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In brief
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relatively uncommon but more

aggressive form of urothelial cancer. It is

often diagnosed late and has poor

prognosis. Qu et al. portray a plasma

proteomic landscape of UTUC and

provide predictive models that could

potentially improve the diagnosis and

management of UTUC.
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SUMMARY
Upper tract urothelial carcinoma (UTUC) is often diagnosed late and exhibits poor prognosis. Limited data are
available on potential non-invasive biomarkers for disease monitoring. Here, we investigate the proteomic
profile of plasma in 362 UTUC patients and 239 healthy controls. We present an integrated tissue-plasma
proteomic approach to infer the signature proteins for identifying patients with muscle-invasive UTUC. We
discover a protein panel that reflects lymph nodemetastasis, which is of interest in identifying UTUC patients
with high risk and poor prognosis. We also identify a ten-protein classifier and establish a progression clock
predicting progression-free survival of UTUC patients. Finally, we further validate the signature proteins by
parallel reaction monitoring assay in an independent cohort. Collectively, this study portrays the plasma
proteomic landscape of a UTUC cohort and provides a valuable resource for further biological and diagnostic
research in UTUC.
INTRODUCTION

Upper tract urothelial carcinoma (UTUC), which comprises can-

cer of the ureter and renal pelvis, is relatively uncommon and

accounts for only approximately 5%–10% of urothelial carci-

nomas (UCs).1 Furthermore, 90%–95% of UCs occur in the

bladder (UCB). Because UTUC is relatively rare, clinical decision

making for UTUC patients is extrapolated based on treatment

data for UCB. In a more recent study of 116 UCB patients, we

reported three proteome-based subtypes (U-I, U-II, and U-III)

with different clinical outcomes and molecular characteristics.2

However, the molecular pathogenesis of UTUC is poorly under-

stood, and no useful biomarkers are available for accurate

diagnosis and classification.

Patients suspected of having UTUC need to undergo invasive

procedures such as computed tomography urography, retro-

grade pyelography, or ureteroscopy for a definitive diagnosis.

However, these tools struggle to detect early disease progres-
Cell Report
This is an open access article under the CC BY-N
sion. Urine cytology is a non-invasive method for the detection

of UC but also fails to detect most UTUCs.3 Plasma samples

are easily obtained, and they provide an indication of cancer

status including various cellular elements such as proteins.4

However, the available data on plasma-based protein bio-

markers in UTUC are limited.5

Approximately 55%–59% of UTUC cases are muscle invasive

at the time of diagnosis compared to only 15% of UCBs.6,7 Mus-

cle-invasive UTUC patients (MI-UTUCs) usually have a very poor

prognosis, and the 5-year specific survival rate is <50% and

<10% for the pT2/pT3 and pT4 stages, respectively.8 Up to

30%ofMI-UTUCs havemetastasis in the regional lymph nodes,9

which represents a well-established poor prognostic factor.1

A major concern is the difficulty in determining whether a patient

has muscle-invasive or more advanced disease because imag-

ing studies, cytology, or biopsy findings cannot reliably diagnose

the disease stage and identify patients with lymph node invasion

preoperatively.10 Hence, the discovery of reliable plasma
s Medicine 4, 101166, September 19, 2023 ª 2023 The Authors. 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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biomarkers for identifying MI-UTUCs and lymph node involve-

ment in UTUC is critical to improve clinical management and pa-

tient outcomes.

Accurate prediction of postoperative recurrence and progres-

sion could help guide patient management of adjuvant therapies

and the design of clinical trials. Prognostic models have been

developed for variousmalignancies and are utilized in clinical de-

cision making across different disease stages. For example, Kim

et al. reported an eight-gene prognostic model with strong pre-

dictive value for determining disease outcome in bladder can-

cer.11 Wu et al. identified a five-gene classifier that predicts the

progression-free survival (PFS) interval for papillary thyroid carci-

noma.12 The time of recurrence and progression in UTUC

patients is highly dynamic, and some patients do not experience

recurrence within 2 years whereas others do within 2 months.7

Therefore, the temporal prediction of progression and recur-

rence is important in guiding counseling of UTUC patients,

follow-up scheduling, and administration of adjuvant therapies.

Plasma proteins are the major functional component of the

plasma and play key roles in various biological processes,

including signaling, transport, and defense against infections.13

Recently, plasma proteomics technology has been widely used

to study various diseases such as prostate cancer,14,15 corona-

virus disease 2019 (COVID-19),16,17 and alcohol-related liver

disease.18 Therefore, the development of plasma-based prote-

omics provides enormous possibilities for clinical transformation

and application.

In this study, we analyzed 601 plasma samples (including

362 UTUC samples and 239 healthy control samples) using

mass spectrometry-based, data-independent acquisition (DIA)

quantitativeproteomics. The integrated tissue-plasmaproteomics

approach identified the signature proteins for identifying MI-

UTUCs. Furthermore, we identified a ten-protein classifier and

established a progression clock that predicted the PFS of UTUC

patients. We then validated the findings in an independent UTUC

cohort. Collectively, this study presented the plasma proteomic

landscape of a UTUC cohort and provided a valuable resource

for further biological, diagnostic, and drug-discovery efforts.

RESULTS

Overall synopsis of the plasma proteome profiling of
patients with UTUC
Plasma samples from 451 UTUC patients (discovery [n = 362],

validation [n = 89]) and 239 healthy controls were analyzed using

quantitative proteomic analysis with DIA strategy (Figure 1A and

STARMethods). UTUC is defined as urothelial carcinoma arising
Figure 1. Overall synopsis of the plasma proteome profiling of UTUC p

(A) The proteomics workflow involved three modules: cohort construction (disco

(B) Pie chart showing the component proportion of UTUC discovery cohort.

(C) Clinical data of UTUC discovery cohort.

(D) Proteins identified in UTUC and normal plasma samples of UTUC discovery

(E) Number of proteins identified in UTUC and normal plasma samples of UTUC d

(box limits), 1.53 interquartile range (whiskers).

(F) Dynamic range of the protein identification of each sample according to the d

UTUC discovery cohort.

(G) Components identified in plasma proteome.

(H) Cancer-related proteins and proteins associated with drugs approved by the
from the ureter (UUC) or renal pelvis (RPUC). We included 163

RPUCs, 170 UUCs, and 29 with a combination of both cancers

in the UTUC discovery cohort (Figure 1B). The overall workflow

of this study is presented in Figure 1A. The demographic and

clinical data of all the study participants are summarized in

Table S1. Additionally, the basic features—age, gender, and his-

tory of smoking—were similar among patients with RPUC or

UUC, or a combination of both (Figure 1C).

A total of 9,336 protein groups were identified in all plasma

samples (Figure S1A), with an average of 1,860 and 1,789 protein

groups per UTUC and normal plasma (healthy control) samples,

respectively (Figures 1D and 1E). Proteome quantification was

conducted using the intensity-based absolute quantification

(iBAQ) algorithm,19 followed by the fraction of total (FOT) normal-

ization as reported previously.20 The proteome was highly

dynamic, spanning approximately about two orders of magni-

tude measured by the protein abundance (FOT) (Figure 1F).

The distribution of log2-transformed FOT abundance of identi-

fied proteins in 601 plasma samples is shown in Figure S1B,

and the consistency of the samples indicated the stability of

our mass spectrometry platform.

Tomonitor the liquid chromatography-tandemmass spectrom-

etry (LC-MS/MS) platform instrument stability, the mixture of all

plasmasamples fromUTUCpatientswasmeasuredevery20sam-

ples, which was adopted in proteomic studies. The quality control

(QC) plasma samples were analyzed using the same method and

conditions used for our cohort plasma samples.21 The average

Pearson’s correlation coefficient, calculated for all quality control

runs of QC samples, was 0.95, indicating that the MS data were

of high quality (Figures S1C and S1D). In addition, we analyzed

the proteome of ten matched UTUC tumor tissue samples with

plasma samples and ten normal urothelial epithelial tissues with

adata-dependent acquisitionmethod, quantifying11,372proteins

in total (Figures S1E and S1F; STAR Methods).

Additionally, as shown in Figure 1G, the number of proteins

identified in UTUC plasma that were annotated as extracellular

matrix or were in the extracellular space was not significantly

different from that in normal plasma. Interestingly, a slightly

higher number of proteins annotated as cancer-related proteins

and associated with drugs approved by the US Food and Drug

Administration (FDA) were identified in UTUC than in normal

plasma (Figure 1H).

Plasma proteome profiles differed between UTUC and
normal samples
We compared the plasma proteome profiles of UTUC patients to

those of the healthy controls. This revealed a dramatic shift in the
atients

very cohort and validation cohort), proteomic profiling, and data analysis.

cohort.

iscovery cohort. Boxplots showmedian (central line), upper and lower quartiles

escending sort of protein abundance in UTUC and normal plasma samples of

FDA identified in UTUC discovery cohort.
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quantitative proteome composition, reflected by 550 signifi-

cantly differentially expressed proteins (DEPs), of which 307 pro-

teins were upregulated and 243 proteins were downregulated

(Figure 2A; Wilcoxon rank-sum test, Benjamini-Hochberg [BH]

P < 0.05, UTUC/normal ratio >1.5 or <0.67; Table S2). Pathway

enrichment analysis of DEPs showed that normally enriched pro-

teins were involved in the cleavage of the damaged purine,

deubiquitination, and sulfur metabolism, whereas proteins en-

riched in UTUC plasma mainly participated in transfer RNA

(tRNA) aminoacylation, fatty acid degradation, and acute-phase

response pathway (Figure 2B).

Among the 8,923 proteins identified in UTUC plasma prote-

ome, 234 were kidney-tissue-specific proteins annotated by

the Human Protein Atlas (HPA, https://www.proteinatlas.org)

(Figure S2A and Table S2). Differential protein analysis between

UTUC and normal plasma samples resulted in the identifications

of 46 kidney-tissue-specific proteins (Figure S2B; Wilcoxon

rank-sum test, BH P < 0.05, UTUC/normal ratio >1.5 or <0.67).

Further pathway enrichment analysis using these differential pro-

teins indicated that UTUC-enriched proteins were involved in

fatty acid metabolic pathways, whereas those enriched in

normal samples mainly participated in cellular sodium ion ho-

meostasis (Figure S2C). These indicated that leaking of these

cancer-associated proteins into the plasma might influence

plasma composition.

We also compared the plasma proteome profiles of UTUC

patients to those of UTUC tissue proteome. In total, 7,913 pro-

teins were commonly quantified in the UTUC tissue and plasma

samples, and we confirmed the significantly positive correlation

between the proteome of UTUC tissue and plasma (Figure 2C).

Moreover, 165 proteins (Figure 2D; Wilcoxon rank-sum test,

BH P < 0.05, UTUC/normal ratio >1.5) that were upregulated in

UTUCs in both plasma proteome and tissue proteome were en-

riched in positive regulation of nuclear factor kB signaling,

response to drug, and endocytosis. We also found a divergence

between the proteome of UTUC tissue and plasma. The results

showed that 234 proteins were significantly upregulated only in

UTUC plasma proteome (Figure 2D; Wilcoxon rank-sum test,

BH P < 0.05, UTUC/normal ratio >1.5), and they were mainly en-

riched in proteolysis and cell-adhesion pathways.

To explore plasma enhanced proteins, we performed super-

vised analysis to filter plasma proteins https://www.proteinatlas.

org/, whereby 21 proteinsmet the criteria, nine ofwhichwere can-

cer-related proteins (Figure 2E). Among the nine proteins, CTSB,

S100A8, HP, and CHI3L1 were associated with bad prognosis in

urothelial cancer according to the HPA dataset (Figures 2E and
Figure 2. Plasma proteome profiles differed between UTUC and norm

(A) Protein abundance differences between UTUC and normal plasma samples.

(B) Different pathways between UTUC and normal plasma samples.

(C) Spearman correlation between plasma and tissue proteomes.

(D) Fold changes of plasma and tissue proteins in UTUC and normal samples (le

(E) Heatmap showing the proteins that meet the screening criteria. Their presenc

(F) Box plot showing plasma protein abundance of CTSB (BH P = 4.27E-7) and S1

quartiles (box limits), 1.53 interquartile range (whiskers).

(G) (Top) Strategy for plasma signature proteins to distinguish between UTUC a

UTUC and normal plasma samples.

(H) ROC curve of plasma signature proteins in UTUC discovery cohort.
S2D). Notably, CTSB and S100A8 upregulated in UTUC plasma

were involved in proteolysis and cell-adhesion pathway, respec-

tively (Figure 2F). The overexpression of CTSB could promote

cell invasion and metastasis of colorectal cancer, liver cancer,

gastric cancer, glioma, and ovarian cancer.22–26

We employed stepwise logistic regression based on the DEPs

to identify a subset of proteins that could distinguish between

UTUC and normal (termed UTUC/normal-sig) (Figure 2G and

STAR Methods). Based on the UTUC/normal-sig proteins,

10-fold cross-validation was applied which generated a mean

area under the receiver-operating characteristics curve (ROC-

AUC) of 0.942 (Figure 2H). We further evaluated the performance

of our model in another independent validation cohort (n = 89)

using DIA quantitative proteomics, whereby the AUC was

0.925 (Figure S2E). Taken together, the classifier model could

represent a potential predictive model to identify UTUC patients.

Difference between plasma proteome profiles and urine
proteome profiles
Urine is a good source for profiling localized diseases, and it

serves as an ideal source for discovering biomarkers for dis-

eases in kidney and other tissues of the urogenital system. We

collected urine samples from nine UTUC patients (T1 [n = 2],

T2 [n = 4], T3 [n = 3]) and five healthy controls and performed pro-

teome analysis. A total of 5,898 protein groups were identified in

all urine samples, with an average of 2,042 protein groups per

urine samples of UTUC and 2,203 protein groups per urine sam-

ples of normal (Figures S2F and S2G; Table S2; STARMethods).

The number of proteins identified in both UTUC and normal sam-

ples was 3,488 (Figure S2H).

To identify UTUC-associated changes in the urine proteome,

we determined which proteins were differentially present in the

urine of UTUC patients compared to the healthy controls. The

result showed that 293 proteins were upregulated while 387 pro-

teins were downregulated in urine samples of UTUC patients

(Figure S2I; Wilcoxon rank-sum test, BH P < 0.05, UTUC/normal

ratio >1.5 or <0.67). Among the DEPs, 56 upregulated proteins

and 71 downregulated proteins were urine exosome annotated

according to the urinary exosome protein database (https://

esbl.nhlbi.nih.gov/UrinaryExosomes/).27

We further compared the urine proteome profiles with UTUC

to that of UTUC plasma proteome. Differential protein analysis

showed that 307 upregulated proteins and 243 downregulated

proteins were observed in UTUC plasma samples, as opposed

to 293 upregulated proteins and 387 downregulated proteins in

UTUC urine samples (Figure S2J; Wilcoxon rank-sum test, BH
al samples

ft), and pathways enriched for respective specifically changed proteins (right).

e in blood was annotated from HPA.

00A8 (BH P = 8.25E-15). Boxplots showmedian (central line), upper and lower

nd normal samples. (Bottom) Heatmap of the selected proteins expressed in
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P< 0.05, UTUC/normal ratio >1.5 or <0.67).We further found that

29 proteins upregulated in UTUC samples in both plasma prote-

ome and urine proteome compared with normal samples were

enriched in tRNA aminoacylation and proteolysis pathway

(Figure S2K).

When we combined the UTUC tissue samples, we observed

that six proteins were upregulated in UTUC plasma, UTUC urine,

and UTUC tissues (Figure S2L and Table S2). We defined the six

proteins as the potential UTUC-enhanced proteins, which might

be indicators for UTUC. Furthermore, we found that five out of

these six proteins were associated with the prognosis in our pre-

viously reported UCB cohort2 (Figure S2M). We further investi-

gated these six proteins by assessing immunohistochemistry

(IHC) expression in the HPA (Figure S2N). Four of these six

proteins showed medium to strong tumor staining in urothelial

cancer samples, while two other proteins showed low staining

in the HPA and merit further investigation (Figure S2O).

To explore the signatures in urine for NMI-UTUC diagnostics,

we compared the proteins identified in the urine of NMI-UTUCs

and healthy controls. The result showed 1,254 proteins identified

in NMI-UTUC urine samples (100% identification), of which 37

proteins were only identified in urine of NMI-UTUCs compared

to healthy controls (Figure S2P). We investigated the 37 proteins

in the plasma proteome of NMI-UTUCs, whereby the result

showed that 15 proteins were observed in less than 10% of

NMI-UTUC plasma samples (Figure S2Q and Table S2). We

further found that three out of 15 proteins (RALB, FRY, and

WDR45B) were not detected in the MI-UTUC urine samples.

These results suggested that three proteins only detected in

NMI-UTUC urine samples might be associated with NMI-UTUC

disease, which could be further verified in a larger cohort in the

future.

Difference between plasma proteome profiles and EV
proteome profiles
Exosomes are extracellular vesicles (EVs) secreted by most eu-

karyotic cells and participate in intercellular communication.28

Tumor-derived exosomes participate in formation and progres-

sion of different cancer processes, including tumor microenvi-

ronment remodeling, angiogenesis, invasion, metastasis, and

drug resistance.29 Plasma-derived EVs share some similar com-

ponents with plasma; however, EVs also have unique protein

composition due to their relatively independent subcellular

structure. In this study, we also isolated EVs from 60 plasma

samples, comprising 33 UTUCs and 27 healthy controls, to

explore the UTUC-associated EV proteins. We used classical
Figure 3. Difference between plasma proteome profiles and EV proteo
(A) Western blot of EVs isolated from plasma for conventional identified EV mark

(B) Box plot showing the proteins identified in normal and UTUC EV samples. Bo

interquartile range (whiskers).

(C) Venn diagram showing proteins identified in EVs herein and belonging to hum

(D) Venn diagram showing proteins identified in more than 30% of UTUC plasma

(E) Venn diagram showing proteins upregulated in UTUC plasma (left) or downre

(F) Volcano plot showing the EV protein abundance differences between UTUC

(G) Bubble plot showing pathways enriched in normal and UTUC samples.

(H) Venn diagram of upregulated or downregulated proteins identified in both EV

(I) Heatmap of EV proteins abundance differences between normal and UTUC sa

(J) Box plot showing EV protein abundance of PSMD2 (BH P = 0.028) and ICAM
approaches,30–33 including ultracentrifugation and size-exclu-

sion chromatography, for isolation of EVs from plasma samples

(STAR Methods). The expression levels of the conventional EV

markers CD9, TSG101, and HSP7034,35 were measured using

western blotting, and these markers were detectable in

plasma-derived EVs (Figure 3A). Label-free MS quantification

measurement of all EV samples resulted in a total of 3,628 pro-

tein groups, with an average of 1,061 protein groups per normal

sample and 1,126 protein groups per UTUC sample (Figure 3B

and Table S2). The 3,628 proteins were next compared with

the multiple proteomics exosome studies published in Vesicle-

pedia,36 revealing that 3,401 (93.7%) have previously been iden-

tified by human exosome proteomics studies (Figure 3C). These

results suggested that our identifications were consistent with

data originating from exosomes previously reported.

To understand the characteristics and composition of UTUC-

associated EV proteins, we tried to determine which of these

proteins were present in the plasma of UTUC patients. The result

showed that 2,022 proteins were identified in more than 30% of

plasma samples in the UTUC discovery cohort, 1,207 of which

(60%) were also detected in EVs (Figure 3D). We further focused

on the 550 DEPs between UTUC plasma samples and normal

samples. When compared to the EV proteome, 298 DEPs were

identified in EVs, of which 187 proteins were upregulated and

111 proteins were downregulated (Figure 3E). These results

showed that the DEPs in plasma proteome could be detected

in EV proteome; however, these DEPs may not necessarily

have significant differences between normal and UTUC samples

in the EV proteome.

To identify EV proteins associated with UTUC patients, we

sought to identify the proteins that were upregulated in UTUC

EVs by comparing the proteome of UTUCEVswith that of normal

EVs. This revealed a dramatic shift in the quantitative proteome

composition, reflected by 283 DEPs, of which 142 proteins were

upregulated and 141 proteins were downregulated (Figure 3F;

Wilcoxon rank-sum test, BH P < 0.05, UTUC/normal ratio >1.5

or <0.67). Pathway analysis showed that UTUC-enriched EV pro-

teins were involved in cell adhesion, cell migration, and comple-

ment and coagulation cascades, whereas normal-enriched EV

proteins mainly participated in cellular oxidant detoxification

and proteasome (Figure 3G). These findings indicated the

different biological functions of normal EVs and UTUC EVs.

Furthermore, we compared the UTUC EV proteome to that of

UTUC plasma proteome. The number of proteins identified in

both UTUC plasma proteome and matched EV proteome was

2,200, accounting for 69.8% of the proteins identified in EV
me profiles
ers.

xplots show median (central line), upper and lower quartiles (box limits), 1.53

an EV proteins in the Vesiclepedia dataset.

observed in EVs.

gulated in UTUC plasma (right) observed in EVs.

and normal plasma samples.

s and plasma.

mples.

1 (BH P = 0.040).
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samples. Among these, 299 and 260 DEPs were observed in the

plasma and EV samples, respectively (Figure 3H). Further anal-

ysis showed that 18 proteins were upregulated, whereas nine

proteins were downregulated in both UTUC plasma and UTUC

EVs (Figures 3I and 3J; Table S2; Wilcoxon rank-sum test, BH

P < 0.05, UTUC/normal ratio >1.5 or <0.67). These 18 proteins

upregulated in both UTUC plasma and UTUC EVs might serve

as potential signature proteins for UTUC patients and warrant

further validation.

Plasma proteome profiles differed between RPUC and
UUC samples
UTUC combines RPUC and UUC, which have homogeneous

and heterogeneous biology. We investigated the similarities

and differences between RPUC and UUC. First, we performed

correlation analysis among RPUC, UUC, and normal samples.

The results showed that the frequencies of proteins identified

in RPUC were more closely correlated with UUC than normal

samples (Figure 4A). To investigate altered proteomic features

of UTUC, we compared proteins with significantly differential

expression (Wilcoxon rank-sum test, BH P < 0.05, UTUC/normal

ratio >1.5) between UTUC patients and normal samples in RPUC

and UUC, respectively (Figures 4B and 4C). We identified 580

proteins upregulated in RPUC, in which 375 (64.6%) proteins

were also upregulated in UUC (66.5% of upregulated proteins

in UUC). Pathway analysis showed that the 375 proteins were

mainly enriched in fatty acid degradation and cell proliferation

pathways (Figure 4D), which was consistent with UTUC being

characterized by disorders of cell proliferation and metabolism

in a previous study.37 We further found that 24 of 375 commonly

upregulated proteins were associated with prognosis, such as

ACDAS and PPP1R9B (Figures 4E and 4F). These results

indicated that, in comparison to normal plasma samples, the

directions of most dysregulations in RPUC and UUC plasma

samples were consistent.

Second, UUC showed a worse prognosis than RPUC (Fig-

ure 4G; log-rank test, p < 0.05), which indicated that UUC and

RPUC had different molecular features and clinical characteris-

tics. In our cohort, clinical information showed the similarity of

patients’ basic features between RPUC and UUC, besides the

tumor size being significantly bigger in RPUC (Figure 4H and

Table S1; Fisher’s exact test, p < 0.05). To further investigate

the tumor heterogeneity betweenUUC andRPUC, we compared

the differential expression at the plasma proteome. The result

showed that a total of 284 proteins differentially expressed be-
Figure 4. Similarities and differences between RPUC and UUC

(A) Spearman correlation of plasma proteins among RPUC, UUC, and normal sa

(B) Volcano plot showing protein abundance differences between RPUC and no

(C) Volcano plot showing protein abundance differences between UUC and norm

(D) Pathway analysis of proteins commonly identified in both renal pelvis and ure

(E) Heatmap showing protein abundance differences between normal and UTUC

(F) Overall survival (OS) analyses of UTUC patients with high or low levels of ACA

(G) OS and progression-free survival (PFS) analyses of RPUC versus UUC patien

(H) The association of RPUC with UUC in terms of clinical information.

(I) Volcano plot showing protein abundances between RPUC and UUC.

(J) Pathway analysis of RPUC (blue) and UUC (red).

(K) (Left) Heatmap showing the protein abundance among normal, RPUC, and U

(L) OS analyses of UTUC patients with high or low levels of DBN1 (top) or YAP1
tween RPUC and UUC (Figure 4I; Wilcoxon rank-sum test, BH

P < 0.05, fold change >1.5 or <0.67). Interestingly, the kidney

enhanced proteins (e.g., ACSF2, DDAH1, MSRA) annotated by

the HPA dataset were upregulated in the RPUCplasma samples.

Furthermore, pathway enrichment analysis of the proteins

upregulated in the RPUC samples were enriched in the regula-

tion of cell growth, fatty acid oxidation, and peroxisome prolifer-

ator-activated receptor signaling pathways, while proteins upre-

gulated in the UUC samples were mainly involved in cell-cell

adhesion, Hippo signaling pathway, and mitogen-activated pro-

tein kinase cascade (Figures 4J and 4K). The proteins partici-

pating in cell-cell adhesion, and Hippo signaling pathway, such

as CD93, DBN1, and YAP1, were correlated with clinical out-

comes (Figures 4K and 4L). Previous studies had reported that

YAP1 is essential for cancer initiation or growth of most solid

tumors and its activation induces cancer stem cell attributes,

proliferation, and metastasis.38 These results indicated that

YAP1, and molecules (CSTA, CD93, DBN) of cell adhesion

over-represented in UUC, might play a role in UUC, indicating

that RPUC and UUC had different pathogenic mechanisms.

Plasma proteomic profiles identify patients with
muscle-invasive UTUC
Tumor stage was reported as the most important prognostic

factor for UTUC.39 Muscle-invasive UTUC has a very poor prog-

nosis, with 5-year survival less than 50% for stage pT2/pT3, and

<10% for pT4,8 which was also observed with our data (Fig-

ure 5A). Our discovery cohort contained 351 UTUC patients

with T category, comprising 109 non-muscle-invasive UTUCs

(NMI-UTUCs) (Ta [n = 34], T1 [n = 75]) and 242 muscle-invasive

UTUCs (MI-UTUCs) (T2 [n = 87], T3 [n = 140], T4 [n = 15]) (Fig-

ure 5B). Differential plasma protein analysis between NMI-

UTUCs and MI-UTUCs resulted in 42 DEPs (Figure 5C and

Table S3; Wilcoxon rank-sum test, BH P < 0.05, MI-UTUCs/

NMI-UTUCs ratio >1.5 or <0.67). Pathway enrichment analysis

of the DEPs showed that MI-UTUC-enriched proteins were

involved in acute-phase response, tRNA aminoacylation, and

fatty acid degradation, whereas proteins enriched in NMI-

UTUCs mainly participated in sulfur metabolism and deubiquiti-

nation (Figure 5D). We found that the abundance of acute-phase

response proteins, such as SAA1 and CRP, showed the highest

positive correlation with the T category (Figure S3A). For further

comparison, we surveyed the divergence of the DEPs among the

normal, NMI-UTUCs, and MI-UTUCs (Figures 5E and S3B).

Interestingly, we found that the expression level of proteins
mples.

rmal plasma samples.

al plasma samples.

ter samples.

samples.

DS (top) or PPP1R9B (bottom) protein abundance in UTUC discovery cohort.

ts.

UC. (Right) The hazard ratio of each protein.

(bottom) protein abundance in UTUC discovery cohort.
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over-represented in MI-UTUCs gradually increased from normal

to NMI-UTUCs to MI-UTUCs, whereas that of proteins over-rep-

resented in NMI-UTUCs gradually decreased (Figure S3C).

Furthermore, we also observed some plasma proteins (e.g.,

ABLIM3, SCGN, PYGO2) exclusively expressed in NMI-UTUCs

or MI-UTUCs (Figure S3D), but the identification frequency of

these proteins was low (less than 30%), and more validation is

needed to confirm these proteins.

To filter out credible plasma signature proteins associated

with NMI-UTUCs and MI-UTUCs, we performed supervised

analysis (Figure 5F). We reasoned that ideal signatures should

be commonly differentially abundant in the tumor tissue and

plasma proteome. Therefore, we included data from our recently

published proteomic landscape of 116 UCB patients.2 By per-

forming comparative analysis, a total of 42 and 1,034 DEPs

were observed at the plasma and tissue samples, respectively,

among which two proteins (TST and HPCAL1) overlapped in

both plasma and tissue samples (Figure 5F and Table S3). The

protein abundance of TST was significantly reduced in the mus-

cle-invasive samples compared with the normal and non-mus-

cle-invasive samples in both the plasma and tissue cohorts (Fig-

ure 6G,Wilcoxon rank-sum test, BH P < 0.05). Notably, we found

that patients showing higher expression levels of TST protein in

tumors appeared to have better prognostic outcomes

(Figures S3E and S3F; log-rank test, p < 0.05). HPCAL1, a mem-

ber of the visinin-like subfamily of neural calcium sensors, was

overexpressed in muscle-invasive samples and associated

with poor patient prognosis (Figure 6G). In addition, we validated

the TST and HPCAL1 RNA expression levels in MI-UTUC and

NMI-UTUC tissue samples in the Weill Cornell Medicine (WCM

UTUC) cohort.40 As a result, consistent with our plasma proteo-

mic data, HPCAL1 was confirmed to be over-represented in MI-

UTUC tissue samples, whereas TST was over-represented in

NMI-UTUC tissue samples (Figure 6H; Wilcoxon rank-sum test,

BH P < 0.05).

We employed stepwise logistic regression to identify a subset

of proteins that discriminated between NMI-UTUCs and MI-

UTUCs (termed NMI/MI-sig), which is robust to noise and over-

fitting (STAR Methods). To train and subsequently test the

classifier, samples were partitioned based on sample type (i.e.,

NMI-UTUCs or MI-UTUCs), and 60% and 40% were used as

the training and testing sets, respectively. Based on the NMI/

MI-sigs (n = 12) (Figure S3G and Table S3), we applied 10-fold

cross-validation to the 60% of training samples, yielding a clas-

sifier model with a mean ROC-AUC of 0.865. To further validate

the classifier model, we employed the targeted MS approach,
Figure 5. Plasma proteomic profiles identify patients with muscle-inva

(A) Kaplan-Meier curves for OS and PFS of NMI-UTUCs versus MI-UTUCs.

(B) Bar plot for T category in NMI-UTUCs and MI-UTUCs.

(C) Difference in protein abundance between NMI-UTUCs and MI-UTUCs.

(D) Pathways enriched for DEPs in NMI-UTUCs and MI-UTUCs.

(E) Fold changes of DEPs from comparison of NMI-UTUCs and MI-UTUCs in UT

(F) Strategy for screen diagnosis plasma signature proteins.

(G) Protein abundance of TST and HPCAL1 among normal, NMI-UTUCs, and M

(central line), upper and lower quartiles (box limits), 1.53 interquartile range (whi

(H) RNA expression level of TST and HPCAL1 in NMI-UTUC and MI-UTUC tissue

(I) ROC curves of classifier model in predicting NMI-UTUCs and MI-UTUCs in 70
the parallel reaction monitoring (PRM) assay, which has been

adopted in classifier validation in recent proteomic studies,35,41

to quantify the proteins of the classifier model in the validation

cohort with 89 UTUC plasma samples (STAR Methods). We

then selected a set of target peptides unique to NMI/MI-sigs us-

ing the library search results (Table S3). The fragment total areas

of targeted peptides reported by Skyline-daily (4.2.1.19004, Uni-

versity of Washington, USA) were used to quantify these pro-

teins. Based on the PRM quantification, the mean ROC-AUC

was 0.75 (Figure S3G). Furthermore, we also identified themodel

by usingmore splits of 80/20 or 70/30 in the discovery cohort. As

with the modeling method of the 60/40 training/testing sets, we

employed stepwise logistic regression in the 80% training set

to identify a subset of proteins. We found that the 12 NMI/MI-

sigs from 80% training set overlapped highly with that of the

60% training set, with only two proteins not included in the

60% training set of NMI/MI-sigs (Figure S3H). Based on the 12

NMI/MI-sigs from the 80% training set, the predictive model

achieved a mean ROC-AUC of 0.876 and 0.73 in training set

and testing set, respectively (Figure S3I). The same modeling

method was applied to the 70/30 training/testing sets and iden-

tified a subset of proteins. We found that 11 out of 12 NMI/MI-

sigs from the 70% training set were coincident with the NMI/

MI-sigs from the 60% training set (Figure S3J). Based on the

12 NMI/MI-sigs from the 70% training set, the predictive model

achieved a mean ROC-AUC of 0.864 and 0.748 in the training

set and testing set, respectively (Figure 6I). The predictive model

was also confirmed in the validation cohort and achieved amean

ROC-AUC of 0.752 (Figure S3K). In conclusion, the classifier

could be a potential predictive model to distinguish between

MI-UTUCs and NMI-UTUCs.

Clinical features associated with proteomic profiles
To evaluate the association between each factor and oncolog-

ical outcomes, we performed a Cox regression (Figure S4A).

The univariate Cox regression results showed that plasma fibrin-

ogen (FIB), a routine coagulation parameter, was associatedwith

both poor overall survival (OS) and inferior PFS (Figure S4B and

STAR Methods), which was consistent with the previous

study.42,43 To evaluate whether the FIB was associated with

other plasma proteins, we employed a correlation analysis of

the plasma proteome.44,45 Filtering for a quantitative data

completeness of at least 70%, pairwise correlation of the FIB

and the quantified proteins resulted in a datamatrix with 883 pro-

teins and 55 continuous clinical variables. Correlating all

variables with each other followed by hierarchical clustering
sive UTUC

UC and normal plasma samples.

I-UTUCs in tissue (top) and plasma (bottom) cohorts. Boxplots show median

skers).

s in WCM UTUC cohort.

% training and 30% test set.
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produced a correlationmapwith four main clusters (clusters 1–4)

(Figure 6A). Cluster 1 was chiefly enriched for proteins with

the gene ontology (GO) term ‘‘acute-phase response and com-

plement and coagulation cascades’’ as well as other significant

terms. Cluster 2 was enriched for proteins with the GO terms

‘‘glycometabolism’’ and ‘‘mitotic cell cycle.’’ Cluster 3 was en-

riched for proteins with the GO terms ‘‘immunoglobulin’’ and

‘‘B cell receptor,’’ suggesting that these proteins originated

from immune cells. Cluster 4 was enriched for proteins with the

GO terms ‘‘antigen processing and presentation’’ and ‘‘phago-

some.’’ Specifically, cluster 1 contained the FIB associated

with poor prognosis (Figure 6B).

We used the same proteins and continuous clinical variables

to perform weighted gene correlation network analysis

(WGCNA) (STAR Methods), which was an unsupervised manner

to identify groups of co-regulated proteins and the association

with clinical variables.46 Consistent with the result of hierarchical

clustering, four modules were yielded (Figure S4C). In addition,

the pathways enriched in the modules presented results similar

to those of the hierarchical clustering (Figure S4D). For example,

the proteins in MEblue module were mainly participating in

immunoglobulin production and B cell receptor, which was

consistent with cluster 3. The proteins in MEgrey module were

enriched in antigen processing and presentation, consistent

with cluster 4. Specifically, the MEbrown module was signifi-

cantly correlated with FIB (Figure S4C).

We observed that FGG, FGA, and FGB quantified by plasma

proteome profiling were the proteins with the strongest correla-

tion with FIB, which demonstrated the reliability of the plasma

proteomic data (Figures 6B and S4E; Table S4). In addition, we

found that the proteins participating in inflammation (SAA1,

CRP, and SAA2) and cell migration (ITGB2) were positively corre-

lated with FIB (Figures 6C and 6E). High expression levels of

these proteins were associated with a poor prognosis (Fig-

ure S4F). It has been reported that fibrinogen and platelets

facilitate each other in protecting tumor cells from natural killer

cytotoxicity by forming thrombin, which depends on b-integrins

expressed on human cancer cells.47 Further pathway enrich-

ment analysis showed that the proteins significantly positively

correlated with FIB (n = 250) were enriched in platelet activation,

acute-phase response, and cell migration pathways, whereas

the proteins significantly negatively correlated with FIB (n =

139) were enriched in cellular oxidant detoxification pathways

(Figures 6D and 6E; Table S4).

UTUC mainly spreads by direct invasion/extension and via

lymphatics. Elevated FIB was significantly associated with

lymph node involvement (LNI) but showed a weak correlation

of 0.12 (Figure 6E). To identify proteins that were more predictive
Figure 6. Clinical features associated with proteomic profiles

(A) Pairwise Spearman correlation of proteins and clinical variables for UTUC plas

variable is compared to all others. Main clusters are functionally annotated with

(B) Magnified area highlights fibrinogen (FIB) (red) and 16 proteins, quantified us

(C) Volcano plot shows correlation between plasma FIB and protein abundance.

(D) Pathways enriched for proteins significantly positively or negatively correlate

(E) Heatmap of plasma FIB level and protein abundance significantly positively c

(F) (Left) Heatmap of lymph node involvement (LNI) score and abundance of 14 p

(hazard ratios) of each protein.
of LNI, we correlated all quantified plasma proteins directly to

LNI. We generated an LNI score for our samples based on 14

proteins thatwere highly positively associatedwith LNI (Figure 6F

and Table S4; STAR Methods). As expected, the LNI score

showed a correlation of 0.41, which was better than FIB’s

weak correlation of 0.12 (Figure 6F; Spearman’s r = 0.41, p =

3.5 3 10�15). Taken together, the protein panel was associated

with lymph node metastasis, which is of interest to identify

high-risk and poor-prognosis UTUC patients.

Progression clock of patients with UTUC identified by
machine learning
The prediction of theUTUC progression clock is essential for dis-

ease treatment planning and medication management but re-

mains one of the challenging tasks in the medical field. We

sought to build a progression clock to predict the progression

time based on individual plasma samples. To screen survival-

related proteins, we determined the correlation between PFS

and the protein expression level. The result showed that 461

and 365 proteins exhibited a significantly positive and signifi-

cantly negative correlation with PFS (Figure 7A and Table S5).

Proteins showing a significantly positive correlation with PFS

were mainly associated with the acute-phase response, cell

adhesion, and protein transport pathways (Figure 7B).

To explore the prognostic value of proteins, we constructed a

univariate Cox hazards model to filter the proteins significantly

related to PFS. The subsequent lasso Cox regression success-

fully selected ten highly relevant proteins (variables) from among

93 proteins (univariate Cox regression: p < 0.05; Table S5),

obtaining the results of ten proteins (Figures S5A and S5B). We

then identified the following ten proteins as predictors of pro-

gression in UTUC patients: ARIH1, EIF4H, PPP5C, NDUFAF3,

LRG1, NXF1, SNRPB, AK2, TMPO, and IFITM3 (Figure S5B).

Subsequently, we established the PFS score by multivariate

Cox proportional hazards regression model including the ten

proteins screened by lasso regression (STAR Methods). Addi-

tionally, the forest plot of the associations between each protein

and PFS is shown in Figure 7C.

To determine the potential clinical usefulness of the model, we

next tested whether plasma sample data could be used in the

predicting protein model to predict the progression time in

UTUC patients. For the progression clock operating character-

istic analysis of the PFS score, the AUC was 0.742, 0.816, and

0.877 at 1, 3, and 5 years, respectively (Figure 7D). Subse-

quently, we integrated the ten proteins to construct a nomogram

(Figure S5C). Based on the calibrated plots, the predicted 1-, 3-,

and 5-year survival probabilities of the nomogram performed

well in our cohort (Figure 7E), and the concordance index (C
ma discovery cohort, resulting in matrix of correlation coefficients where each

keywords.

ing plasma proteome profiling (black).

d with FIB.

orrelated with FIB.

roteins highly positively associated with LNI. (Right) The prognostic risk scores
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Figure 7. Progression-related protein classifier of UTUC patients

(A) Volcano plot of proteins correlated with PFS.

(B) Pathways enriched for proteins significantly positively or negatively correlated with PFS.

(C) Forest plots of the univariate Cox hazard model for PFS.

(D) AUC was 0.742, 0.816, and 0.877 at 1, 3, and 5 years, respectively, in UTUC discovery cohort.

(E) Calibration curves of nomograms between predicted and observed 1-, 3-, and 5-year PFS in discovery UTUC cohort.

(F) AUC was 0.812, 0.88, and 0.905 at 1, 3, and 5 years, respectively, in validation cohort using PRM assays.
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index) of the nomogramwas 0.7387. Additionally, decision curve

analysis (DCA) was used to assess the predicting nomogram’s

differential advantage (Figure S5D), and DCA displayed a net

benefit of the nomogram, showing that it had good clinical utility.

We further evaluated the accuracy of the progression clock

model in the independent cohort (n = 89) using PRM assays.

We selected a set of target peptides that were unique to these

proteins using the library search results (Table S5). Based on

the PRM quantification, the AUC was 0.812, 0.880, and 0.905

at 1, 3, and 5 years, respectively (Figure 7F). Interestingly, the ac-

curacy of predictions substantially improves for more distant

time points into the future, which is worthy of further analysis.

This indicates progression-related plasma protein features as a

potential predictive model to predict the progression time on

the basis of blood samples from UTUC patients.

DISCUSSION

Although diagnosis of UTUC has been substantially improved

with minimally invasive procedures using advanced endoscopic

devices, there remain risks for adverse events such as ureter

injury, infection, and difficultly detecting early progression of dis-

eases.48 Urine cytology also fails to detect the majority of

UTUCs.3 In this regard, easily available plasma proteins would

be a plausible target of diagnostics, and only a few reports

have investigated its potential for the monitoring and diagnosis

of UTUC.49 In this study, we investigated the plasma proteomic

landscape of UTUC patients and healthy controls and provided

predictive models that could potentially enhance the diagnosis

and management of UTUC.

Proteins that are present in plasma originate from a variety of

sources. Solid tissues, especially from intestine and liver, secrete

a large number of proteins that execute their functions in the

plasma.50 In this study, the plasma proteome captured more

than 50% of kidney-associated proteins, and these intracellular

proteins could serve as signature proteins reflecting tissue dam-

age actually induced by tumor formation.51 Furthermore, to

further explore the dynamic changes in response to major

changes in tumor burden, we collected post-surgery and post-

chemotherapy plasma samples matched with their paired pre-

surgery and pre-chemotherapy plasma samples. Functional

enrichment analysis showed that the proteins downregulated

in post-surgery samples were involved in fatty acid degradation

and tRNA aminoacylation, indicating that these pathways

decreased alongside the diminishing tumor burden. Conversely,

the proteins upregulated in post-surgery samples were mainly

enriched in leukocyte transendothelial migration and

platelet activation, delineating the stress response to surgery

(Figures S6A–S6H). Similar trends were also observed in post-

chemotherapy plasma samples (Figures S6I–S6N). The plasma

partially returned to normal after the surgery or chemotherapy,

and the changes linked to the tumor burden were captured.

We also performed differential expression analysis of UTUC

and normal samples and constructed a classifier to identify

UTUC patients. Because the UTUC samples contained RPUC,

UUC, and a combination of both cancers, we investigated

whether a different distribution of cohort assignments with

possibly a different mixture has an effect on the performance
of a proteomics-based prediction model. First, we divided the

UTUC samples into RPUC (n = 163), UUC (n = 165), and com-

bined (n = 34), and evaluated the performance of the model.

The results showed that the AUC of RPUC (1:0:0), UUC (0:1:0),

and combined samples (0:0:1) was 0.938, 0.935, and 0.943,

respectively (Figures S7A–S7C). Furthermore, we remixed the

UTUC samples in a different ratio of 1:1:1 and 2:4:1 (UUC/

RPUC/combined) in the discovery cohort, where the AUC was

0.932 and 0.942 (Figures S7D and S7E), respectively. Addition-

ally, we remixed the UTUC samples in a ratio of 1:1:1 and 2:4:1

(UUC/RPUC/combined) in the validation cohort, where the

AUC was 0.898 and 0.906, respectively (Figures S7F and S7G).

The data showed that the different distribution of cohort assign-

ments with possibly a different mixture would not have an effect

on the final results.

Exosomes, since being discovered as signaling carriers and

communication media, have positioned themselves at the fore-

front of cancer research in the last decade.28 In this study, we

found that 18 proteins upregulated in both UTUC plasma and

UTUC EVs might serve as potential signature proteins for

UTUC patients and warranted further validation. Additionally,

urine plays a crucial role in the early diagnosis and forecast sta-

tus of clinical diseases. Our findings supported the presence of

three proteins that were only detected in urine samples from

NMI-UTUCs, suggesting a potential association with NMI-

UTUCs. Taken together, we performed an integrated analysis,

including the proteome of tissue, plasma, EVs, and urine. The

dysregulated proteins identified in different compartments

partially overlapped, and each compartment yielded a different

UTUC-associated protein expression signature.

The key prognostic factor at the time of diagnosis of UTUC is

whether the tumor is in the muscle-invasive or non-muscle-inva-

sive stage.8 However, urine cytology has been found to perform

poorly in the prediction of muscle-invasive or high-grade disease

in UTUC (sensitivity 56% for high-grade tumors, sensitivity 62%

for muscle-invasive UTUC).52 Hurel et al. combined gender,

locally advanced stage on pre-operative workup, and positive

cytology to predict MI-UTUCs with an accuracy of 65.3%.53

We constructed a plasma protein model to predict MI-UTUCs

with >80% sensitivity/specificity. The model was further vali-

dated in an independent cohort. In addition, we found some

proteins (e.g., ABLIM3, SCGN, PYGO2) exclusively expressed

inMI-UTUC or NMI-UTUC samples. Nevertheless, the identifica-

tion frequency of these proteins was low owing to the sample

itself or instrument sensitivity, and more validation is needed to

confirm these proteins.

Through correlation analysis, we deciphered the relationship

between clinical indicators and tumors. For example, we

observed that FIB was associated with poor prognosis and

lymph nodemetastasis, which was proved in a previous study,43

but the mechanism was unclear. By the identification of plasma

proteins, we added nearly 2,000 protein features to each sample,

which allowed us to associate clinical indicators with plasma

proteins in networks. We identified a cluster of four proteins of

special interest, SAA1, CRP, SAA2, and ITGB2, whichwas signif-

icantly correlated with FIB. The proteins participating in inflam-

mation and cell migration were linked to the pathogenesis of uro-

logic cancers or identified as a risk factor for the disease.54–56
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These proteins in the network provided a basis for investigating

the potential mechanism of FIB and tumor progression.

Predicting the progression time for individual patients could

improve their clinical outcomes.57 Recently, several prognostic

models have been developed to predict oncological outcomes

in UTUC patients.58–60 However, these accurate prognostic

models were based on clinical features. In this study, we built

a progression-related proteinmodel using the lasso-Coxmethod

to predict the progression clock based on the plasma proteome.

The protein panel underlying the progression-related protein

model was selected in an unbiased manner, driven by the pro-

teins’ diagnostic performance. We further proved that the pro-

gression clock model was an indicator for the 1-, 3-, and

5-year survival of UTUCpatients, and themodel was also verified

in an independent cohort by PRM assays. These results indi-

cated that progression-related plasma protein features could

be a potential predictive model to predict the progression time

on the basis of plasma samples from UTUC patients.

In conclusion, in this study we captured the changes in the

plasma proteome of UTUC patients that were linked to the path-

ological features and clinical manifestations of underlying dis-

ease. We demonstrated that plasma proteome profiling enables

the discovery of molecular signatures related to disease, which

could have amajor impact on important aspects of diseaseman-

agement: (1) the diagnostic classifier might help diagnose UTUC,

(2) the potential predicted model could distinguish between MI-

UTUCs and NMI-UTUCs, and (3) the progression clock could

provide information about disease progression.

Limitations of the study
The single-center cohort study conducted at the Fudan Univer-

sity Shanghai Cancer Center was retrospective and included

only Chinese patients, which may lead to potential selection

bias. Additional prospective studies are needed to validate our

findings in multiple centers and cohorts of other ethnicities.

The signature proteins may not be tumor specific but could

have stemmed from other affected organs or may be indirectly

induced by the effects of the tumors on their microenvironment

or even systemically. More solid methods are needed to validate

the signature proteins from this study. The progression clock

contained a ten-protein classifier that needs to be further inves-

tigated in future confirmatory trials to advance the mechanistic

understanding of UTUC progression. Follow-up research on

the biological mechanisms is still needed in future studies to

guide clinical management and develop drug targets.
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30. Böing, A.N., van der Pol, E., Grootemaat, A.E., Coumans, F.A.W., Sturk,

A., and Nieuwland, R. (2014). Single-step isolation of extracellular vesicles

by size-exclusion chromatography. J. Extracell. Vesicles 3, 23430. https://

doi.org/10.3402/jev.v3.23430.

31. Li, P., Kaslan, M., Lee, S.H., Yao, J., and Gao, Z. (2017). Progress in exo-

some isolation techniques. Theranostics 7, 789–804. https://doi.org/10.

7150/thno.18133.

32. Lobb, R.J., Becker, M., Wen, S.W., Wong, C.S.F., Wiegmans, A.P., Leim-
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participant recruitment and clinical data collection
In this study, plasma samples from all participants in two independent cohorts (Cohort 1 and 2) were recruited from the Department of

Urology, Fudan University Shanghai Cancer Center (FUSCC). Cohort 1 was the discovery cohort consisting of 239 healthy controls

and 362UTUCpatients. Cohort 2 was the validation cohort consisting of 89UTUCpatients.We also collected 10 plasma correspond-

ing UTUC tumor tissue samples and 10 normal tissue samples from the Department of FUSCC. The normal tissue samples were

normal urothelial epithelia obtained from 10 patients with kidney cancer undergoing nephrectomy at the FUSCC. The healthy controls

matched for age, gender and BMI were peripheral blood samples for physical examination from healthy persons. We excluded

control samples in case of any medication or any cancer among other exclusion criteria (Table S1). Patients with UTUC who did

not undergo any anti-cancer treatments prior to surgery were randomly selected from April 2013 to September 2022 on their first

visit. Clinical information of patients, including tumor location, gender, age, tumor node metastasis (TNM) staging, and routine blood

test results, is listed in Table S1. All the samples were stored at �80�C until sample processing. The study was compliant with the

ethical standards of Helsinki Declaration II and was approved by the institutional review board of FUSCC (050432-4-1911D). Written

informed consent was obtained from each patient before any study-specific investigation was conducted.

METHOD DETAILS

Pathology review
The tissue samples were systematically evaluated by three expert genitourinary pathologists to confirm the histopathologic diagnosis

according to the World Health Organization (WHO) classification. Additionally, the tumor tissues samples were assessed for tumor

content, the presence and extent of tumor necrosis, and signs of invasion into the muscularis propria. Tumor sections were required

to contain an average of 70% tumor cell nuclei with equal to or less than 20% necrosis for inclusion in the study. Any non-concordant

diagnoses among the three pathologists were re-reviewed, and a resolution was reached following discussion. Each sample was

assigned a new research ID, and the patient’s name or medical record number used during hospitalization was de-identified.

Plasma protein extraction and trypsin digestion
Plasma samples were mixed with 100 mL 50 mM ammonium bicarbonate (ABC) buffer, and the proteins were inactivated at 95�C for

5 min. The samples were cooled to room temperature, digested using trypsin at an enzyme to protein mass ratio of 1:25 for 17 h in a

37�C incubator. Then, 5 mL aqueous ammonia was added to each tube, vortexed to quench the digestion reaction, and the super-

natant was subsequently dried using a 60�C vacuum drier (SpeedVac, Eppendorf). Then, the peptides were dissolved in 100 mL 0.1%

formic acid (FA), followed by vortexing for 3 min, and then sedimentation for 3 min (12,0003g). The supernatant was picked into new

tube and then desalinated. Before desalination, the activation of pillars with 2 slides of 3M C18 disk is required, and the lipid is as

follows: 90 mL 100% acetonitrile (ACN) twice, 90 mL 50% and 80% ACN once in turn, and then 90 mL 50% ACN once. After pillar bal-

ance with 90 mL 0.1% FA twice, the supernatant of the tubes was loading into the pillar twice, and decontamination with 90 mL 0.1%

FA twice. Lastly, 90 mL elution buffer (0.1% FA in 50% ACN) was added into the pillar fir elution twice and only the effluent was

collected for MS. Finally, the collected peptides were dried using a 60�C vacuum drier.
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Tissue protein extraction and trypsin digestion
The tissue samples were minced and lysed in lysis buffer (8 M urea, 100 mM Tris-HCl, pH 8.0) containing protease and phosphatase

inhibitors (Thermo Scientific) and then sonicated for 1 min (3s on and 3 s off, amplitude 25%). The lysates were centrifuged at

14,0003g for 10 min and supernatants were collected as whole-tissue extracts. Protein concentrations were determined by the

Bradford protein assay (TaKaRa, T9310A). Extracts were reduced with 10 mM DTT (dithiothreitol) at 56�C for 30 min and alkylated

with 10 mM iodoacetamide at room temperature in the dark for 30 min. Protein samples were then digested with trypsin using a fil-

ter-aided sample preparation method64 at 37�C overnight with an enzyme to protein mass ratio of 1:25. Peptides were dried using a

60�C vacuum drier.

Urine protein extraction and trypsin digestion
The 200 mL urine supernatant samples were heated at 99�C for 10 min to inactivate the proteins. The samples were cooled to room

temperature andwas loaded into a 10 kDMicrocon filtration device (Millipore). Adsorbed proteins werewashed two timeswith 100 mL

of 50 mmABC buffer (12,000 3 g for 20 min). The samples were digested using trypsin at an enzyme to protein mass ratio of 1:25 for

17 h in a 37�C incubator. Peptides were dried using a 60�C vacuum drier.

EVs purification from plasma samples
The ultracentrifugation and size exclusion chromatography (SEC) was used to isolate EVs from plasma samples, which is a widely

adopted method for the isolation of EVs.31–33 For ultracentrifugation, the centrifugal force used typically ranges from �100,000 to

120,000 3 g. Before the start of isolation, a cleaning step is usually carried out for samples to rid of large bioparticles in a sample

and the sample is spiked with protease inhibitors to prevent the degradation of proteins.65 After rinsing the columns with phosphate

buffered saline (PBS), samples were applied on top of a qEVoriginal column (Izon Science).30 After removal of buffer volume (Frac-

tions 1–6, 3.0 mL), the EVs-rich Fractions 7–9 (purified collection volume, 1.5 mL) were pooled. Then purified EVs samples (50 mL)

were obtained by concentrating using an Amicon Utra-4-10k centrifugal filter device (MerckMillipore). The EVs protein concentration

was measured by BCA (bicinchoninic acid) (Pierce, Thermo Fisher Scientific). The EVs size and particle number were analyzed using

the LM10 nanoparticle characterization system (NanoSight, Malvern, Instruments) equipped with a violet laser (405 nm). Isolated EVs

were fixed with 2% paraformaldehyde and then spread onto glow discharged Formvar-coated copper mesh grids and stained with

2% uranyl acetate for 5min, post drying, grids were photographed under a JEOL 100 CX electronmicroscope operated at 80 kV. The

presence of EV-enriched proteins determined by western blotting in 10 mg of lysates using the following antibodies: Calnexin (A4846,

ABclonal, dilution 1: 1000), CD9 (A19027, ABclonal, dilution 1: 1000), HSP70 (A21180, ABclonal, dilution 1: 1000), TSG101 (A5789,

ABclonal, dilution 1: 1000).

EVs protein extraction and trypsin digestion
The EVs samples were lysed in TCEP buffer (2% deoxycholic acid sodium salt, 40 mM 2-chloroacetamide, 100 mM Tris-HCl, 10 mM

Tris(2-chloroethyl) phosphate, and 1 mM PMSF mixed with MS water, pH 8.5), and heated in a metal bath at 99�C for 30 min. After

cooling to room temperature, trypsin was added and digested for 17 h at 37�C. 10% FA was added to each tube, vortexed for 3 min,

and then centrifuging 12, 000g for 5 min. The supernatant was collected in a new 1.5 mL tube and dried using a 60�C vacuum drier.

Then, the peptides were dissolved in 100 mL 0.1% FA, followed by vortexing for 3 min, and then sedimentation for 5 min (12,0003g).

The supernatant was picked into new tube and then desalinated. Before desalination, the activation of pillars with 2 slides of 3M C18

disk is required, and the lipid is as follows: 90 mL 100% ACN twice, 90 mL 50% and 80% ACN once in turn, and then 90 mL 50% ACN

once. After pillar balance with 90 mL 0.1% FA twice, the supernatant of the tubes was loading into the pillar twice, and decontami-

nation with 90 mL 0.1% FA twice. Lastly, 90 mL elution buffer (0.1% FA in 50%ACN) was added into the pillar fir elution twice and only

the effluent was collected for MS. Finally, the collected peptides were dried using a 60�C vacuum drier.

LC-MS/MS analysis
The acquisition of samples was randomized to avoid bias. The plasma samples and urine samples were measured using LC-MS

instrumentation consisting of an EASY- nLC 1200 ultra-high-pressure system (Thermo Fisher Scientific) coupled via a nano-electro-

spray ion source to a Q Exactive HF-X Hybrid Quadrupole-Orbitrap mass spectrometer (all Thermo Fisher Scientific). Eluted peptides

were separated at 60�C on 150 mm I.D. 3 8 cm column (C18, 1.9mm, 120 Å, Dr. Maisch GmbH). Mobile phases A and B were 99.9/

0.1% water/FA (v/v) and 80/20/0.1% ACN/water/FA (v/v/v). The MS analysis was performed in a data-independent acquisition (DIA)

mode. The DIAmethod consisted ofMS1 scan from 300 to 1,400m/z at 30,000 resolution and the automatic gain control (AGC) target

3e6 or a maximum of 20 ms. Then, 30 DIA segments were acquired at 15,000 resolution with an AGC target 1e6 or 22 ms for maximal

injection time. The setting ‘‘inject ions for all available parallelizable time’’ was enabled. Higher energy collision dissociation (HCD)

fragmentation was set to normalized collision energy of 27%. The spectra were recorded in profile mode. The default charge state

for the MS2 was set to 3.

The tissue samples and EVs samples were analyzed on Easy-nLC 1200 liquid chromatography system (Thermo Fisher Scientific)

coupled to an Orbitrap Exploris 480 via a nano-electrospray ion source (Thermo Fisher Scientific). The dried peptides were redis-

solved in 20 mL loading buffer (0.1% FA), and 10 mL of the sample was loaded onto a trap column (100 mm 3 2 cm, home-made;

particle size, 3 mm; pore size, 120 Å; SunChrom) with a maximum pressure of 280 bar using solvent A, then separated on home-
e3 Cell Reports Medicine 4, 101166, September 19, 2023
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made 150 mm3 12 cm silica microcolumn (particle size, 1.9 mm; pore size, 120 Å; SunChrom) with a gradient of 5–35%mobile phase

B (ACN and 0.1% FA) at a flow rate of 600 nL/min for 150 min. The eluted peptides were ionized and detected using high-field asym-

metric waveform ion mobility spectrometry coupled with OE 480 MS (Thermo Fisher Scientific). The DV was set to�45 V and�65 V.

Mass spectrometry was performed in data-dependent acquisition (DDA) mode. For the MS1 Spectra full scan, ions withm/z ranging

from300 to 1,400were acquired by anOrbitrapmass analyzer at a high resolution of 120,000. The AGC target valuewas set to 3E+06.

The maximal ion injection time was 80 ms. MS2 spectral acquisition was performed in the ion trap in a rapid speed mode. Precursor

ions were selected and fragmented with HCD with a normalized collision energy of 27%. Fragment ions were analyzed by an ion trap

mass analyzer with an AGC target at 5E+04. The maximal ion injection time of MS2 was 20ms. Peptides that triggeredMS/MS scans

were dynamically excluded from further MS/MS scans for 12 s.

MS database searching
Peptide identification and protein quantification

All data were processed using ‘‘Firmiana’’ (a one-stop proteomic cloud platform, https://phenomics.fudan.edu.cn/firmiana/).62 The

data were search against UniProt human protein database (updated on 2019.12.17, 20406 entries) using FragPipe (v12.1) with

MSFragger (2.2) (DIA data)66 and Mascot search engine (DDA data). The mass tolerances were 20 ppm for precursor and

50mmu for product ions. Up to twomissed cleavages were allowed. The search engine set cysteine carbamidomethylation as a fixed

modification and N-acetylation and oxidation of methionine as variable modifications. Precursor ion score charges were limited

to +2, +3, and +4. The data were also searched against a decoy database so that protein identifications were accepted at a false

discovery rate (FDR) of 1%. The results of DDA data were combined into spectra libraries using SpectraST software. A total of

327 libraries were used as reference spectra libraries.

DIA data was analyzed using DIA-NN (v1.7.0).67 The default settings were used for DIA-NN (Precursor FDR: 5%, Log lev: 1, Mass

accuracy: 20 ppm, MS1 accuracy: 10 ppm, Scan window: 30, Implicit protein group: genes, Quantification strategy: robust LC (high

accuracy)). Quantification of identified peptides was calculated as the average of chromatographic fragment ion peak areas across

all reference spectra libraries. Label-free protein quantifications were calculated using a label-free, intensity-based absolute quan-

tification (iBAQ) approach.68 We calculated the peak area values as parts of corresponding proteins. The fraction of total (FOT) was

used to represent the normalized abundance of a particular protein across samples. The FOT values was defined as a protein’s iBAQ

divided by the total iBAQ of all identified proteins within a sample. The FOT values weremultiplied by 105 for the ease of presentation.

Quality control of the mass spectrometry data
For quality control of performance of mass spectrometry, the mixture of all plasma samples from UTUC patients were measured

every 20 samples, which was adopted in proteomic studies.21,69 The quality control (QC) plasma samples were analyzed using

the same method and conditions as our plasma cohort. A Pearson’s correlation coefficient was calculated for all QC runs. The

average Pearson’s correlation coefficient of QC plasma samples in this study was 0.96 (range, 0.95–1.00) (Figure S1D; Table S1),

demonstrating consistent stability of the mass spectrometry platform. Assessed on the quality control samples, median workflow

coefficient of variation was 22% (Figure S1C).

Targeted PRM analysis
To evaluate the accuracy of the classifiers, we designed parallel reaction monitoring (PRM) strategy to quantify the classifier proteins

in plasma samples from the independent cohort composed of 89 UTUC patients. Using the library search results, a set of target pep-

tides that unique to the classifier proteins were selected, including distinguishing between muscle-invasive and non-muscle invasive

UTUC classifier proteins, and predicting progression-free survival classifier proteins. Besides, house-keeping proteins, such as VCP,

RPLP0, PSMB4, were also included for the reference. Equal amount of plasma from each sample (the validation cohort with 89 UTUC

patients) was digested as described in the part of profiling preparation. Peptide samples were injected into the Q Exactive HF-X

Hybrid Quadrupole-Orbitrap Mass Spectrometer (Thermo Scientific) operating in PRM mode with quadrupole isolation and HCD

fragmentation. The mobile phase buffers were the same as the buffers mentioned in the method of DIA section. The full MS mode

was measured at resolution 60,000 with AGC target value of 3E6 and maximum IT of 20 ms, with scanning range of 300–1400 m/

z. Target precursors were then isolated through anm/z window of 1.2 Th, followed by fragmentation at 27% normalized collision en-

ergy. The product ions were scanned with a resolution of 15,000, AGC target value of 1E6 or a maximum injection time of 25 ms.

Raw data was searched by Skyline-daily (4.2.1.19004, University of Washington, USA). The proteins were quantified with the frag-

ment total area reported by Skyline-daily. We selected peptides and tested their stability of signal and shape of peaks in the pool

sample for final quantification, and referred to the ranking offered by skyline.

QUANTIFICATION AND STATISTICAL ANALYSIS

Missing value imputation
For the proteomic data, FOTs multiplied by 1E5 were used for quantification, and missing values were imputed with 1E-5 and finally,

log2 transformed, if necessary.
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Differential protein analysis
Proteins expressed in more than 30% of the samples were selected for differential expression analysis. The Wilcoxon rank-sum test

was used to examine whether proteins were differentially expressed between UTUC and normal, or NMI-UTUCs andMI-UTUCs. Up-

regulated or downregulated proteins are defined as proteins differentially expressed in one group compared with the other group

(Wilcoxon rank-sum test, BH p < 0.05, Fold change >1.5 or <0.67).

Pathway enrichment analysis
Differentially expressed proteins were subjected to Gene Ontology and KEGG pathway enrichment analysis in DAVID (https://david.

ncifcrf.gov/)70 and ConsensusPathwayDB (http://cpdb.molgen.mpg.de/)63 with an FDR <0.05.We used gene sets of molecular path-

ways from the KEGG71/Reactome72/GO73 databases to compute pathways.

Construction and validation of predictive models to distinguish between UTUC and normal or MI-UTUCs and NMI-
UTUCs
Binomial logistic regression analysis was used to construct the distinguishing between UTUC and normal or MI-UTUCs and

NMI-UTUCs prediction model based on the significantly differentially expressed proteins in UTUC and Normal or MI-UTUCs and

NMI-UTUCs plasma samples using in the R software v3.5.1. The backward stepwise method was utilized to feature selection. Sam-

ples were randomly divided into the training set and the testing set.74 Moreover, the diagnostic value of this model was verified using

ROCanalysis (pROCRpackage version 1.16.2 andCaret R package version 6.0–86). Sensitivity, specificity, accuracy, and AUCwere

used to determine predictive values. The predictive model was validated in validation cohort.

WGCNA analysis
Weighted gene correlation network analysis (WGCNA)46 was used to identify groups of co-regulated genes in an unsupervised

manner. A sample network was constructed to identify outlying samples with a standardized connectivity score of less than �2.5.

A signed gene co-expression network was constructed with a soft threshold power of 10. Groups of co-regulated genes (modules)

correlated with each other with a Pearson correlation coefficient of 0.9, or better, were merged. Pathway enrichment analysis was

used for the functional annotation of the identified modules. The eigengenes of each module were used to measure the association

between modules and clinical information.

Lymph node involvement (LNI) score
Single-sample gene set enrichment analysis (ssGSEA)75 was utilized to obtain score for each sample based on proteomic data using

the R package GSVA.76 Correlations between the plasma proteins and lymph node involvement were determined using Spearman’s

correlation. The inferred lymph node involvement (LNI) score was performed using ssGSEA implemented in the R package GSVA.

Risk score
The risk scores (hazard ratios) of each protein were calculated based on the overall survival or progression-free survival. The hazard

ratios and their 95% confidence intervals (CIs) for each protein were based on Cox proportional hazards models by the R package

‘‘survival’’.

Survival analysis
Kaplan-Meier survival curves (log rank test) were used to determine the overall survival (OS) and progression-free survival (PFS) of

patients with muscle-invasive versus non-muscle invasive and patients with high plasma fibrinogen versus low plasma fibrinogen.

The coefficient value, which is equal to ln (HR), was calculated using Cox proportional hazards regression analysis. P-values less

than 0.05, were considered significantly different and selected for Cox regression multivariate analysis. Prior to the log rank test

of a given protein, survminer (version 0.2.4, R package) with maxstat (maximally selected rank statistics; http://r-addict.com/

2016/11/21/Optimal-Cutpoint-maxstat.html) was used to determine the optimal cut-off point for the selected samples according

to a previous study.77 OS and PFS curves were then calculated based on the optimal cut-off point. The 95% pointwise CIs for the

two groups of subjects were produced by the function ggsurvplot () [in Survminer R package].

Multivariate Cox proportional hazards regression analysis
Multivariate Cox proportional hazards regression analysis was used to establish the progression-free survival-predicting model for

UTUC. The results were plotted using a forest map with the R package ‘‘ggplot2’’. The PFS score for each UTUC patient was calcu-

lated using the formula: PFS score = Sbi*Xi (Xi represents the screened protein expression, and bi represents the corresponding

coefficient).

Statistical analysis
Standard statistical tests were used to analyze the clinical data, including but not limited to Student’s t test, Wilcoxon rank-sum test,

Chi-square test, Fisher’s exact test, Kruskal-Wallis test, Log rank test. The Wilcoxon rank-sum test was used to examine whether

proteins were differentially expressed between UTUC and normal, or NMI-UTUCs and MI-UTUCs. The Kruskal-Wallis test was
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used to test whether proteins were differentially expressed among the three groups (Normal, NMI-UTUC, and MI-UTUC). For corre-

lation analysis, Spearman or Pearson correlation was used. All statistical tests were two-sided, and statistical significance was

considered when p value <0.05. To account for multiple-testing, the p values were adjusted using the Benjamini-Hochberg FDR

correction. Kaplan–Meier plots (Log rank test) were used to describe OS and PFS probabilities. Variables associated with overall sur-

vival and progression-free survival were identified using univariate Cox proportional hazards regression models. Significant factors in

univariate analysis were further subjected to amultivariate Cox regression analysis in a forward LRmanner. All the analyses of clinical

data were performed in R (version 3.5.1). The p values less than 0.05, 0.01, 0.001, 0.0001 weremarked with *, **, ***, ****, respectively.

All the statistical analysis had been checked by two statisticians.
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