing environ
ment of the cell cytosol. As a highly lipophilic Cu(II)-binding molecule, 
elesclomol forms a 1:1 permeable complex with Cu(II) extracellularly 
which rapidly transports copper to mitochondria and releases copper 
after it is reduced to Cu(I) by ferredoxin 1(FDX1) [80,81] (Fig. 2). Cu(I) 
in the mitochondria can generate ROS and cause unmitigated oxidative 
stress once ROS is excess. Afterward, elesclomol is effluxed from cells 
and continues shuttling elesclomol-Cu(II) complexes into the intracel
lular compartments. The mitochondrial selectivity for copper enrich
ment exhibited by elesclomol is distinct from other ionophores, such as 
DSF [80]. The reduced viability of MDA-MB435 melanoma cells upon 
elesclomol treatment was restored by addition of copper, while iron, 
manganese, and zinc did not have similar rescuing effects [80]. It was 
reported that when elesclomol paired with redox inert metals including 
Cu(II), Ni(II), and Pt(II), the killing effect of elesclomol-Ni(II)and ele
sclomol-Pt(II) complexes in human leukemia K562 cells is 34-times and 
1040-times lower, respectively, compared to the elesclomol-Cu(II) 
complex [53], highlighting that elesclomol exerts its cytotoxicity 
mainly through preferential sequestration of Cu(II). 

4.2. The cytotoxicity of elesclomol is primarily attributed to mitochondrial 
oxidative stress 

The induction of mitochondrial oxidative stress and subsequent 
apoptosis through the Cu II-I redox cycling process is a well-established 
anticancer mechanism of elesclomol [79]. Compared to normal cells, 
many types of cancer cells have inherently elevated levels of oxidative 
stress, which would be further induced by elesclomol and exceeded a 
critical threshold in tumors [14]. For example, BRAFV600E inhibitor 
(vemurafenib)-resistant melanoma cells displayed high levels of basal 
mitochondrial respiration and ROS production which rendered them 
more vulnerable to elesclomol [82]. Likewise, elesclomol selectively 
killed cisplatin-resistance lung cancer cells through increased mito
chondria respiration [83]. It has also been reported to exhibit cytotoxic 
effects on cisplatin-resistance lung cancer cells by impeding the clear
ance of ROS. These effects are mediated by downregulation of 
thioredoxin-1 (TRX1), a crucial antioxidant molecule responsible for 
maintaining the intracellular reducing response, and glutathione (GSH), 

which effectively scavenge intracellular ROS [84]. However, enhanced 
mitochondrial metabolism is observed only in certain subtypes of tu
mors, such as melanoma, breast cancer and hepatocellular carcinoma. 
Whereas high-grade serous ovarian cancer and diffuse large B-cell 
lymphoma show metabolic heterogeneity [85,86]. 

Cancer stem cells (CSC) represent a distinct and elusive subset of 
cancer cells characterized by their exceptional capacity for self-renewal, 
disease initiation and metastasis. They are heavily reliant on mito
chondrial respiration and OXPHOS activity to fuel tumorigenesis [87]. 
With a high-throughput drug screening targeted the stem-like tumor-
initiating cell (TIC) population in ovarian cancer (OC), pro-oxidants 
including elesclomol and DSF were identified. These two drugs 
reduced the phenotypic features and sphere-formation ability of TICs, 
implying that the heightened mitochondrial respiration of CSC may 
contribute to their elevated sensitivity to elescolmol [88]. In addition, 
glioblastoma stem cells (GSCs) also highly rely on OXPHOS and resist 
current glioblastoma (GBM) therapies [89]. GSCs have been demon
strated to contribute to GBM-associated neovascularization process 
through transdifferentiation into GSC-derived endothelial cells (GdECs) 
[90]. Elesclomol showcased remarkable efficacy in killing both GSCs 
and GdECs at submicromolar concentrations via elevated levels of ROS, 
and led to a non-apoptotic copper-dependent cell death [91]. 

Therefore, elevated levels of oxidative stress would create a thera
peutic vulnerability to oxidative stress-inducing drugs. For instance, 
aberrant activation of oncogene SOX6 in ewing sarcoma (EwS), an 
aggressive childhood cancer, promoted malignancy but conferred 
sensitivity to elesclomol by increased mitochondrial ROS. Mechanisti
cally, SOX6 upregulated the expression of thioredoxin binding protein 
(TXNIP), which induces oxidative stress by inhibiting the antioxidative 
function of thioredoxin (TXN) [92]. 

4.3. Cancer cells with low glycolytic activity are more sensitive to 
elesclomol 

The anticancer effects of elesclomol rely on the presence of oxygen, 
which primarily drives energy metabolism through OXPHOS. However, 
many solid tumors face the challenge of insufficient oxygen supply, 
termed hypoxia [93]. Under hypoxic conditions, tumors undergo an 
energy metabolic shift to glycolysis in the cytoplasm instead of mito
chondrial respiration [94], the process of which is governed largely by a 
family of transcription factors known as hypoxia-inducible factors 
(HIFs) [95]. It was reported that blocking HIF-1α signaling pathway 
restored mitochondrial respiration via downregulating the expression of 
pyruvate dehydrogenase kinase-3 (PDK3) [96,97]. Consequently, 
inhibiting PDK3 activity by dichloroacetate (DCA) increased the onset of 
oxidative stress and potentiated the antitumor effects of elesclomol in 

Table 1 
Clinical trials of copper chelators in cancer therapy.  

Drugs Status Conditions Phases Identifier 

Tetrathiomolybdate Active, not recruiting Breast Cancer Phase 2 NCT00195091 
Completed Prostate Cancer Phase 2 NCT00150995 
Completed Esophageal Carcinoma Phase 2 NCT00176800 
Completed Colorectal Carcinoma Phase 2 NCT00176774 
Completed Hepatocellular carcinoma Phase 2 NCT00006332 
Completed Non-Small Cell Lung Cancer Phase 1 NCT01837329 
Withdrawn Non-Small Cell Lung Cancer Phase 1 NCT00560495 

Choline tetrathiomolybdate (ATN-224) Terminated Breast Cancer Phase 2 NCT00674557 
Unknown Prostate Cancer Phase 2 NCT00405574 
Unknown Melanoma Phase 2 NCT00383851 
Terminated Multiple Myeloma Phase 1, Phase 2 NCT00352742 

Trientine Completed Epithelial Ovarian Cancer Phase 1, Phase 2 NCT03480750 
Tubal Cancer 
Primary Peritoneal Cancer 

Completed Advanced Cancers Phase 1 NCT01178112 
Withdrawn Melanoma Phase 1 NCT02068079 

Penicillamine Completed Glioblastoma Phase 2 NCT00003751 
Clioquinol Terminated Relapsed or Refractory Hematological Malignancy Phase 1 NCT00963495  
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melanoma [96]. Moreover, nucleus accumbens-1 (NAC1) has been 
revealed to facilitate oxidative stress and resistance against elesclomol 
as a crucial upstream regulator of HIF-1α/PDK3 axis [98] (Fig. 3). These 
studies underscore the potential significance of targeting glycolysis as an 
adjunctive strategy to enhance the antitumor efficacy of elesclomol. 

Hypoxia contributes to tumor progression and induces glycolytic 
metabolism, wherein pyruvate is converted into lactate as the end 
product of glycolysis by the enzyme lactate dehydrogenase (LDH). 
Elevated serum LDH levels not only correlate with poor prognosis in 
numerous types of cancer but also serve as a biomarker of tumor hypoxia 

[99,100]. Based on the understanding that elevated levels of glycolysis 
impair tumor sensitivity to elesclomol, it can be inferred that patients 
with high LDH levels may exhibit increased resistance to elesclomol. 
This inference was validated by a randomized, double-blind phase III 
clinical trial, aiming to evaluate the efficacy of elesclomol in combina
tion with paclitaxel in patients with advanced melanoma [11]. The 
study revealed that the addition of elesclomol had no effect on patients 
with high LDH levels. However, it was observed to be effective in pa
tients with lower levels of serum LDH, resulting in improved PFS. 
Therefore, serum LDH levels may serve as an indicator of patients’ 
sensitivity to elesclomol. Of note, the identification of novel tumor 
hypoxia biomarkers could potentially customize the administration of 
elesclomol. 

4.4. Ferroptosis accounts for the anticancer activity of elesclomol 

Copper (Cu) and iron (Fe) are essential trace minerals with two 
oxidative states. They serve as cofactors for numerous essential cellular 
enzymes due to their high reactivity in redox reactions [101]. Since the 
excess level of intracellular copper and iron are cytotoxic, the intracel
lular level of copper and iron is fine-tuned by an active homeostatic 
metabolism network. The disruption of iron and copper metabolism, as 
well as their interaction, is of significant importance in the pathogenesis 
of various diseases [102]. 

While previous studies have established iron as the exclusive metal 
ion responsible for triggering ferroptosis [103], emerging evidence 
suggests that intracellular copper accumulation could also facilitate 
ferroptosis [104]. For example, Cu(II) has been reported to promote tax1 
binding protein 1 (TAX1BP1)-dependent autophagic degradation of 
glutathione peroxidase 4 (GPX4), a well-documented negative regulator 

Table 2 
Clinical trials of disulfiram (DSF) in cancer therapy.  

NCT number Conditions Drugs Phases Results 

NCT00312819 Non-small 
Cell Lung 
Cancer 

Chemotherapy, 
Disulfiram 

Phase 
2, 
Phase 
3 

Disulfiram was 
well tolerated 
and had 
potential to 
prolong survival 
in patients with 
newly diagnosed 
non-small cell 
lung cancer 
when added to 
cisplatin and 
vinorelbine 
combination 
regimen. 

NCT03034135 Recurrent 
Glioblastoma 

Disulfiram/ 
Copper, 
Temozolomide 

Phase 
2 

DSF/Cu in 
combination 
with TMZ for 
TMZ-resistant 
IDH-wild type 
GBM seemed to 
be well 
tolerated, but 
had little 
activity in the 
unselected 
group. 

NCT02101008 Melanoma Disulfiram, 
chelated zinc 

Phase 
2 

A serious 
adverse event 
(1/12) occurred 
during the trial, 
that the patient 
developed 
psychiatric 
disorders. 

NCT01118741 Prostate 
Cancer 

Disulfiram Phase 
1 

Some patients 
had transient 
global PBMC 
demethylation 
changes, which 
limited the 
efficacy of 
disulfiram. 

NCT02678975 Glioma Disulfiram, 
Copper, 
Alkylating 
Agents 

Phase 
2, 
Phase 
3 

Unpublished 
Glioblastoma 

NCT03714555 Metastatic 
Pancreatic 
Cancer 

Disulfiram, 
Copper 
Gluconate, 
Chemotherapy 

Phase 
2 

Unpublished 

NCT00256230 Stage IV 
Melanoma 

Disulfiram Phase 
1, 
Phase 
2 

Unpublished 

NCT00742911 Hepatic 
metastases 
from solid 
tumors 

Disulfiram, 
Copper 
Gluconate 

Phase 
1 

Unpublished 

NCT01907165 Glioblastoma Temozolomide, 
Disulfiram, 
Copper 
Gluconate 

Early 
Phase 
1 

Unpublished  

Fig. 2. The structure and cellular entry mechanism of elesclomol. 
Elesclomol forms a 1:1 complex with Cu(II) extracellularly, which rapidly 
transports copper to mitochondria and releases copper upon reduction to Cu(I) 
by FDX1. Subsequently, elesclomol-Cu(II) complexes lead to cell death through 
various mechanisms, including the generation of oxidative stress, targeting 
metabolically active mitochondria, disruption of iron homeostasis, promoting 
ferroptosis and inducing cuproptosis. FDX1, ferredoxin 1. 
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of ferroptosis, leading to ferroptosis-mediated tumor suppressing in a 
preclinical model of pancreatic cancer. As a result, the use of copper 
chelators demonstrated an attenuated experimental acute pancreatitis 
associated with ferroptosis [104]. By co-delivering Cu(II), glucose oxi
dase (GOx) and cinnamaldehyde (Cin) with copper-alanine nano
particles (CACG) into the tumor microenvironment, GSH was depleted 
partially through the reduction of Cu(II) into Cu(I) and the cascade of Cu 
(I)-catalyzed Fenton reactions. This efficient GSH depletion resulted in 
ROS production and enhanced ferroptosis, consequently leading to the 
retardation of tumor growth in 4T1 tumor-bearing mouse model [105]. 

As a copper ionophore, in vitro studies have shown that elesclomol 
could directly bind Fe2+ [106]. In vivo, elesclomol treatment not only 
increased cellular copper content but also indirectly elevated mito
chondrial iron levels by stimulating the copper-dependent iron import 
machinery [107]. At the molecular level, Cu(II) derived from 
elesclomol-Cu(II) was pumped into the Golgi lumen, where it was uti
lized for the metalation of the iron transport multicopper oxidase Fet3. 
The metallated Fet3 then oxidized Fe2+ to Fe3+, which enabled mito
chondria enrichment of iron via the iron importer transferrin receptor 1 
(Ftr1), resulting in dysregulation of iron homeostasis [107]. In addition, 
elesclomol has been reported to promote the degradation of 
copper-transporting ATPase 1 (ATP7A), which plays a vital role in 
maintaining intracellular copper homeostasis by actively exporting 
excess copper out of the cells [108,109]. The combined treatment of 
elesclomol and copper worsened the accumulation of ROS due to the loss 
of ATP7A, which subsequently promoted the degradation of SLC7A11, 
ultimately resulting in ferroptosis in colorectal cancer cells [108] 
(Fig. 4). In summary, elesclomol has the potential to modulate ferrop
tosis either through copper-ion interactions or by inducing oxidative 
stress independent of iron metabolism. However, the mechanisms by 
which elesclomol inhibits tumor growth by inducing ferroptosis and 
whether this inhibition relies on the type of cancer warrant more 

exploration. 

4.5. Elesclomol exerts anticancer effects through cuproptosis 

A comprehensive understanding of the mechanisms underlying the 
cytotoxicity induced by copper or copper ionophore has not yet been 
established. Besides apoptosis [79,110] and ROS-induced cell death [80, 
111], copper has been revealed as an inducer of endoplasmic reticulum 
(ER) stress, leading to a caspase-independent paraptotic death [112]. 
Moreover, it has been found to target the ubiquitin-proteasome system 
[73,113]. Whether copper overload induces a distinct type of pro
grammed cell death has long been debated until the mechanism of 
cuproptosis was unveiled in 2022. 

Cuproptosis is a copper-dependent and unique kind of programmed 
cell death that is different from existing other forms of cell death, 
including apoptosis, ferroptosis, pyroptosis and necroptosis. Elesclomol 
has been shown to induce cuproptosis dependent on mitochondrial 
respiration, as cells more reliant on mitochondrial respiration were 
nearly 1000-fold more sensitive to copper ionophores than cells un
dergoing glycolysis [114]. Mechanistically, copper directly binds to 
lipoylated components of the tricarboxylic acid (TCA) cycle, leading to 
the aggregation of lipoylated protein and subsequent destabilization of 
the iron-sulfur (Fe–S) cluster proteins. This process results in proteotoxic 
stress and ultimately cell death [114]. Elesclomol-induced cuproptosis 
relies on its direct target FDX1, which reduces Cu(II) to Cu(I), facilitating 
the lipoylation and aggregation of enzymes (especially dihy
drolipoamide S-acetyltransferase, (DLAT)) involved in mitochondrial 
TCA cycle, and causes the loss of Fe–S cluster proteins [114] (Fig. 5). The 
identification and definition of cuproptosis not only advances research 
on targeting copper metabolism in cancer, but also challenges the con
ventional view that oxidative stress is a fundamental molecular mech
anism of meta-induced toxicity. Moreover, the prognostic model 
constructed with cuproptosis-related genes has shown excellent pre
dictive capability of patient outcomes in various cancers, and the 
expression levels of cuproptosis-related genes may influence the sensi
tivity of patients to immunotherapy, radiotherapy, and chemotherapy 
[115–117]. 

Recently, a ROS-responsive nanomedicine loaded with elesclomol 
and copper (NP@ESCu) has been demonstrated to not only kill tumor 

Fig. 3. Cancer cells exhibiting elevated levels of mitochondrial oxidative stress 
are more sensitive to elesclomol. 
The effectiveness of elesclomol as an anticancer agent relies on the presence of 
oxygen, which predominantly fuels cellular energy metabolism through 
OXPHOS rather than glycolysis. Consequently, targeting glycolysis to enhance 
mitochondrial respiration may enhance the antitumor efficacy of elesclomol. 
Blocking the HIF-1α/PDK3 axis by inhibiting the upstream factor NAC1 or 
utilizing a PDK inhibitor such as DCA can promote oxidative stress and enhance 
the antitumor efficacy of elesclomol. OXPHOS, oxidative phosphorylation; 
GLUTs, glucose transporters; LDHA, lactate dehydrogenase A; PDH, pyruvate 
dehydrogenase; PDK, pyruvate dehydrogenase kinases; DCA, dichloroacetate; 
HIF1, hypoxia-inducible factor 1; NAC1, nucleus accumbens-1; TCA, tricar
boxylic acid; ETC, electron transport chain; ROS, reactive oxygen species. 

Fig. 4. Ferroptosis accounts for the anticancer activity of elesclomol. 
Elesclomol increases Cu(II) levels within the mitochondria and reduces ATP7A 
expression, resulting in intracellular Cu(II) retention and ROS accumulation. 
These effects contribute to the degradation of SLC7A11, further amplifying 
oxidative stress and ultimately triggering ferroptosis in CRC cells. Ub, ubiquitin; 
SLC7A11, solute carrier family 7 member 11; SLC3A2, solute carrier family 3 
member 2; GSH, glutathione; GPX4, glutathione peroxidase 4; CRC: colo
rectal cancer. 
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cells through cuproptosis, but also reprogram the tumor microenviron
ment via upregulating the expression of PD-L1 in a mice model with 
subcutaneous bladder cancer. This synergistic effect has shown an 
improvement in the responsiveness of tumors to immunotherapy [118]. 
Interestingly, ferroptosis inducers (FINs, sorafenib and erastin) has 
found to intensify elesclomol-induced cuproptosis in liver cancer cells 
through upregulated protein lipoylation via suppressing FDX1 protein 
degradation and suppressing intracellular GSH synthesis. The combi
nation of FINs and elesclomol significantly inhibited liver cancer growth 
in vivo, suggesting that co-targeting ferroptosis and cuproptosis may 
provide novel therapeutic opportunities for liver cancer or other 
elesclomol-sensitive cancers [119]. There are still many unanswered 
questions in elesclomol-induced cuproptosis, such as (1) the cellular 
morphology and molecular manifestations of copper-induced cell death; 
(2) the downstream cascades that are activated by DLAT oligomers; (3) 
the molecular interactions that contribute to cellular proteotoxic stress; 
(4) the specific role of FDX1 and how its regulatory network contributes 
to cuproptosis; (5) how do disorders associated with elevated intracel
lular copper avoid cuproptosis. Furthermore, the involvement of 
copper-induced oxidative stress in the progression of cuproptosis and 
potential therapeutic targets for the prevention and treatment of 
cuproptosis remain largely unknown. 

5. Therapeutic application potential of elesclomol in human 
diseases 

5.1. Elesclomol targets mitochondrial metabolism in cancer therapy 

Mitochondrial metabolism plays a crucial role in tumorigenesis, 
metastasis, and drug resistance [87]. Many types of cancer cells, 
including cancer stem cells, metastatic tumor cells, therapy-resistant 
tumor cells, and tumors with inhibited glycolysis, depend on mito
chondria respiration through enhanced OXPHOS activity to fuel 
tumorigenesis. Therefore, elesclomol exhibited tremendous toxicity to 
these kinds of cancers. 

The stem-like tumor-initiating cells (TICs) in OC are associated with 
disease recurrence following chemotherapy, resulting in poor prognosis 
for OC patients [120]. OC TICs prefer OXPHOS rather than glycolysis to 
maintain stemness. Under oxidative stress, enhanced antioxidant and 
drug metabolism responses provide a survival advantage for TICs, but 
also point to a potential vulnerability [121]. Indeed, both DSF and ele
sclomol were identified from a high-throughput drug screening that 
targeted TICs. These two compounds were found to diminish the stem
ness properties of TICs and enhance the cytotoxic effects of carboplatin 
[88]. Elesclomol was also identified as the most effective agent in killing 
glioblastoma stem cells (GSCs) through another drug screen specifically 
designed to target GSCs. Moreover, the combination of elesclomol with 
the alkylating agent temozolomide (TMZ) enhanced the cytotoxicity 
compared to TMZ alone [91]. 

A subset of slow-cycling melanoma cells which are characterized by 
the high expression of Jumonji AT-rich interactive domain 1B (JAR
ID1B), manifest inherent resistance to multiple drugs such as vemur
afenib or cisplatin. As these cells possess elevated mitochondrial 
metabolism properties, elesclomol effectively targeted them and 
reversed their enrichment caused by cisplatin monotherapy [122]. The 
mitochondrial oxidative signature in BRAFV600E melanoma cells also 
presented an opportunity for elesclomol to surpass tumor resistance to 
the BRAF inhibitor vemurafenib [82]. Elesclomol has been reported to 
selectively display toxicity to cisplatin-resistant lung cancer cells that 
possessed high basal levels of ROS, while sparing normal cells and the 
parental counterparts [83]. A comprehensive functional genomic anal
ysis revealed a correlation between mitochondrial metabolism and the 
sensitivity of tumors to proteasome inhibitors. When cells were 
compelled to rely on OXPHOS rather than glycolysis, they developed 
resistance to proteasome inhibitors [81]. This mitochondrial state gave 
rise to a distinct vulnerability of breast cancer cells to elesclomol [81]. 
Chemotherapeutic drugs trigger a metabolic shift in cancer cells, making 
them more dependent on OXPHOS. This increased reliance renders tu
mors more susceptible to elesclomol, positioning it as a promising 
adjuvant in chemotherapy. Notably, inhibition of glucose metabolism 
would not only enfeeble the malignant potential of tumor cells, but also 
sensitize them to copper ionophores. Therefore, the combination of 
glycolysis inhibitors and elesclomol may have a synergistic inhibitory 
effect on tumorigenesis [96]. 

5.2. Elesclomol-related anticancer clinical trials 

Elesclomol, as a first-in-class investigational drug, has demonstrated 
its ability to enhance the therapeutic effectiveness of paclitaxel in pa
tients with refractory solid tumors and those with stage IV metastatic 
melanoma (Table 3). During this phase I clinical trial, the combination 
of elesclomol and paclitaxel was well tolerated with a toxicity profile 
similar to that of single-agent paclitaxel. Partial responses were ach
ieved in one patient with Kaposi’s sarcoma and another with ovarian 
cancer that progressed during prior treatment with paclitaxel [12]. In a 
small phase II randomized, double-blinded, and multi-center trial 
enrolling 81 patients with stage IV metastatic melanoma, the combi
nation of elesclomol and paclitaxel showed a significant improvement in 
median PFS, doubling the duration compared to the use of paclitaxel 
alone. The combination therapy demonstrated a remarkable 41.7% 
reduction in the risk of disease progression, with increased overall sur
vival (OS) rates [15]. Unfortunately, except for the above clinical trials, 
despite elesclomol exhibiting a favorable clinical safety profile alone or 
in combination with paclitaxel, it did not yield the desired clinical re
sponses in patients with relapse and refractory acute myeloid leukemia 
[13] and patients with recurrent of persistent platinum-resistant 
ovarian, fallopian tube or primary peritoneal cancers [14]. While a 
subsequent phase III trial involving chemotherapy-naïve patients with 
advanced melanoma demonstrated that elesclomol combined with 
paclitaxel showed a lack of efficacy in the unselected population. A 
prospectively defined subgroup analysis revealed that patients with 

Fig. 5. Schematic diagram of the mechanism of cuproptosis. 
Elesclomol-induced cuproptosis primarily relies on its direct target FDX1, which 
catalyzes the reduction of Cu(II) to Cu(I). This reduction event facilitates the 
lipoylation and aggregation of enzymes, particularly DLAT, involving in the 
mitochondrial TCA cycle. Additionally, it triggers the loss of Fe–S cluster pro
teins. These aberrant processes collectively lead to proteotoxic stress and 
eventual cell death. Importantly, inhibitors targeting ferroptosis (Fer-1), nec
roptosis (Nec-1), and oxidative stress (NAC) do not affect the occurrence of 
cuproptosis. DLAT, dihydrolipoamide S-acetyltransferase; LIAS, lipoic acid 
synthetase; Fer-1, ferrostatin-1; Nec-1, necrostatin-1; NAC, N-acetylcysteine. 
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normal baseline levels of LDH were more sensitive to elesclomol [11]. As 
increased LDH activity is associated with tumor hypoxia, this finding is 
consistent with the requirement of active mitochondrial respiration for 
the action of elesclomol. 

Elesclomol in combination with paclitaxel has been extensively 
studied in clinical trials mostly focusing on advanced-stage melanomas. 
While published results indicate that the clinical anticancer efficacy of 
elesclomol is suboptimal, it does demonstrate an acceptable safety 
profile. Furthermore, several clinical trials related to elesclomol treat
ment are currently underway in different types of cancers, including 
prostate cancer, stage IIIB/IV non-small cell lung cancer, and soft tissue 
sarcoma [123]. Given that tumors reliant on mitochondrial metabolism 
are particularly susceptible to elesclomol, this compound may hold great 
promise as a therapeutic agent for a specific subset of cancers. Future 
research should be conducted using available biomarkers to identify the 
appropriate patient population. Furthermore, a comprehensive under
standing of the drug’s mechanism of action is crucial to guide clinical 
studies. 

5.3. Elesclomol holds promise for the treatment of hereditary copper 
deficiency disorders 

Unlike cancer cells, elesclomol exhibits minimal toxicity in healthy 
cells, indicating that the endogenous antioxidant capacity of healthy 
cells may overcome potential toxicity issues [80]. Elesclomol was 
identified as the most efficient copper delivery agent that can restore 
mitochondrial function in the context of defective copper transport in 
yeast, zebrafish, and mammalian cell lines [124]. Taking advantage of 
its membrane permeating properties and mitochondria-directed release 
mechanism, elesclomol was reported to substantially ameliorate pa
thology and lethality in a mouse model of Menkes disease. It corrected 
defective CTR1 and ATP7A membrane-copper transport with targeted 
improvement of mitochondrial CcO metalation [125]. This promising 
preclinical study paves the way for a new approach in the treatment of 
Menkes and associated disorders. Furthermore, using genetic models of 
copper-deficient C. elegans and mice, dietary elesclomol supplementa
tion fully rescued copper deficiency phenotypes. Remarkably, oral 

gavage with elesclomol rescued intestine specific Ctr1 knockout mice 
from postnatal mortality without additional copper supplementation. 
These findings suggest that elesclomol facilitates copper delivery from 
dietary sources independent of the intestinal copper transporting system 
[126]. However, before repurposing elesclomol for the treatment of 
copper deficiency disorders in human patients, several crucial issues 
must be resolved, including optimizing the dosing regimen, identifying 
accurate efficacy biomarkers, and determining the appropriate timing 
and frequency of treatment [127]. 

5.4. Safety and pharmacodynamics of elesclomol in cancer therapy 

Based on the published data from clinical trials, no significant 
adverse effects have been observed thus far when elesclomol was 
administered either alone or in combination with other chemothera
peutic agents. In a phase I clinical trial involving patients with solid 
tumors, the maximum tolerated dose of elesclomol was up to 438 mg/ 
m2. The toxicity profile at this dose was similar to paclitaxel alone. With 
the escalation of elesclomol dose, there was a significant decrease in the 
total body clearance of paclitaxel [12]. In a phase II trial enrolling pa
tients with stage IV metastatic melanoma, the combination of elesclomol 
and paclitaxel resulted in a statistically doubling of median PFS and 
encouraging OS. Significantly, the combinatory therapy exhibited a 
more tolerable toxicity profile than many other widely used combina
tion regimens for melanoma treatment [15]. Additionally, elesclomol 
demonstrated a favorable safety profile with minimal toxicity at a dose 
of 400 mg/m2 in another phase I clinical trial conducted on patients with 
relapse and refractory acute myeloid leukemia, despite the 
none-responsiveness of patients to elesclomol [13]. Of note, there have 
been no reports of patients developing any organic or functional 
impairment related to elesclomol [123]. Therefore, the high safety 
profile of elesclomol in cancer therapy is an encouraging characteristic 
supporting further development of this drug. 

The limited efficacy of elesclomol in oncology clinical trials may be 
partially attributed to its linear pharmacokinetics in vivo, which is 
characterized by rapid elimination from plasms (biological half-life, 
1.06 ± 0.24 h) and a low steady-state apparent volume of distribution 

Table 3 
Elesclomol-related clinical trials in cancer therapy.  

NCT number Status Phases Conditions Enrollment Drugs Results Reference 

NCT00088114 Completed Phase 1 Neoplasms 50 Elesclomol 
sodium, Paclitaxel 

Patients tolerated the combination of elesclomol 
and paclitaxel well, and the toxicity profile of 
elesclomol was comparable to that of single-agent 
paclitaxel. 

17255281 

NCT01280786 Unknown Phase 1 Acute Myeloid Leukemia 36 Elesclomol sodium Elesclomol exhibited a favorable clinical safety 
profile; however, no clinical responses were 
observed in the patients treated with elesclomol. 

26732437 

NCT00084214 Completed Phase 1, 
Phase 2 

Melanoma 103 Elesclomol 
sodium, Paclitaxel 

The combination of elesclomol and paclitaxel led 
to a significant doubling of median PFS, 
demonstrating an acceptable toxicity profile and 
promising OS. 

19826135 

NCT00888615 Completed Phase 2 Recurrent or persistent 
epithelial ovarian, 
fallopian tube or primary 
peritoneal carcinoma 

58 Elesclomol 
sodium, Paclitaxel 

Elesclomol combined with paclitaxel was well 
tolerated, but the proportion responding was low. 

30309721 

NCT00522834 Terminated Phase 3 Melanoma 630 Elesclomol 
sodium, Paclitaxel 

Elesclomol combined with paclitaxel did not 
significantly improve PFS in advanced melanoma 
patients; and patients with normal baseline LDH 
showed a statistically significant increase in 
median PFS with the combination therapy. 

23401447 

NCT00087997 Completed Phase 2 Soft Tissue Sarcoma 80 Elesclomol sodium Elesclomol through the role of HSP70 enhanced 
the efficacy of taxane. 

16784029 

NCT00088088 Completed Phase 1, 
Phase 2 

Stage IIIB/IV Non-Small 
Cell Lung Cancer 

86 Paclitaxel, 
Carboplatin, 
Elesclomol sodium 

Unpublished – 

NCT00808418 Completed Phase 1 Prostate Cancer 34 Elesclomol 
sodium, Docetaxel 

Unpublished – 

NCT00827203 Suspended Phase 1 Metastatic Solid Tumors 30 Elesclomol sodium Unpublished –  
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(25.1 ± 8.1 L/m(2)) [12]. Consequently, extremely restricted elesclomol 
in the circulation could enter tumor cells. In addition, the effectiveness 
of elesclomol-induced cell death in controlling tumor progression might 
be constrained by the hostile microenvironment within the tumor. 
Fortunately, the pharmacological properties of anticancer drugs, 
including their pharmacokinetics and biodistribution have been 
improved by drug delivery strategies. For instance, nanomedicine for 
small-molecule therapeutics has focused on the encapsulation and de
livery of chemotherapeutic drugs to tumors [128]. To address the issue 
that elesclomol possesses a short half-life in bloodstream, a 
ROS-sensitive polymer (PHPM) was designed by researchers and 
employed to co-encapsulate elesclomol and copper to form nano
particles (NP@ESCu). These nanoparticles exhibited rapid internaliza
tion by tumor cells, leading to a remarkable 4.2-fold increase in 
intracellular copper levels [118]. NP@ESCu effectively induced 
cuproptosis in tumor cells by downregulating the expression of LIAS and 
increasing the PD-L1 expression, enhancing the synergy between 
cuproptosis and immunotherapy [118]. This study serves as a promising 
example of leveraging nanomedicines for elesclomol-induced cuprop
tosis in cancer therapy and may potentially stimulate research efforts in 
developing nanoscale systems to improve the pharmacological proper
ties of elesclomol. Additionally, to minimize toxicity and broaden its 
therapeutic window, it is worthwhile to devise antibody-drug conju
gates (ADCs) that selectively target tumor antigens for elesclomol 
delivery. 

6. Conclusions and future perspective 

Copper is an essential micronutrient whose inherent redox properties 
make it both beneficial and toxic to the cell. A hereditary or acquired 
copper unbalance has been associated with a wide range of pathologic 
conditions, including Menkes disease, Wilson disease, and neurode
generative disease. Copper also serves as a double-edged sword in 
carcinogenesis. It exerts tumor-promoting effects by regulating protein 
kinase cascades, stimulating cell proliferation and migration. It also 
modulates autophagic pathways, allowing tumors to evade apoptosis 
and promotes angiogenesis. Moreover, copper can stimulate the 
expression of immune checkpoint protein PD-L1, suppressing the anti- 
tumor immune response. While cancer cells typically demand more 
copper compared to quiescent healthy cells, excessive levels of copper 
can cause cell death. Copper toxicity has been effectively harnessed by 
utilization of copper ionophores in antitumor therapy. 

The copper ionophore elesclomol is an extensively studied anti
cancer drug that primarily targets mitochondrial metabolism. Ele
sclomol–copper complexes induce oxidative stress by disruption of the 
mitochondrial respiration chain or by indirect non-mitochondrial in
duction of ROS. Therefore, cancer cells that heavily rely on mitochon
drial metabolism, including cancer stem cells, drug-resistance tumor 
cells and those with lower glycolytic activity, are more vulnerable to 
elesclomol. The discovery and characterization of cuproptosis, a novel 
form of programmed cell death that relies on copper ionophores to 
import copper, has significantly advanced our understanding of the 
anticancer mechanisms of elesclomol. However, exploring reliable bio
markers for cuproptosis, elucidating copper/copper ionophore- 
dependent signaling pathways, and dissecting the interplay between 
ferroptosis and cuproptosis will provide opportunities to get a clear 
picture of the mechanisms underlying elesclomol-induced cytotoxicity. 

Elesclomol failed to yield favorable results in certain oncology clin
ical trials, but it consistently demonstrated a high safety profile. 
Importantly, it has been found that serum LDH levels may serve as a 
potential biomarker for evaluating patients’ responsiveness to ele
sclomol [11]. Selecting cancer types with high mitochondrial meta
bolism and choosing patients with biomarker-driven approaches may 
lead to more favorable outcomes for future clinical trials. To enhance the 
anticancer efficacy of elesclomol, drug delivery strategies such as 
nanoscale systems should be incorporated into drug development. These 

technologies can improve the pharmacokinetics, stability, absorption, 
and exposure of elesclomol within tumors, while also facilitating its 
administration of synergistic combinations with other therapeutic 
drugs. Moreover, elucidating the cytotoxic mechanisms of elesclomol is 
expected to uncover novel pathways that could be therapeutically 
exploited for the treatment of cancer. 
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