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SUMMARY
Metabolic reprogramming is known as an emerging mechanism of chemotherapy resistance, but the meta-
bolic signatures of pancreatic ductal adenocarcinomas (PDACs) remain unclear. Here, we characterize the
metabolomic profile of PDAC organoids and classify them into glucomet-PDAC (high glucose metabolism
levels) and lipomet-PDAC (high lipid metabolism levels). Glucomet-PDACs are more resistant to chemo-
therapy than lipomet-PDACs, and patients with glucomet-PDAC have a worse prognosis. Integrated ana-
lyses reveal that the GLUT1/aldolase B (ALDOB)/glucose-6-phosphate dehydrogenase (G6PD) axis induces
chemotherapy resistance by remodeling glucose metabolism in glucomet-PDAC. Increased glycolytic flux,
G6PD activity, and pyrimidine biosynthesis are identified in glucomet-PDAC with high GLUT1 and low
ALDOB expression, and these phenotypes could be reversed by inhibiting GLUT1 expression or by
increasing ALDOB expression. Pharmacological inhibition of GLUT1 or G6PD enhances the chemotherapy
response of glucomet-PDAC. Our findings uncover potential metabolic heterogeneity related to differences
in chemotherapy sensitivity in PDAC and develop a promising pharmacological strategy for patients with
chemotherapy-resistant glucomet-PDAC through the combination of chemotherapy and GLUT1/ALDOB/
G6PD axis inhibitors.
INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is one of the most

lethal malignancies and has a 5-year survival rate of 11%.1

Chemotherapy could significantly prolong the survival of

patients with PDAC,2 but the chemotherapy response rate of

patients with PDAC remains low due to complex and unclear

drug-resistance mechanisms.3,4 Although many studies have

focused on the classification of PDAC based on genomic and

transcriptomic signatures,5–10 the currently defined signatures

of PDAC do not indicate chemotherapy sensitivity or guide

treatment decisions. Metabolic reprogramming is recognized
Cell Reports
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as an emerging mechanism of therapy resistance and presents

opportunities for cancer treatment.2,11–15 However, few studies

have examined the metabolic dysregulation and heterogeneity

of PDAC because of the presence of abundant stromal cells,

making capturing precise tumor-specific metabolite information

difficult. Thus, systematically characterizing the metabolic and

genomic profiles of PDAC may uncover the underlying molecu-

lar details of chemosensitivity and facilitate the development

of targeted therapies to prevent or reverse chemotherapy

resistance.

Since altered metabolism is one of the hallmarks of cancer,

there is growing interest in the relationship between
Medicine 4, 101162, September 19, 2023 ª 2023 The Author(s). 1
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metabolism (particularly glucose metabolism) and PDAC initia-

tion, progression, and therapy resistance.16,17 Previous studies

have been conducted in PDAC cell lines with different metabo-

lite levels in glycolysis, lipogenesis, and redox pathways, which

exhibit distinct sensitivity to a variety of metabolic inhibitors.18

Furthermore, intratumoral metabolism heterogeneity within in-

dividual PDAC tumors has been identified in contributing to

therapy resistance with OXPHOS inhibitors.19 In mouse

models, KRAS mutations and hypoxia are known inducers of

the glycolytic pathway in PDAC.20–22 Disruption of distal

cholesterol biosynthesis by conditional inactivation of Nsdhl

or by treatment with statins switches the classical phenotype

to a basal phenotype in mouse models.23 On the basis of the

median normalized expression of glycolytic and cholestero-

genic genes, four metabolic expression subtypes were identi-

fied, and glycolytic tumors were associated with the shortest

median survival.24 These studies highlight the need to charac-

terize the metabolic signatures and identify essential pathways

for PDAC cell survival and chemotherapy resistance, which

may provide a therapeutic window.

Patient-derived cancer organoids have emerged as a

research model and have proven superior to traditional cell

lines in recapitulating the features of primary tumors.25–30 We

have established a large PDAC organoid biobank and charac-

terized these organoids by multiomics integration analysis.31

Here, we characterized the metabolic profiles of PDAC organo-

ids and identified two metabolic subtypes, termed glucomet-

PDAC (high glucose metabolism) and lipomet-PDAC (high lipid

metabolism). We found that the GLUT1/aldolase B (ALDOB)/

glucose-6-phosphate dehydrogenase (G6PD) axis regulates

glucose metabolic reprogramming and confers chemotherapy

resistance in glucomet-PDAC. Moreover, we presented a po-

tential pharmacological strategy that involves targeting the

GLUT1/ALDOB/G6PD axis to enhance the therapeutic sensi-

tivity of glucomet-PDAC.
Figure 1. Metabolite profiling stratifies PDAC into two subtypes

(A) PDACorganoid subgrouping basedonwidely targetedmetabolite abundance.D

change > 1.2). Samples and metabolites are displayed as columns and rows, res

metabolites.

(B) Relative enrichment of the six metabolic ontology classes in class 1 and class

score. Positive scores represent terms enriched in metabolites with high intensit

(C) Fractions of labeled metabolites in glycolysis from [U-13C6] glucose in repres

(D) Fractions of labeled metabolites in the TCA cycle from [U-13C6] glucose in re

(E and F) Fractions of labeled metabolites in oxidative PPP (E) and nonoxidative P

class 2 (n = 6).

(G) Heatmap of widely targeted lipidomics assay showing the abundance of diffe

(H and I) Class 1 (n = 13) and class 2 (n = 15) organoids were exposed to oligomyc

(OCR) by XF Cell Mito Stress Test.

(J and K) Dose-response curves and normalized area under the curve (AUC) dist

(L and M) Dose-response curves and normalized AUC distribution for Gboxin (in

(N) Heatmap of RNA sequencing (RNA-seq) showing the expression of differentially

(p was calculated with limma, p < 0.05 and fold change > 1.5). Representative gene

(O) Profile plot and heatmap of assay for transposase-accessible chromatin with

around the transcriptional start site (TSS) of signature genes in lipomet-PDAC (n

(P) KEGG pathways enriched in the lipomet subtype (left) and glucomet subtype

The significance of the difference was determined by Student’s t test (*p < 0.05;

significance was computed by unpaired Student’s t test (C–F). Statistical significanc

G6P, glucose-6-phosphate; 6PG, 6-phosphate gluconate; F6P, fructose-6-phosp

rosine 4-phosphate.
RESULTS

Metabolite profiling stratifies PDAC into lipomet-PDAC
and glucomet-PDAC
To characterize the metabolic profiles of PDAC, we examined

metabolites via a widely targeted metabolomics assay in 28 pa-

tient-derived PDAC organoids31 (Table S1). According to the

consensus matrix, we identified two optimal metabolic subtypes

according to targeted metabolomics (Figures 1A and S1A;

Table S2), and this result was further confirmed in silhouette

analysis (Figure S1B).

We calculated the enrichment score of previously established

metabolic ontologies in the two metabolic subtypes by single-

sample gene set enrichment analysis (ssGSEA). Class 2 organo-

ids were characterized by marked enrichment of carbohydrate

metabolism, energy metabolism, and nucleotide metabolism,

indicating increased glucose metabolism (Figure 1B). We then

used [U-13C6] glucose to track metabolic flux in the two meta-

bolic subtypes and found that metabolic flux in glycolysis and

the tricarboxylic acid (TCA) cycle was significantly increased in

class 2 (Figures 1C and 1D). Moreover, we noted that the oxida-

tive pentose phosphate pathway (PPP) metabolites G6P, 6PG,

and R5P, but not the nonoxidative PPP metabolites S7P and

E4P, were highly enriched in class 2 organoids, suggesting

glucose metabolic reprogramming in class 2 (Figures 1E and

1F). Thus, we termed class 2 organoids as glucomet-PDAC.

Class 1 was characterized by relatively enriched lipid meta-

bolism (Figure 1B). We validated the lipid metabolic dependency

of class 1 in three ways. Firstly, we compared the lipid metabo-

lites of two metabolic subtypes by widely targeted lipidomics

assay. We found that all significant differential lipids were en-

riched in class 1 (Figure 1G; Table S2). Secondly, class 1 showed

higher oxygen consumption rates than glucomet-PDAC

(Figures 1H and 1I). Thirdly, class 1 was more sensitive to the

fatty acid synthase inhibitor and oxidative phosphorylation
ifferentialmetaboliteswere identifiedby theWilcoxon rank-sum test (p<0.05, fold

pectively, and the color of each organoid shows the relative abundance of the

2 organoids, presented as the difference (class 2 versus class 1) in the ssGSEA

ies in class 2.

entative organoids of class 1 (n = 6) and class 2 (n = 6).

presentative organoids of class 1 (n = 6) and class 2 (n = 6).

PP (F) from [U-13C6] glucose in representative organoids of class 1 (n = 6) and

rentially lipid metabolites in class 1 (n = 6) and class 2 (n = 6).

in, FCCP, and rotenone/antimycin A to measure the oxygen consumption rate

ribution for TVB-3166 (fatty acid synthase inhibitor) on class 1 and class 2.

hibitor of oxidative phosphorylation) on class 1 (n = 13) and class 2 (n = 15).

expressed genes (DEGs) in glucomet-PDAC (n = 15) and lipomet-PDAC (n = 13)

s associated with lipid or glucose metabolism are shown in the box on the right.

sequencing (ATAC-seq) results showing the distribution of differential peaks

= 13) and glucomet-PDAC (n = 15).

(right) identified by GSEA.

**p < 0.01) (B). Data are presented as the mean values ± SEMs, and statistical

e was computed by unpaired Student’s t test (I, K, andM). aKG, a-ketoglutarate;

hate; R5P, ribose 5-phosphate; S7P, sedoheptulose-7-phosphate; E4P, eryth-
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inhibitor (Figures 1J–1M). Therefore, these class 1 organoids

were termed as lipomet-PDAC. These metabolic profiles classi-

fied PDAC into lipomet-PDAC and glucomet-PDAC with

elevated lipid and glucose metabolism, respectively.

Abnormal accumulation of metabolites commonly results from

the reprogramming of metabolic pathways.32 To identify the

molecular mechanism of PDAC metabolic reprogramming, we

systematically analyzed the genomic and transcriptomic pro-

files. Surprisingly, glucomet-PDAC and lipomet-PDAC shared

similar gene mutation profiles (Figures S1C–S1E). We next

generated signatures of lipomet-PDAC and glucomet-PDAC

based on RNA expression data (Figure 1N; Table S3) and identi-

fied the increased chromatin accessibility of signature genes in

corresponding subtypes (Figure 1O). Consistent with the differ-

ences in metabolite levels, the expression of corresponding lipid

metabolism- and glycan biosynthesis-associated genes was

increased in lipomet-PDAC, and the expression of genes associ-

ated with glucose metabolism (the hypoxia inducible factor-1

[HIF-1] signaling pathway and central carbonmetabolism in can-

cer) were increased in glucomet-PDAC (Figure 1P).

Glucomet-PDAC is associatedwithworse prognosis and
chemoresistance
We next investigated whether the metabolic subtypes were

associated with clinical outcomes. In the absence of appropriate

longitudinal data, the Bailey PDAC cohort (n = 55 patients) and

the TCGA PDAC cohort (n = 156 patients) were classified into

two subtypes based on the expression of metabolic signature

genes.8,33 Patients with glucomet-PDAC showed significantly

worse overall survival than patients with lipomet-PDAC in the

Bailey PDAC cohort and the TCGA PDAC cohort (Figures 2A–

2D). As expected, cases identified as the basal subtype based

on RNA data had a markedly worse prognosis than those identi-

fied as the classical subtype (Figures S1F and S1G). Strikingly,

metabolic subtypes performed better than RNA subtypes in

stratifying patients based on prognosis.

We further assessed the chemotherapy sensitivity of gluco-

met-PDAC and lipomet-PDAC using gemcitabine (GEM),

5-fluorouracil (5-FU), irinotecan (IRI), and oxaliplatin (OXA)

(four chemotherapeutic drugs that work by inhibiting DNA syn-

thesis), which are commonly used to treat patients with PDAC
Figure 2. Glucomet-PDAC is associated with worse prognosis and ch

(A) Heatmap of tumors in the Bailey PDAC cohort (n = 55, only squamous and

signature genes.

(B) Kaplan-Meier survival curves of the Bailey PDAC cohort showing differential

(C) Heatmap of tumors in the TCGA PDAC cohort (n = 156, only ductal pancreatic

(D) Kaplan-Meier survival curves of the TCGA PDAC cohort showing differential

(E) Normalized AUC distribution for GEM, 5-FU, OXA, and IRI on glucomet-PDAC

AUC values are depicted in the heatmap. High values (indicating resistance) are

(F) Comparison of AUCs of four agents among the twometabolic subtypes. The bo

limits).

(G and H) Representative radiation examination of both the surgical area and liver

22) at the time of diagnosis and 6 months postsurgery. The arrow marks the tum

(I–L) 5-FU responsiveness test in the indicated ODX models (n = 6 per group). T

planted mice subjected to treatments with control or 5-FU (25 mg/kg, every 2 da

Statistical significance was computed by log rank test (B and D). Significance

mean values ± SEMs, and statistical significance was computed by unpaired Stu

oxaliplatin.
(Figures S1H–S1K; Table S4). Therapeutic profiling revealed

marked interpatient variability in the response to a single chemo-

therapy agent, but glucomet-PDAC organoids were generally

more resistant to chemotherapeutic agents than lipomet-PDAC

organoids (Figures 2E and 2F). To determine whether PDAC or-

ganoids can precisely reflect the chemosensitivity of patients,

we obtained clinical follow-up data from four patients with

PDAC with 5-FU as adjuvant therapy after surgery. Two patients

with glucomet-PDAC (corresponding to two organoid lines:

DAC-42 and DAC-22) relapsed 6 months after surgery, while

the other two patients with lipomet-PDAC (corresponding to

two organoid lines: DAC-5 and DAC-18) were disease free

6 months after surgery (Figures 2G and 2H). Glucomet-PDAC

and lipomet-PDAC organoid-derived xenografts (ODXs) were

used to evaluate chemosensitivity in vivo. 5-FU treatment signif-

icantly inhibited the growth of lipomet-PDAC ODXs but had no

significant effects on 5-FU-resistant, glucomet-PDAC-derived

xenografts (Figures 2I–2L). These findings suggest that gluco-

met-PDAC is chemoresistant and that it is associated with worse

prognosis.

The GLUT1/ALDOB/G6PD axis reprograms glucose
metabolism in PDAC
Transcriptional differences within metabolic pathways could

indicate the glucose reprogramming of PDAC. We noted that

the expression of metabolic genes in glycolysis, the glucose

transporter GLUT1 (also known as SLC2A1) and the aldehyde

dehydrogenase ALDH1A3, was upregulated in glucomet-

PDAC compared with lipomet-PDAC. Intriguingly, the expres-

sion of the metabolic enzyme ALDOB in glycolysis was

decreased in glucomet-PDAC compared with lipomet-PDAC

(Figure 3A). GLUT1, which is a viable drug target and a predictor

of worse prognosis,34,35 is the main classical transporter for

glucose uptake in tumors.36–39 Cancer cells activate aerobic

glycolysis and convert the majority of glucose into lactate.40 As

expected, lactate levels were positively correlated with GLUT1

expression in PDAC organoids (Figure 3B). Furthermore,

increased glucose uptake and lactate secretion were identified

in glucomet-PDAC compared with lipomet-PDAC (Figure 3C).

Although our PDAC organoid lines have the similar growth rates

between glucomet-PDAC and lipomet-PDAC both in vitro
emoresistance

pancreatic progenitor samples were included) split by glucomet and lipomet

prognosis among patients with different subtypes.

cancer samples were included) split by glucomet and lipomet signature genes.

prognosis among patients with different subtypes.

(n = 15) and lipomet-PDAC (n = 13). The Z scores of the obtained normalized

depicted in red, and low values (indicating sensitivity) are depicted in blue.

xplot shows themedian (central line) and the 25%–75% interquartile range (box

in lipomet-PDAC (DAC-5 and DAC-18) and glucomet-PDAC (DAC-42 and DAC-

or position.

umor volumes measured by calipers at the indicated time points in tumor-im-

ys).

was computed by a one-sided paired t test (F). Data are presented as the

dent’s t test (I–L). GEM, gemcitabine; 5-FU, 5-fluorouracil; IRI, irinotecan; OXA,
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Figure 3. The GLUT1 and ALDOB drives glucose metabolic reprogramming in glucomet-PDAC

(A) Boxplot of ALDOB and GLUT1 expression levels stratified by metabolic subgroup (p was calculated with limma).

(B) Scatterplot showing the correlation of lactate intensities and GLUT1 or ALDOB gene expression (Pearson correlation analysis). Each dot represents an in-

dividual sample. Color represents the metabolic subgroup (red dot represents glucomet-PDAC, and blue dot represents lipomet-PDAC).

(C) Extracellular glucose consumption and lactate secretion were evaluated in representative organoids of glucomet-PDAC (n = 5) and lipomet-PDAC (n = 5).

(legend continued on next page)
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and upon transplantation in vivo (Figures S2A and S2B), the

promoting effect of glucose on organoid growth was significantly

greater for glucomet-PDAC than for lipomet-PDAC (Figures S2C

and S2D). We used [U-13C6] glucose to track metabolic flux in

PDAC organoids and found thatGLUT1 knockdown significantly

decreased the incorporation of [U-13C6] glucose into glycolysis

and the TCA cycle (Figures 3D, 3E, and S2E–S2H). Consistently,

in comparisonwith the control organoids,GLUT1 knockdown or-

ganoids demonstrated a decreased extracellular acidification

rate (ECAR) (Figures 3F, 3G, S2I, and S2J).

We applied metabolon-based energy metabolism analysis

methods to further characterize differences in glucose

metabolism between lipomet-PDAC and glucomet-PDAC. Four

metabolites in the glycolytic pathway presented significantly

higher intensities in glucomet-PDAC than in lipomet-PDAC.

Increased levels of ALDOB upstream metabolites (G6P, F6P,

and F1,6BP) and decreased ALDOB expression favored amodel

of glucose metabolic reprogramming in glucomet-PDAC with

loss of ALDOB (Figures 3A and S2K). Moreover, ALDOB expres-

sion was negatively correlated with lactate levels (Figure 3B). We

found that ALDOB overexpression significantly decreased the

incorporation of [U-13C6] glucose into glycolysis and the TCA

cycle (Figures 3H, 3I, S2L, and S2M). Consistently, ALDOB over-

expression led to a significant decrease in basal glycolysis

and compensatory glycolysis in glucomet-PDAC organoids

(Figures 3J, 3K, S2N, and S2O).

Previously, we found that Aldob regulated glucose meta-

bolism and suppressed hepatocellular carcinogenesis (HCC)

by inhibiting G6PD activity through direct interaction.41 Elevated

oxidative PPP metabolite levels and G6PD enzyme activity were

found in glucomet-PDAC (Figures 1E and 4A). ALDOB overex-

pression significantly inhibited G6PD enzyme activity and

decreased oxidative PPP metabolite levels in glucomet-PDAC

organoids (Figures 4B and 4C). Furthermore,GLUT1 knockdown

further suppressed the oxidative PPP pathway in glucomet-

PDAC organoids under ALDOB overexpression conditions

(Figures 4D and 4E). To determine whether ALDOB inhibits

G6PD activity by direct interaction in PDAC organoids, the inter-

action between ALDOB andG6PDwas investigated by immuno-

precipitation analysis. We found that G6PD pulled down ALDOB,

but not ALDOA or ALDOC, in two representative organoids (Fig-

ure 4F). These results indicate that low ALDOB expression is crit-

ical for the high oxidative PPP levels of glucomet-PDAC.

We expanded the analysis to 156 patients by a larger

cohort from TCGA to validate our results. GSEA was performed

using TCGA data from patients with PDAC based on GLUT1

and ALDOB transcriptional levels. Fatty acid metabolism

pathway genes were significantly enriched in the low GLUT1
(D and E) Fractions of labeled metabolites in glycolysis (D) and the TCA cycle (E)

group).

(F and G) Control andGLUT1 knockdown organoids were exposed to rotenone/an

level by the Seahorse XF Glycolytic Rate Assay (n = 3 per group).

(H and I) Fractions of labeled metabolites in glycolysis (H) and the TCA cycle (I) fro

group).

(J and K) Control and ALDOB-overexpressing organoids were exposed to rot

compensatory level by the Seahorse XF Glycolytic Rate Assay (n = 3 per group).

(C–E, G–I, and K) Data are presented as mean values ± SEMs. Statistical signific
with high ALDOB (GLUT1low/ALDOBhigh) expression group (Fig-

ure 4G). PPPmetabolism and glycolysis pathway geneswere en-

riched in the highGLUT1with lowALDOB (GLUT1high/ALDOBlow)

expression group (Figures 4H and 4I).

Then, we performed tissue microarray (TMA) analyses on pa-

tient samples (n = 283) with complete clinical data to assess the

association between GLUT1/ALDOB protein expression and

clinical outcomes. GLUT1 or ALDOB protein expression scores

were classified as low or high (Figure 4J; Table S5). In the

Kaplan-Meier analysis, patients with GLUT1high/ALDOBlow pro-

tein expression had the worst overall survival, whereas patients

with GLUT1low/ALDOBlow protein expression had the best over-

all survival (Figure 4K). These results indicated that patients with

glucomet-PDAC (GLUT1high/ALDOBlow) have aworse prognosis.

To confirm the potential of GLUT1 and ALDOB as predictive

biomarkers of therapeutic response at the RNA and protein

levels, we analyzed the published PDAC cohort,42 which has

both RNA and protein expression results. We classified this

PDAC cohort into two subtypes based on the RNA and protein

expression of metabolic signature genes, respectively. As ex-

pected, a notable gene expression trend of GLUT1high/ALDO-

Blow was identified in glucomet-PDAC based on RNA and protein

expression levels (Figures S3A–S3D). Patients with glucomet-

PDAC showed worse overall survival than patients with lipo-

met-PDAC in the cohort (Figures S3E and S3F). GLUT1high/AL-

DOBlow patients also showed significantly worse overall survival

in the cohort (Figures S3G and S3H). These results confirmed the

value of theGLUT1/ALDOB axis as a biomarker of drug response

and prognosis, and both protein and RNA could be applied to

predict drug response.

These results suggest an essential role for the GLUT1/ALDOB/

G6PD axis in regulating metabolic reprogramming, which en-

hances glucose entry into glycolysis, the TCA cycle, and the

oxidative PPP in glucomet-PDAC (Figure 4L).

GLUT1/ALDOB/G6PD axis-mediated chemoresistance
by increasing pyrimidine nucleosides
Increased flux of glycolysis and the PPP leads to an increase in

nucleoside biosynthesis, including the synthesis of pyrimidine

and purine nucleosides, which serve as important inducers of

drug resistance.2,12 Widely targeted metabolomics analysis indi-

cated that pyrimidine and purine pathway-related metabolites

were enriched in glucomet-PDAC (Figure S4A). Increased levels

of nucleosides and nucleoside derivatives were detected in glu-

comet-PDAC comparedwith lipomet-PDAC (Figure 5A). Further-

more, nucleoside and nucleoside derivative levels were corre-

lated with high GLUT1 expression and low ALDOB expression

(Figure 5B).
from [U-13C6] glucose in control and GLUT1 knockdown organoids (n = 3 per

timycin A and 2-DG to measure the ECAR at the basal level and compensatory

m [U-13C6] glucose in control and ALDOB-overexpressing organoids (n = 3 per

enone/antimycin A and 2-DG to measure the ECAR at the basal level and

ance was computed by unpaired Student’s t test.

Cell Reports Medicine 4, 101162, September 19, 2023 7



D

ve
cto

r

ALD
OB

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
el

.G
6P

D
ac

tiv
ity

p=0.0384

B

p=0.000103

p<0.0001

p<0.0001

G6P 6PG R5P
0.00

0.02

0.04

0.06

0.08

0.16
0.20
0.24

DAC-34 (glucomet) Oxidative PPP

vector
shGLUT1-1

G6P 6PG R5P
0.00

0.02

0.04

0.06

0.08

0.16
0.20

DAC-34 (glucomet) Oxidative PPP

vector
ALDOB

G6P 6PG R5P
0.00

0.04

0.08

0.12

0.16

0.20

DAC-34 (glucomet) Oxidative PPP

vector
ALDOB
ALDOB+shGLUT1-1

C

E

p<0.0001

p<0.0001

p<0.0001

p=0.0003

p<0.0001

p=0.00013

p<0.0001

p<0.0001

p=0.00019

A

Lip
om

et-

PDAC
Gluc

om
et-

PDAC

0.0

0.4

0.8

1.2

1.6

2.0

2.4

R
el

.G
6P

D
ac

tiv
ity

p=0.0356

ve
cto

r

ALD
OB

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
el

.G
6P

D
ac

tiv
ity

p=0.0448

DAC-42 (glucomet)DAC-34 (glucomet)

G6P 6PG R5P
0.00

0.02

0.04

0.06

0.08

0.20

DAC-42 (glucomet) Oxidative PPP

vector
ALDOB

p<0.0001

p<0.0001

p=0.00055

F

DAC-7 
(lip

om
et)

DAC-42
 (g

luc
om

et)

DAC-7 
(lip

om
et)

DAC-42
 (g

luc
om

et)

DAC-7 
(lip

om
et)

DAC-42
 (g

luc
om

et)

ALDOA

ALDOB

ALDOC

G6PD

α-tubulin

ALDOA

ALDOB

ALDOC

G6PD

IgG G6PD

In
pu

t

IB

G
ly

co
ly

si
s

Lactate

TCA cycle

G
ly

co
ly

si
s

Glucose

Lactate

TCA cycle

G6PDG6PD
DNA/RNA DNA/RNA

Non oxidative pppNon oxidative ppp

L

K
GLUT1high GLUT1low ALDOBhigh ALDOBlow

+++
+

++++++++++++++++++++++++

++

+
+++++

++++++++++++++++++++++++++++++
+

+

+++
++++++++++

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Time(Days)

p < 0.0001
Median survival 
29 vs 36 vs 42 vs 65 months

+
+
+
+

GLUT1highALDOBhigh

GLUT1lowALDOBhigh

GLUT1highALDOBlow

GLUT1lowALDOBlow

J

Fr
ac

tio
n 

of
 c

ar
bo

n 
la

be
le

d 
fro

m
 C

13
-G

lu
co

se

Fr
ac

tio
n 

of
 c

ar
bo

n 
la

be
le

d 
fro

m
 C

13
-G

lu
co

se

Fr
ac

tio
n 

of
 c

ar
bo

n 
la

be
le

d 
fro

m
 C

13
-G

lu
co

se

Fr
ac

tio
n 

of
 c

ar
bo

n 
la

be
le

d 
fro

m
 C

13
-G

lu
co

se

ALDOBALDOB

oxidative ppp oxidative ppp

Glucose

G H I

-0.6

-0.4

-0.2

0.0

En
ric

hm
en

t S
co

re

Fatty acid metabolism

GLUT1highALDOBlow GLUT1lowALDOBhigh

NES=-2.21
FDR=7.223e-05

0.0

0.2

0.4

0.6

En
ric

hm
en

t S
co

re

Pentose phosphate pathway

NES=2.11
FDR=7.838e-04

GLUT1highALDOBlow GLUT1lowALDOBhigh

-0.2

0.0

0.2

0.4
En

ric
hm

en
t S

co
re

Glycolysis gluconeogenesis

GLUT1highALDOBlow GLUT1lowALDOBhigh

NES=1.65
FDR=0.015

Figure 4. The GLUT1/ALDOB/G6PD axis drives glucose metabolic reprogramming in glucomet-PDAC

(A) Relative G6PD enzyme activity in representative organoids of glucomet-PDAC (n = 6) and lipomet-PDAC (n = 6).

(B) Relative G6PD enzyme activity in vector- and ALDOB-overexpressing organoids (n = 3).

(C) Relative abundance of oxidative PPP metabolites in control and ALDOB-overexpressing organoids (n = 3).

(legend continued on next page)
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To further investigate how the increased flux of the oxidative

PPP regulates drug sensitivity, we assessed several key PPP

metabolites, R5P, pyrimidine nucleosides, and purine nucleo-

sides, which could be taken up by organoids from the media.

Activated G6PD and increased flux of oxidative PPP provide

R5P for nucleotide biosynthesis. R5P is essential for DNA repli-

cation and DNA damage repair. R5P significantly enhanced

5-FU resistance in lipomet-PDAC organoids but had no effects

on the 5-FU treatment response in glucomet-PDAC organoids

(Figures S4B and S4C). Interestingly, exogenous addition of py-

rimidine nucleosides, but not purine nucleosides, induced thera-

peutic resistance to GEM and 5-FU in lipomet-PDAC organoids

but had no effects on glucomet-PDAC organoids (Figures 5C,

5D, and S4D–S4G). However, increased levels of pyrimidine nu-

cleosides did not affect the sensitivity to nab-paclitaxel (PTX;

acting on microtubules) in lipomet-PDAC and glucomet-PDAC

(Figures 5E and 5F). These results showed that the increased

flux of glucose into the pyrimidine nucleoside biosynthesis

pathway led to chemotherapy resistance in glucomet-PDAC.

GLUT1 knockdown, ALDOB overexpression, or G6PD knock-

down distinctly increased the sensitivity to GEM, 5-FU, IRI, and

OXA in glucomet-PDAC organoids (Figures 5G–5I and S5A–

S5E). Moreover, ALDOB overexpression significantly increased

the sensitivity to 5-FU in glucomet-PDAC in vivo (Figures 5J

and S5F). However, expression changes in GLUT1 or ALDOB

did not affect the sensitivity to PTX in glucomet-PDAC organoids

(Figures S5G–S5J).

The addition of exogenous pyrimidine nucleosides and R5P

effectively rescued the increase in drug sensitivity induced by

GLUT1 knockdown, ALDOB overexpression, or G6PD knock-

down in glucomet-PDAC cells (Figures 5K–5O and S5K–S5M).

However, the addition of exogenous purine nucleosides had no

effects on chemotherapy sensitivity in glucomet-PDAC organo-

ids under GLUT1 knockdown conditions (Figures 5P and 5Q).

Furthermore, ALDOB knockdown distinctly induced chemo-

therapy resistance to 5-FU and GEM in lipomet-PDAC organoids

(Figures S5N–S5P). The addition of exogenous pyrimidine nucle-

osides effectively decreased the chemosensitivity difference in

lipomet-PDAC organoids between the ALDOB knockdown and

control groups (Figures S5O and S5P). These results revealed

that the GLUT1/ALDOB/G6PD axis mediated chemoresistance

by modulating glucose metabolism and the levels of pyrimidine

nucleosides in pancreatic cancer cells.
(D and E) Relative abundance of oxidative PPP metabolites in control, GLUT1

expression organoids (n = 3).

(F) Endogenous ALDOB and G6PD interactions in PDAC organoids detected by

(G–I) TCGA patients with PDAC (n = 156) were divided into GLUT1high/ALDOBlow

levels. Samples with expression of GLUT1 in the top 40% and expression of A

expression of ALDOB in the top 40% and expression of GLUT1 in the last 40%

DOBlow group versus GLUT1low/ALDOBhigh group of fatty acid metabolism (G),

genes.

(J) Representative images of immunohistochemical staining show high or low GLU

50 mm. Patients were divided into four groups based on ALDOB and GLUT1 expre

expression <50%; GLUT1high (++), GLUT1 expression >50%; and GLUT1low (+),

(K) Kaplan-Meier survival curves based on the expression of GLUT1 and ALDOB

(L) Summary scheme highlighting the roles of the GLUT1/ALDOB/G6PD axis in g

Data are presented as the mean values ± SEMs, and statistical significance w

computed by log-rank test (K).
Pharmacological inhibition of the GLUT1/ALDOB/G6PD
axis enhances chemotherapeutic sensitivity
GLUT1 knockdown significantly inhibited glucomet-PDAC-

derived xenograft growth (Figure 6A). The GLUT1 inhibitor

BAY-876 decreased glucose uptake in both glucomet-PDAC or-

ganoids and lipomet-PDAC organoids (Figure 6B). BAY-876

increased the sensitivity to GEM in glucomet organoids but

had no distinct effects on lipomet-PDAC organoids (Figure 6C).

The addition of exogenous pyrimidine nucleosides effectively

decreased the sensitivity to GEM and 5-FU in glucomet-PDAC

organoids under the condition of GLUT1 inhibition by BAY-876

(Figures S6A and S6B). These results indicate that clinical-grade

inhibitors of GLUT1 have the potential to enhance the chemo-

therapy response of PDAC.

G6PD plays an essential role in regulating the oxidative PPP

pathway and nucleotide biosynthesis.43 We next examined the

therapeutic potential of the G6PD inhibitor 6AN in promoting

chemotherapy sensitivity. 6AN treatment attenuated G6PD ac-

tivity but had no effect on cell viability in glucomet-PDAC and lip-

omet-PDAC organoids (Figures 6D and S6C). Furthermore, 6AN

increased the sensitivity to 5-FU and GEM in glucomet-PDAC

organoids but had no effects on lipomet-PDAC organoids

(Figures 6E and S6D–S6F). 6AN and 5-FU combination

significantly reduced tumor growth in chemoresistant gluco-

met-PDAC ODXs but seriously affected mice body weight

(Figures 6F, 6G, and S6G). Considering the physiological toxicity

of 6AN, we performed virtual screening of 5 compound libraries

(7,098 compounds) to find candidate inhibitors of G6PD. Forty

compounds were chosen as G6PD candidate inhibitors, and

most of them were clinical-grade inhibitors. Among these 40

compounds, 38 were excluded based on their low inhibition

rates (Figure 6H). Although the binding site of the remaining

two compounds (MLN8054 and 666-15) on G6PD was the

same as that of 6AN (Figures 6I and S6H), only MLN8054 signif-

icantly inhibited G6PD activity (Figures 6J and S6I). MLN8054

increased the sensitivity to 5-FU in glucomet-PDAC organoids

in vitro (Figures 6K and S6J). To further determine the effects

of MLN8054 on tumor growth in vivo, glucomet-PDAC DAC-42

ODXs were subjected to vehicle, 5-FU, MLN8054, or combined

treatment. Without affecting body weight, combined treatment

significantly suppressed tumor growth compared with vehicle

or individual agent treatment (Figures 6L, 6M, and S6K). Howev-

er, combined treatment did not affect the sensitivity to 5-FU in
knockdown, ALDOB overexpression, GLUT1 knockdown, and ALDOB over-

immunoprecipitation (IP) experiments.

, GLUT1low/ALDOBhigh, and others based on GLUT1 and ALDOB expression

LDOB in the last 40% were named GLUT1high/ALDOBlow, while samples with

were named GLUT1low/ALDOBhigh. GSEA enrichment plot for GLUT1high/AL-

pentose phosphate pathway (H), and glycolysis/gluconeogenesis (I) signature

T1 staining and high or low ALDOB staining in PDAC TMA (n = 285). Scale bar,

ssion levels: ALDOBhigh (++), ALDOB expression >50%; ALDOBlow (+), ALDOB

GLUT1 expression <50%.

in 285 patients with PDAC.

lucose reprogramming.

as computed by unpaired Student’s t test (A–E). Statistical significance was
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lipomet-PDAC organoids (Figures 6N, 6O, and S6L). MLN8054

and alisertib (a MLN8054 analog) have been reported as orally

active small molecules that selectively inhibit Aurora A kinase

and that have advanced into human clinical trials.44–46 Treatment

with alisertib showed similar results to MLN8054 treatment

(Figures 6J–6M). Our study discovered two clinical-grade

G6PD inhibitors that significantly enhanced the chemotherapy

response of PDAC.

These results indicate that targeting theGLUT1/ALDOB/G6PD

axis in combination with chemotherapy has the potential to in-

crease therapy response and survival in patients with PDAC.

DISCUSSION

Although chemotherapies significantly prolong survival of pa-

tients with PDAC patient, the chemotherapy response rates

of PDAC remain poor.2,47 An effective classification strategy to

divide patients into sensitive and resistance groups is urgently

needed. Here, we classified patients with PDAC into glucomet-

PDAC and lipomet-PDAC groups based on metabolomic pro-

files, identified glucomet-PDAC as a chemoresistant group,

and developed a potential pharmacological strategy that in-

volves inhibiting the GLUT1/ALDOB/G6PD axis to enhance the

chemotherapy sensitivity of glucomet-PDAC.

There is increasing recognition of metabolic reprogramming

as an emerging mechanism of cancer therapy resistance, but

it remains poorly characterized in PDAC.16,17,48 Patient-derived

PDAC tumor specimens usually contain an abundant stroma in-

termixed with normal pancreatic cells, which affects the sensi-

tivity to characterize the PDAC cancer cells.49 Patient-derived

cancer organoid models faithfully recapitulate the characteris-

tics of the original tumor cells and are attractive candidates

to investigate the metabolic reprogramming of PDAC.25,26,50

Patient-derived PDAC organoids include both basal-like and

classical PDAC subtypes.27–31 Moreover, metabolic profiling

of early and late recurrent PDAC using patient-derived organo-

ids provides insight into PDAC recurrence from a metabolic

perspective.51 Here, we successfully identified metabolic

subtypes by profiling patient-derived PDAC organoids and
Figure 5. The GLUT1/ALDOB/G6PD axis contributes to drug resistanc

(A) Heatmap showing the relative abundance of nucleoside and nucleoside deriv

(B) Heatmap showing Pearson correlation coefficients between the RNA express

(C and D) DAC-18 (lipomet) and DAC-42 (glucomet) organoids were treated with 5

thymidine, 240 mM) for 5 days, and cell viability was determined by CellTiter-Glo

(E and F) DAC-18 (lipomet) and DAC-42 (glucomet) organoids were treated with PT

cell viability was determined by CellTiter-Glo assays.

(G) Effect of GLUT1 knockdown on 5-FU responsiveness of DAC-34 (glucomet)

(H) Effect of ALDOB overexpression on the 5-FU responsiveness of DAC-42 (gluc

(I) Effect of G6PD knockdown on the 5-FU responsiveness of DAC-42 (glucomet

(J) Effect of ALDOB overexpression on 5-FU responsiveness in the DAC-42 (gluc

(K) Effect of pyrimidine nucleotide (240 mM) on 5-FU sensitivity in control and GL

(L) Effect of pyrimidine nucleotide (240 mM) on 5-FU sensitivity in control and ALD

(M) Effect of R5P (1 mM) on 5-FU sensitivity in control and GLUT1 knockdown o

(N) Effect of R5P (1 mM) on 5-FU sensitivity in control and ALDOB-overexpressin

(O) Effect of R5P (1 mM) on 5-FU sensitivity in control and G6PD knockdown org

(P and Q) Effect of purine nucleotides (guanosine and adenosine, 200 mM) on 5-FU

Glo assays at 120 h posttreatment.

All dose-responsive curves were performed with 3 technical replicates. Data

computed by unpaired Student’s t test (*p < 0.05; **p < 0.01; ***p < 0.001) (C–Q)
classified them into glucomet-PDAC and lipomet-PDAC.

Glucomet-PDAC organoids were resistant to chemotherapy

by remodeling glucose metabolism. Importantly, the gluco-

met-PDAC gene expression signature GLUT1high/ALDOBlow

could efficiently identify patients with the best overall survival

and the worst overall survival. Our study provides an example

of metabolic reprogramming as a chemotherapy resistance

mechanism in PDAC and identifies markers for predicting the

chemotherapy response.

Multiple molecular mechanisms of PDAC chemoresistance

have been suggested,2,52–54 related to drug transport and drug

metabolism. hENT1 andGATA6 expression has been associated

with GEM and 5-FU sensitivity.55,56 However, there is no signifi-

cant correlation between these two genes’ expression with GEM

and 5-FU sensitivity in our cohort. Consistently, previous study

has demonstrated that hENT1 expression is not reduced in

some GEM-resistant PDAC cell lines.57 These results suggest

that hENT1 expression alone may not be sufficient to predict

GEM sensitivity. Increased glycolytic flux has been identified

as a widely prevalent mechanism of resistance to GEM in

pancreatic cancer.12 HIF-1a-mediated metabolic reprogram-

ming enhanced the intrinsic levels of deoxycytidine triphosphate

(dCTP).12 Here, we presented a mechanism of chemoresistance

by remodeling glucose metabolism in glucomet-PDAC through

the GLUT1/ALDOB/G6PD axis. High GLUT1-induced glucose

uptake not only feeds into the glycolysis pathway but also feeds

into intermediate pathways to generate biomass. Downregula-

tion of ALDOB in glucomet-PDAC released inhibition on G6PD

and oxidative PPP, resulting in increased PPP flux to meet bio-

energetic and biosynthetic demands. This newmetabolic rerout-

ing strategy enables glucomet-PDAC organoids to expand intra-

cellular pyrimidine pools that can in turn render chemotherapy

ineffective by molecular competition (Figure S6M). Consistently,

therapies targeting the GLUT1/ALDOB/G6PD axis are only

effective when combined with chemotherapeutic agents that

act on DNA synthesis.

Glucose metabolism reprogramming in cancer cells is

required to fulfill anabolic demands, which provide therapeutic

targets.11,58 Targeted inhibition of the GLUT1/ALDOB/G6PD
e

atives in glucomet-PDAC (n = 15) and lipomet-PDAC (n = 13).

ion levels of ALDOB/GLUT1 and nucleoside derivatives.

-FU alone or in combination with pyrimidine nucleosides (uridine, cytidine, and

assays.

X alone or in combination with pyrimidine nucleosides (240 mM) for 5 days, and

as determined by CellTiter-Glo assays 120 h after treatment with 5-FU.

omet) as determined by CellTiter-Glo assays 120 h after treatment with 5-FU.

) as determined by CellTiter-Glo assays 120 h after treatment with 5-FU.

omet) ODX model (n = 6 per group).

UT1 knockdown organoids by CellTiter-Glo assays at 120 h posttreatment.

OB overexpression organoids by CellTiter-Glo assays at 120 h posttreatment.

rganoids by CellTiter-Glo assays at 120 h posttreatment.

g organoids by CellTiter-Glo assays at 120 h posttreatment.

anoids by CellTiter-Glo assays at 120 h posttreatment.

and GEM sensitivity in control andGLUT1 knockdown organoids by CellTiter-

are presented as the mean values ± SEMs, and statistical significance was

.
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Figure 6. Pharmacological inhibition of GLUT1 or G6PD enhances chemotherapy sensitivity

(A) GLUT1 knockdown suppresses tumorigenesis in a DAC-42 ODX model (n = 6 per group).

(B) The effect of the GLUT1 inhibitor BAY-876 (50 nM) on extracellular glucose consumption in DAC-18 (lipomet) and DAC-42 (glucomet) organoids was evaluated

(n = 4).

(C) Effect of BAY-876 (50 nM) on the GEM responsiveness of DAC-42 (glucomet) and DAC-18 (lipomet) as determined by CellTiter-Glo assays 120 h after

treatment with GEM.

(D) The effect of 6AN on G6PD activity in DAC-42 (glucomet) organoids was evaluated (n = 4).

(legend continued on next page)
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axis in combination with chemotherapy significantly increased

the therapeutic response of glucomet-PDAC. GLUT1, which

has a high affinity for glucose, is overexpressed in many can-

cers.36–39 Our study and previous studies have demonstrated

that the high expression level of GLUT1 correlated with

chemotherapy resistance in pancreatic tumor cells.12 Several

small molecules that inhibit GLUT1 have been shown to selec-

tively kill cancer cells in vitro.59,60 In our study, genetic knock-

down of GLUT1 or chemical inhibition of GLUT1 activity sup-

pressed cell viability and tumor progression both in vitro and

in vivo. However, the widespread expression of GLUT1 in

different types of normal mammalian cells may preclude the

clinical use of these inhibitors.61–63 The roles of G6PD and

PPP have been increasingly recognized in various cancers,

and G6PD upregulation is correlated with poor prognosis.64–68

G6PD inhibition significantly increased the therapeutic

response to chemotherapy in glucomet-PDAC. The genetic

defect of GLUT1 or G6PD causes a spectrum of diseases,

but the vast majority of persons with G6PD deficiency also

may be asymptomatic.69,70 Therefore, clinical-grade G6PD in-

hibitors may have the potential to improve the PDAC treatment

response.

Overall, our study provides a new PDAC classification strategy

based onmetabolic profiles and reports that theGLUT1/ALDOB/

G6PD axis induces chemoresistance by remodeling glucose

metabolism in glucomet-PDAC. These results provide a strong

rationale for future drug development and clinical trials designed

to target the GLUT1/ALDOB/G6PD axis to overcome metabolic

reprogramming-driven chemotherapy resistance.
Limitations of the study
PDAC organoids offer a pure cancer cell population for inves-

tigating the molecular mechanism of chemotherapy resis-

tance; however, chemotherapy resistance is multifactorial,

which also includes the cells of tumor microenvironment.

Therefore, a more comprehensive chemotherapy resistance

mechanism from cancer cell and microenvironment interaction

may be essential in the future. Our study identified the core

glucose metabolic alterations that mediate chemotherapy

resistance in intrinsically resistant PDAC organoids. Whether

these metabolic alterations also contribute to acquired

chemotherapy resistance still needs to be identified. In addi-
(E) Effect of 6AN treatment on the 5-FU responsiveness of DAC-42 (glucomet) org

(F) Effect of 6AN on 5-FU responsiveness in the ODXmodel. Tumor volumesmeas

to treatments with vehicle, 5-FU alone (25 mg/kg, every 2 days), 6AN alone (5 m

(G) Normalized body weights of SCID mice with the indicated treatments.

(H) Volcano plot showing the effect of 40 compounds on the 5-FU responsiven

treatment with compounds (5 mM), 5-FU (100 mM), or both.

(I) Prediction of the potential interaction sites in the 3D structure of the G6PD pro

(J) Effect of MLN8054 and alisertib on G6PD activity in DAC-42 (glucomet) organ

(K) Effect of MLN8054 or alisertib treatment on the 5-FU responsiveness of DAC-

the indicated drugs.

(L) Tumor volume of DAC-42 ODXs (n = 6 per group) in SCID mice following trea

(M) Normalized body weights of SCID mice (n = 3 per group) with the indicated t

(N) Tumor volume of DAC-18 ODXs (n = 6 per group) in SCID mice following trea

(O) Normalized body weights of SCID mice (n = 3 per group) with the indicated t

All dose-responsive curves were performed with 3 technical replicates. Data

computed by unpaired Student’s t test (*p < 0.05; **p < 0.01; ***p < 0.001) (A–G
tion, we report the potential role of MLN8054 and alisertib in

inhibiting G6PD activity and increasing sensitivity of PDAC or-

ganoids. However, whether these two inhibitors really benefit

patients with PDAC clinically needs more clinic studies in the

future.
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Antibodies

GLUT1 abcam Cat#ab115730; RRID:AB_10903230

ALDOA proteintech Cat#11217-1-AP; RRID:AB_2224626

ALDOB proteintech Cat#18065-1-AP; RRID:AB_2273968

ALDOC proteintech Cat#14884-1-AP; RRID:AB_2226691

G6PD abcam Cat#ab993; RRID:AB_296714

a-tubulin proteintech Cat#11224-1-AP; RRID:AB_2210206

actin abmart Cat#M20011; RRID:AB_2936240

Biological samples

Human tissue samples for sequencing

analyses

This study N/A

Human blood samples for sequence

analyses

This study N/A

Chemicals, peptides, and recombinant proteins

Advanced DMEM/F12 Gibco Cat#12634010

HEPES Gibco Cat#15630080

GlutMAX Gibco Cat#35050061

Penicillin-Streptomycin Gibco Cat#15140122

Primocin InvivoGen Cat#ant-pm-2

B27 supplement Gibco Cat#17504044

Wnt3A conditioned medium Gao lab N/A

R-spondin conditioned medium Gao lab N/A

Noggin conditioned medium Gao lab N/A

Nicotinamide SIGMA Cat#N0636-100G

EGF Invitrogen Cat#PHG0313

FGF10 PEPRO TECH Cat#K2717

N-acetyl-L-cysteine SIGMA Cat#A9165-100G

A83-01 TOCRIS Cat#2939

Y-27632 Selleck chemicals Cat#S1049

Forskolin Selleck chemicals Cat#S2449

TrypLETM Express Gibco Cat#12605028

Collagenase Type II Gibco Cat#17101015

Matrigel Matrix (For organoid culture) CORNING Cat#356231

Matrigel Matrix (For xenograft) CORNING Cat#354234

Gemcitabine TargetMol Cat#T0251

Paclitaxel Selleck chemicals Cat#S1150

5-fluorouracil SIGMA Cat#F6627

Oxaliplatin Selleck chemicals Cat#S1124

Irinotecan Selleck chemicals Cat#S1198

BAY-876 Selleck chemicals Cat#S8452

6AN Selleck chemicals Cat#S9783

MLN8054 TargetMol Cat#T6315

Alisertib Selleck chemicals Cat#S1133

Uridine Sigma Cat#U3003

Cytidine Sigma Cat#C4654

(Continued on next page)

e1 Cell Reports Medicine 4, 101162, September 19, 2023



Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Thymidine Sigma Cat#T1895

Guanosine Sigma Cat#G6264

adenosine Sigma Cat#A4036

R5P MCE Cat#207671-46-3

CellTiter-Glo Luminescent Promega Cat#G7573

DMSO Innoche Cat#D3850-500ML

TRIzol reagent Ambion Cat#15596018

PrimeScriptTM RT Master Mix TaKaRa Cat#RR036A

Power SYBR Green PCR Master Mix Qiagen Cat#208054

Glucose-6-phosphate Sigma G7879-500mg

DMEM Gibco 11966–025

[U-13C6] glucose CIL CLM-1396-1

Nonlabeled glucose Sigma G7021

Critical commercial assays

Widely targeted metabolomics assay Wuhan Metware Biotechnology Co., Ltd LC-ESI-MS/MS system analysis

Widely targeted lipidomics assay Wuhan Metware Biotechnology Co., Ltd LC-ESI-MS/MS system analysis

Metabolon-based energy metabolism

detection

Applied Protein Technology, Shanghai, China LC-MS/MS analysis

Deposited data

Widely targeted metabolomics This study OMIX: OMIX003772

Widely targeted lipidomics assay This study OMIX: OMIX004117

Metabolon-based energy metabolism

in PDAC organoids

This study OMIX: OMIX004545

RNA expression data of PDAC organoids This study OMIX: OMIX003773

ATAC-seq peaks of PDAC organoids This study OMIX: OMIX003774

Coding mutations in PDAC organoids This study OMIX: OMIX003813

Experimental models: Cell lines

HEK-293T ATCC Cat#CRL-1573

Experimental models: Organisms/strains

Human PDAC organoids This study N/A

DH5a AlpaLifeBio KTSM101L

Oligonucleotides

shRNA hairpins This study Table S6

qRT-PCR primers This study Table S6

Software and algorithms

R version 4.0.3 The R Foundation for Statistical Computing N/A

‘‘CancerSubtypes’’ Bioconductor

package for R

Xu et al.71 https://bioconductor.org/packages/release/

bioc/html/CancerSubtypes.html

MBROLE 2.0 López-Ibáñez et al.72 https://csbg.cnb.csic.es/mbrole2/

‘‘GSVA’’ Bioconductor package for R Hänzelmann et al.73 https://www.bioconductor.org/packages/

release/bioc/html/GSVA.html

‘‘limma’’ Bioconductor package for R Ritchie et al.74 https://bioconductor.org/packages/release/

bioc/html/limma.html

Nearest Template Prediction (NTP) Hoshida.75 https://github.com/genepattern/Nearest

TemplatePrediction/blob/master/src/NTPez.R

‘‘clusterProfiler’’ Bioconductor package for R Wu et al.76 https://bioconductor.org/packages/release/

bioc/html/clusterProfiler.html

Bowtie v2.3.1 Langmead and Salzberg.77 https://bowtie-bio.sourceforge.net/bowtie2/

index.shtml

Sambamba v0.6.6 Tarasov et al.78 https://lomereiter.github.io/sambamba/
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Samtools v1.4 Li et al.79 https://samtools.sourceforge.net/

MACS2 v2.1.1 Zhang et al.80 https://hbctraining.github.io/Intro-to-

ChIPseq/lessons/05_peak_calling_

macs.html

deepTools Ramı́rez et al.81 https://deeptools.readthedocs.io/en/develop/

‘‘DiffBind’’ Bioconductor package for R Ross-Innes et al.82 https://bioconductor.org/packages/release/

bioc/html/DiffBind.html
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Gang Jin

(jingang@smmu.edu.cn).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The data reported in this paper have been deposited in the OMIX, China National Center for Bioinformation/Beijing

Institute of Genomics, Chinese Academy of Sciences (https://ngdc.cncb.ac.cn/omix: accession no.OMIX003772, no.

OMIX003773, no.OMIX003774, no.OMIX003813, no.OMIX004117, no.OMIX004545). This paper does not report original

code. Any additional information required to reanalyze the data reported in this work paper is available from the lead contact

upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human subjects ethics statement
PDAC tissue samples were collected at Changhai Hospital. All patients involved in this study gave informed consent for the use of

their clinical data and surgical specimens and agreed to the release of clinical information that could identify individuals. The proto-

cols for this study were in conformity with national guidelines and received approval from Changhai Hospital’s ethics committee

(approval no. CHEC2018-111). Furthermore, this study was approved by the Chinese Ministry of Science and Technology (MOST)

for the Review and Approval of Human Genetic Resources (approval no. 2021BAT1264) in addition to the local IRB’s permission.

A total of 28 patient cases from both male and female subjects between the ages of 40–79 years old were included in the present

study. Detailed clinical information of these patients was listed in Table S1.

Organoid culture
PDAC tissues were digested in collagenase II (2.5 mg/mL with 10 mM Y-27632) at 37�C for approximately 30 min. The digested cells

were washed with basic 1640 medium (10 mM Y-27632) for twice and centrifuged for 5min (1500rpm, RT). The obtained cells were

embedded inMatrigel and overlaid with a previously described completemedium.31 The completemedium components are list in the

key resource table. PDAC biopsy samples was directly cultured in complete medium without digestion. Organoids was cultured at

5% CO2 in 20% O2, and the media were changed every 4 days. The established organoids were for mycoplasma contamination

weekly. All established PDAC organoids were expanded and stored as cryo-stocks. The media used for organoid cryopreservation

were composed of the complete medium (90%) and 10% DMSO.

Mouse studies
Female SCIDmice of 4-week-old were purchased from Biocytogen Pharmaceuticals (Beijing) Co., Ltd. All animal work was conduct-

ed in accordance with a protocol approved by the Institutional Animal Care and Use Committee (IACUC) of the Center for Excellence

in Molecular Cell Science (CEMCS), and ethical approval was received from the IACUC of CEMCS. Mice were bred in specific path-

ogen free (SPF) animal house with 28�C and 50% humidity. Indicated cells were inoculated into mammary pad of the six-week-old

female SCID mouse (n = 3 per group, 2 3 106cells/injection). After the xenografts became palpable (�200mm3), mice were injected

with 5-FU (25 mg/kg, every 2 days), 6AN (5 mg/kg, every 2 days), MLN8054 (10 mg/kg, every 2 days), alisertib (10 mg/kg, every

2 days) intraperitoneal for about 2 weeks. Tumor size was measured every 2 days and the tumor volume was calculated with the

equation V (in mm3) = 0.5 3 length 3 width2. The animals were killed when the biggest xenografts near reached at �1500mm3.
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Widely targeted metabolomics assay
PDAC organoids in Matrigel (CORNING, 356231) were collected. Organoids were washed twice with 1mL of cold PBS buffer and

were then centrifuged for 3min at 5003 g (4�C). The supernatant was removed and discarded; cell pallet was used for widely targeted

metabolites assay (Wuhan Metware Biotechnology Co., Ltd). Sample was thawed on ice, then added 1 mL pre-cooled extractant

(70% methanol aqueous solution), and whirl for 1 min. Freeze the mixture for 3 min in liquid nitrogen after remove ice for 3 min, it

will be whirled for 2 min, circulate this at 3 times. Centrifuge the mixture again with 12000 r/min at 4�C for 10 min. Finally take the

supernatant into the sample bottle for LC-ESI-MS/MS system analysis. In order to compare the substance content of all detected

metabolites in different organoids, the chromatographic peaks detected in different samples for each metabolite were corrected

to ensure qualitative and quantitative accurate according to the information ofmetabolite retention time and peak shape. Quality con-

trol samples are prepared by mixing sample extracts to test reproducibility.

Widely targeted lipidomics assay
Organoids were washed twice with 1mL of cold PBS buffer andwere then centrifuged for 3min at 5003 g (4�C). The supernatant was

removed and discarded; cell pallet was placed in liquid nitrogen for 2 min, then thawed on ice for 5 min and vortex blending. Repeat

the first step 3 times, then centrifuge it with 12,000 rpm at 4�C for 10 min. Take 300 mL supernatant and homogenize it with 1mL

mixture (include methanol, MTBE and internal standard mixture). Whirl the mixture for 2 min. Then add 500 mL of water and whirl

the mixture for 1 min, and centrifuge it with 12,000 rpm at 4�C for 10 min. Extract 500 mL supernatant and concentrate it. Dissolve

powder with 100 mL mobile phase B, then stored in �80�C. Finally take the dissolving solution into the sample bottle for LC-MS/

MS analysis.

Metabolon-based energy metabolism detection
PDAC organoids inMatrigel were collected. Organoids were washed twice with 1mL of cold PBS buffer andwere then centrifuged for

3min at 5003 g and 4�C. The supernatant was removed and discarded; cell pallet was used formetabolon-based energymetabolism

detection (Applied Protein Technology, Shanghai, China). A homogenate of 100 mg of sample mixed with 1 mL of cold methanol/

acetonitrile/H2O (2:2:1, v/v/v) was sonicated at a low temperature (30 min/once, twice) and then centrifuged for 20min (140,00g,

4�C). The supernatant was dried in a vacuum centrifuge. For LC-MS analysis, the dried samples were dissolved in 100 mL acetoni-

trile/water (1:1, v/v), adequately vortexed and then centrifuged (140,00 rpm, 4�C, 15 min). The supernatants were collected for the

LC-MS/MS analysis. Analyses were performed using an UHPLC (1290 Infinity LC, Agilent Technologies) coupled to a QTRAP

(AB Sciex 5500).

Metabolic flux experiments using [U-13C6] glucose
Organoids were seeded at a density of approximately 13107 cells per 10 cm dish. The labeling medium composed of DMEM (Gibco,

11966-025) with a supplement of 1 g/L [U-13C6] glucose (CIL, CLM-1396-1), 1 g/L nonlabeled glucose (Sigma, G7021), 10% (v/v) FBS,

1mM pyruvate, unlabeled 2mM L-glutamine and 1% (v/v) penicillin-streptomycin. The labeling time of [U-13C6] glucose was 24h.

Metabolic flux experiments were performed according to a previous report.41,83

Measurement of labeled metabolites of isotopomers by GC-MS, LC-MS and UHPLC-QTOF system
Metabolites of glycolysis, TCA cycle, oxidative PPP and nonoxidative PPP were measured followed a previously published

protocol.41,83

Measurement of G6PD enzymatic activity
G6PD activity was measured at room temperature. G6PD was immunoprecipitated from the lysates of organoids and subjected to

G6PD enzymatic activity assays in the reaction buffer containing 42mMTris (PH 7.5), 2.66mMGlucose-6-phosphate (Sigma, G7879-

500mg), 40mM MgCl2, 0.66 mM b-NADP. The change in absorbance at 340 nM owing to increase of NADPH was measured using

BioTek Synergy Neo Multi-Mode Plate Reader (BioTek, USA).

Immunoprecipitation and immunoblotting
For pancreatic cancer organoid cells, cell lysate (25mM Tris-HCl pH 8.0, 150mMNaCl, 1 mMCaCl2, 1%, 1 Triton X-100) with EDTA-

free protease inhibitors (Biotool) was added to the dish, gently scraped with cell scraping and transferred to a 1.5 mL centrifuge tube,

sonicated for 2s, 0.5s apart with a total length of 0.3 min, and let for 30 min on ice for full lysis. Treated cell homogenates at 4�Cwere

centrifuged at 12,000 r p m for 10 min. Protein concentration was detected using protein kit. The Protein A/G PLUS-beads (Santa

Cruz) was closed in 4�Cwith 0.1%BSA for 1 h, washed three times withWash buffer, centrifuged at 400 g to remove the waste liquid,

and the beadswas stored in a 4�C refrigerator. After the protein concentration was determined, the cell lysate was quantified to a total

protein amount of 2 mg, and the primary antibody was added to the cell lysate at a ratio of 1:100, incubated overnight at 4�C to bind

the antibody to the target protein. The next day, the mixture of antibody and protein was incubated with the blocked Protein A/G

PLUS-Beads for 6 h at 4�C to bind the immunoprecipitated complex to beads. By centrifugation at 300g of the cells for 4 min at
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4�C, washing the beads with Wash buffer (50 mM Tris-HCl, 400 Mm NaCl and 0.8% Triton X-100, pH 7.5) for 3–5 min each. After the

second wash, it was transferred to a new 1.5 mL centrifuge tube and then repeated twice, finally adding 90 mL prediluted 1X loading

buffer, 95�C metal bath for 10 min and 12,000 r p m for 3 min to dissociate the protein from the beads for western assay.

Drug-treatment assays
384-well plates (corning, 3765) were coatedwith 10 mL of collagen before the addition of PDAC organoids (3,000 cells per well, 50 mL).

Chemotherapeutic agents as well as DMSO (Innoche, D3850-500ML) controls were added in triplicate using HP D300e Digital

Dispenser. Cell viability was assayed by CellTiter-Glo Reagent (Promega, G7573), SRB solution (Sigma, S1403-25g) or CCK-8 (Va-

zyme, A311-01) after five days treatment. To measure sensitivity, we used 5-8-point dose-response curves; for each drug, the cor-

responding cell viability values were used as input for curve generation. Average inhibition rates from three independent experiments

were calculated with Excel and visualized usingGraphPad Prism 8. Each drug concentration (nM/L) was log10 transformed. The AUC

was calculated with the sintegral function in R, and the normalized AUC was obtained by dividing one AUC by the maximum AUC for

each drug. GEM (TargetMol, T0251); 5-FU (SIGMA, F6627); IRI (Selleck chemicals, S1198); OXA (Selleck chemicals, S1124); PTX

(Selleck chemicals, S1150); BAY-876 (Selleck chemicals, S8452); 6AN (Selleck chemicals, S9783); MLN8054 (TargetMol; T6315); Ali-

sertib (Selleck chemicals, S1133); Pyrimidine nucleosides include uridine (Sigma, U3003), cytidine (Sigma, C4654), thymidine (Sigma,

T1895), with a final concentration of 240um; Purine nucleosides include Guanosine (Sigma, G6264) and adenosine (Sigma, A4036),

with a final concentration of 200um; R5P (MCE, 207671-46-3) with a final concentration of 1mM.

Immunohistochemistry
Immunohistochemistry was performed as described in our previous study.31 The antibodies used for staining TMA was as follows:

Anti-GLUT1 (1/500, abcam, ab115730) and anti-ALDOB (1/2000, proteintech, 18065-1-AP).

qRT-PCR
Total RNA was extracted with TRIzol reagent (Ambion, 15596018) from cells for the generation of single stranded cDNA. Reverse

transcription was further performed with PrimeScriptTM RT Master Mix (TaKaRa, RR036A) with 500 ng of total RNA as input. Quan-

titative RT-PCR (qRT-PCR) was performed using an ABI 7300 Real-Time PCR System (Applied Biosystems) with the Power SYBR

Green PCR Master Mix (Qiagen, 208054). The primers used for each of the genes are listed (Table S6).

Metabolomics-based subtyping
Unsupervised classification of PDACmetabolomics was conducted with consensus clustering (R package ‘‘CancerSubtypes’’; clus-

terAlg = "hc", distance = "euclidean", innerLinkage = "ward.D2").71 Differential compounds in each subtype were calculated by Wil-

coxon rank-sum test (P-value<0.05, Fold-change>1.2) and functional enrichment analysis was performed by MBROLE 2.0 with dys-

regulated metabolomics (FDR<0.05).72 Single-sample gene set enrichment analysis (ssGSEA) was used to calculate enrichment

score of the six metabolic ontology classes in two metabolic subtypes (R package ‘‘GSVA’’).73

Differential expressed genes (DEGs) of twometabolic subtypes were calculated by R package limmawith corresponding RNA-seq

data (log2 transformed FPKM values, cutoff: P-value<0.05 and Fold-change>1.5).74 We then used these signature genes to make

class prediction of Bailey PDAC cohort and TCGA PDAC cohort by NearestTemplatePrediction (NTP) and split these two cohorts

into glucomet and lipomet subtype respectively.75 Only Squamous and Pancreatic progenitor samples for Bailey cohort (n = 55)

and ductal pancreatic cancers samples were included for TCGA cohort (n = 156). In addition, gene set enrichment analysis

(GSEA) was performed to determine KEGG pathways enriched in two metabolic subtypes with ranked genes list (R package

‘‘clusterProfiler’’).76,84

Corresponding whole-genome sequencing data were also used to explore genomic difference between two metabolic subtypes.

Nonsynonymous somatic mutations were counted and then divided by the size of the coding region (�45M) to calculate tumor mu-

tation burden (TMB). To calculate the chromosome instability (CIN), we used a weighted-sum approach following another study.85

First, absolute log2 ratios of all CNV segments within a chromosome were weighted by the segment length and summed up to derive

the instability score for each chromosome. Then, the genome-wide chromosome instability index was obtained by summing up the

instability score of all 22 autosomes. Wilcoxon rank-sum test was used to calculate difference of TMB and CIN between two meta-

bolic subtypes.

ATAC-data processing
Raw fastq data of ATAC-seq was mapped to the human reference genome hg19 with Bowtie v2.3.1 and then duplicate reads were

removed with Sambamba v0.6.6.77,78 Then Samtools v1.4 was used to filter uniquely aligned reads and reads of chrM were filtered

out.79 Peak calling was conducted with MACS2 v2.1.1 and the threshold was set as p < 0.0001.80 R package DiffBind was then used

to compute differential peaks among different conditions (p < 0.05).82 In addition, deepTools bamCoverage (with parameters –nor-

malizeUsingRPKM) was used to converted bam files into bigwig format and then deepTools plotHeatmap was used for visualization

of differential peaks.81
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Crystal structure of G6PD and substrate
The crystal structure of the complex of human G6PD with substrate glucose 6-phosphate(G6P) (PDB ID: 2BHL)86 was aligned to the

complex of humanG6PDwith the structural NADP and coenzymeNADP (PDB ID: 2BH9), after being prepared by Protein Preparation

Wizard (Schrödinger Release 2022-1: Protein Preparation Wizard; Epik, Schrödinger, LLC, New York, NY, 2022; Impact, Schrö-

dinger, LLC, New York, NY; Prime, Schrödinger, LLC, New York, NY, 2022). Then G6P in 2BHL was extracted and merged with

2BH9. A conformation minimization of the amino acids in the merged structure around G6P (within 5 Å) was carried out by Prime

(Schrödinger Release 2022-1: Prime, Schrödinger, LLC, New York, NY, 2022). The minimized complex was taken as the receptor

for virtual screening with G6P binding site as the grid center. The compounds (7098 compounds) were prepared by LigPrep (Schrö-

dinger Release 2022-1: LigPrep, Schrödinger, LLC, New York, NY, 2022) and docked into the receptor at the SP precision by Glide

(Schrödinger Release 2022-1: Glide, Schrödinger, LLC, NewYork, NY, 2022). The docked ligand-protein complexes in 3D and the 2D

ligand-protein interaction diagrams were presented by Maestro (Schrödinger Release 2022-1: Maestro, Schrödinger, LLC, New

York, NY, 2022).

QUANTIFICATION AND STATISTICAL ANALYSIS

Experimental data were analyzed by Student’s t test, Wilcoxon rank-sum test, Pearson correlation analysis or log rank test. The

detailed statistical tests were indicated in figures legends.
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