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SUMMARY
Emerging evidence implicates microbiome involvement in the development of pancreatic cancer (PaCa).
Here, we investigate whether increases in circulating microbial-related metabolites associate with PaCa
risk by applying metabolomics profiling to 172 sera collected within 5 years prior to PaCa diagnosis and
863 matched non-subject sera from participants in the Prostate, Lung, Colorectal, and Ovarian (PLCO)
cohort. We develop a three-marker microbial-related metabolite panel to assess 5-year risk of PaCa. The
addition of five non-microbial metabolites further improves 5-year risk prediction of PaCa. The combined
metabolite panel complements CA19-9, and individuals with a combined metabolite panel + CA19-9 score
in the top 2.5th percentile have absolute 5-year risk estimates of >13%. The risk prediction model
based on circulating microbial and non-microbial metabolites provides a potential tool to identify
individuals at high risk of PaCa that would benefit from surveillance and/or from potential cancer interception
strategies.
INTRODUCTION

Pancreatic cancer is highly lethal and is projected to become the

second leading cause of cancer death in the United States by

2040.1 Surgical resection of localized disease represents the

greatest chance for curative therapy. Unfortunately, only a mi-

nority (15%–20%) of patients present with surgically resectable

disease.2,3

The low incidence of pancreatic cancer in the average-risk

population (�8–12 per 100,000)4,5 makes it challenging to imple-

ment effective screening programs for pancreatic cancer. The

United States Preventative Services Task Force (USPSTF)

currently recommends against screening for pancreatic cancer
Cell Report
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in the general population using any method.6 Yet, the USPSTF

recognizes that screening in persons who are at an increased

riskmay bewarranted.6 There remains an opportunity to develop

blood-based signatures that can identify individuals at increased

risk who would benefit from screening and, potentially, from pre-

ventive interventions.

The microbiota is a complex ecosystem integral to human

health. Microbial diversity is site specific and varies depending

on the organ location.7 Increasing evidence suggests that alter-

ations in the microbiome are associated with risk for certain can-

cers, includingpancreaticcancer.8Studies suggest that lossofmi-

crobial diversity and community stability coupledwith increases in

pathogenic microbes increase cancer susceptibility.9 In the
s Medicine 4, 101194, September 19, 2023 ª 2023 The Authors. 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1. Patient and tumor characteristics for PLCO cohort

Subject/control subject status

Non-subject Subject

N % N %

Total 863 100 173 100

Gender

Female 357 41.4 72 41.6

Male 506 58.6 101 58.4

Age at randomization

%59 183 21.2 37 21.4

60–64 206 23.9 41 23.7

65–69 321 37.2 64 37.0

R70 153 17.7 31 17.9

Race

White 783 90.7 157 90.8

Black 30 3.5 6 3.5

Other 50 5.8 10 5.9

Cigarette smoking status

Never smoked cigarettes 420 48.7 63 36.4

Current cigarette smoker 74 8.6 36 20.8

Former cigarette smoker 369 42.8 74 42.8

BMI at baseline (in kg/m2)

Not answered 7 0.8 0 0.0

0–18.5 8 0.9 3 1.7

18.5–25 300 34.8 56 32.4

25–30 365 42.3 71 41.0

30+ 183 21.2 43 24.9

Diabetic status

Unknown 1 0.1 0 0.0

Yes 55 6.4 22 12.7

No 807 93.5 151 87.3

SEER staging (subjects only)

Unknown – – 15 8.7

Localized – – 35 20.2

Regional – – 33 19.1

Distant – – 90 52.0
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context of pancreatic cancer, the composition of the microbiome

has been linked to alterations in the local microenvironment and

to promotion of oncogenesis through immune suppression,10–12

with implications for response to therapy and survival.13

Microbiome colonization has been associated with metabolic

changes that can perpetuate inflammation and increase an indi-

vidual’s risk of developing cancer.7,14–16 Microbiome-related

metabolites include short-chain fatty acids, butyrate and ace-

tate, secondary bile acids, indole-derivatives, cadaverine, trime-

thylamine N-oxide (TMAO), and lipopolysaccharides.17 A study

of serum methionine-related metabolites identified elevated

serum levels of TMAO, a gut microbiota-derived metabolite,18

as associated with pancreatic cancer.19,20 Other metabolites

consisting of indoleacrylic acid and indole-3-acetate have

been shown to differentiate subjects with newly diagnosed

pancreatic cancer from control subjects.21
2 Cell Reports Medicine 4, 101194, September 19, 2023
We designed our study to quantify the extent to which micro-

biome-related and other metabolites in circulation are elevated

among subjects that were subsequently diagnosed with pancre-

atic cancer using sera collected fromparticipants in the Prostate,

Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial.

Using a training and testing approach, we established a microbi-

al-relatedmetabolite panel for 5-year risk assessment of pancre-

atic cancer. The performance of the microbiome metabolite

panel for risk prediction of pancreatic cancer was further evalu-

ated in an independent cohort of patients with newly-diagnosed

pancreatic cancer compared with non-cancer control subjects.

The complementary value of other non-microbial-related metab-

olites as well as CA19-9 was also determined.

RESULTS

Quantification of microbial-related metabolites
Using untargeted metabolomics, we screened for microbial-

derived metabolites in sera from 172 subjects diagnosed within

5 years of blood draw and 863 non-subject participants from

the PLCO screening trial (Table 1). A total of 14 microbial-related

metabolites were detected and quantified across all specimens,

including 9 indole derivatives,22,23 two secondary bile acids,24,25

5-hydroxy-tryptophan,26 acetylcadaverine,27 and TMAO.28,29 Of

the 14 metabolites, indoleacrylic acid, TMAO, and indole-deriv-

ative_2 had adjusted odds ratios (ORs) per unit standard devia-

tion (SD) increaseR1.2 for risk of pancreatic cancer (Figures S1

and S2). Elevated levels of TMAO and indoleacrylic acid

have been associated with phyla of Bacillota, Bacteroidota,

Actinomycetota, and Pseudomonadota (species of Clostridium

sporogenes [Cs], Eubacterium rectale [Er], Bacteroides thetaio-

taomicron [Bt], Parabacteroides distasonis [Pd], Collinsella

aerofaciens [Ca], and Edwardsiella tarda [Et]),30 all of which

have relevance to pancreatic cancer (Figures 1A and 1B).31–34

Model building and testing of microbial-related
metabolite panel
To establish a combination rule, all 14 microbial-related metab-

olites were considered. Seven different models were trained and

optimized in the development set (Figure S3; Table S1). LASSO

regression with three selected features achieved the highest pre-

diction performance among all models in the validation set,

yielding an area under the curve (AUC) of 0.64 (95% confidence

interval [CI]: 0.54–0.73) and an adjusted OR of 1.42 (95% CI

0.94–2.13) per unit SD increase for 5-year probability of pancre-

atic cancer (Tables 2 and S2). To verify the reproducibility of our

finding, we adhered to the predictability, computability, and

stability (PCS) framework35 and stress tested the 3-marker mi-

crobial panel to ensure its reliability. Stable performance in terms

of AUC and adjusted OR across various data perturbations and

stability checks demonstrated the robustness of the 3-marker

microbial panel (Table S3).

Performance of the 3-marker microbial panel in the test
set
In the test set, the 3-marker microbial panel yielded an AUC of

0.64 (95% CI: 0.53–0.76) and an adjusted OR of 1.72 (95%

CI: 1.25–2.37) per unit SD increase for 5-year probability of



Figure 1. Relationship between TMAO and indoleacrylic acid and microbial species

(A) Association between TMAO and indoleacrlyic acid with different microbial species. Data were derived from the Metabolomics Data Explorer database (see

STAR methods).30 Data were derived from N = 2–8 biological replicates.

(B) Association between referenced microbial species and pancreatic cancer.
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pancreatic cancer (Table 3). When considering subjects diag-

nosedwithin 2 years of blood draw, the 3-marker microbial panel

yielded an AUC of 0.61 (95% CI: 0.48–0.74) and an adjusted OR

of 1.43 (95% CI: 0.98–2.03) per unit SD increase for risk predic-

tion of pancreatic cancer (Table 3). Prediction performance of

the 3-marker microbial panel for risk assessment of pancreatic
cancer was similar among diabetic and non-diabetic individuals

(Table S4).

We further assessed the prediction performance of the

3-marker microbial panel in an independent set of samples

from 99 subjects with newly diagnosed, resectable pancreatic

ductal adenocarcinoma (PDAC), 50 patients with chronic
Cell Reports Medicine 4, 101194, September 19, 2023 3



Table 2. Performance of microbial-related metabolites panels in different learning models in the PLCO validation set

Model Hyperparameters AUC (95% CI) Adj ORa

Logistic regression – 0.57 (0.46–0.67) 1.30 (0.85–2.02)

Logistic regression with ridge (L2)

regularization

penalty weight = 0.22 0.58 (0.48–0.68) 1.32 (0.87–2.05)

Logistic regression with LASSO (L1)

regularization

penalty weight = 0.023, number of selected

features = 3

0.64 (0.54–0.73) 1.42 (0.94–2.13)

Iterative random forest number of iterations = 4 0.52 (0.41–0.62) 1.28 (0.80–1.77)

Deep neural network model number of cross-validation folds = 4, hidden

layers = 2 with 64 nodes in each layer

0.55 (0.45–0.65) 1.17 (0.75–1.80)

GBM number of trees = 36, max depth = 6 0.53 (0.41–0.65) 1.12 (0.76–1.58)

Auto machine learning (ML) selected model = randomized trees 0.57 (0.45–0.68) 1.04 (0.64–1.63)

C.I., confidence interval.
aAge, gender, BMI, and smoking status were included as covariates in adjusted odds ratios (ORs).
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pancreatitis (CP), and 100 healthy control subjects (Table S5).

Compared to healthy control subjects, the 3-marker microbial

panel had anOR of 2.83 (95%CI: 1.83–4.82) per unit SD increase

for probability of CP, an OR of 1.55 (95% CI: 1.13–2.23) for

pancreatic cancer, and an OR of 2.07 (95% CI: 1.45–3.18) for

pancreatic disease (cancer or CP) (Figure S4). Of note, the

3-marker microbial panel performed best for identifying CP,

which may be linked with innate pro-inflammatory properties of

the microbial metabolites.36–39

Contributions of non-microbial metabolites for
improved risk prediction of pancreatic cancer
We assessed the contribution of non-microbial metabolites

for pancreatic cancer risk assessment. A total of 1,009 non-micro-

bial metabolites were quantified in the PLCO specimen set

(Table S6). Five non-microbial metabolites (cholesterol glucuro-

nide, 2-hydroxyglutarate, galactosamine, glucose, and erythritol)

exhibited statistically significant (p < 0.05) adjusted ORs in the

development set (Table S7). We subsequently applied the PCS

framework to develop and stress test a model based on the five

non-microbial metabolites. A logistic regression model was

selected based on exhibiting the highest predictive performance

in the validation set, with a resultant AUC of 0.72 (95% CI: 0.65–
Table 3. Performance estimates of the 3-marker microbial panel an

panel for 5-year risk prediction of pancreatic cancer in the set-asid

Time

to Dx Subjects, N

Non-subjects,

N

AUC

(95% CI)

Adj ORa

(95% CI) p

3-marker microbial panel

Set-aside test set

[0–5) 37 225 0.64 (0.53–0.76) 1.72 (1.25–2.37) <0

[0–2) 24 225 0.61 (0.48–0.74) 1.43 (0.98–2.03) 0.

[2–5) 13 225 0.70 (0.50–0.90) 2.11 (1.33–3.43) <0

Entire set

[0–5) 172 861 0.62 (0.57–0.67) 1.50 (1.28–1.76) <0

[0–2) 92 861 0.60 (0.54–0.67) 1.43 (1.18–1.74) <0

[2–5) 80 861 0.64 (0.57–0.70) 1.53 (1.28–1.87) <0

C.I., confidence interval; Dx, diagnosis.
aAge, gender, BMI, and smoking status were included as co-variables in ad

4 Cell Reports Medicine 4, 101194, September 19, 2023
0.97) and an adjusted OR of 2.10 (95% CI: 1.04–2.80) for 5-year

risk prediction of pancreatic cancer (Table S8). In the set-aside

test set, the 5-marker non-microbial panel yielded an AUC of

0.74 (95% CI: 0.65–0.83) and an adjusted (adj) OR of 2.72 (95%

CI: 1.83–4.24) for 5-year risk prediction of pancreatic cancer

(Table S9).

To assess the contributions of the 3-marker microbial panel

and the 5-marker non-microbial panel, we fitted a logistic regres-

sion with the 3-marker microbial panel scores and the 5-marker

non-microbial panel scores as two separate predictors. The

combined metabolite panel yielded an AUC of 0.79 (95% CI:

0.71–0.88) and an adj OR of 3.13 (95% CI: 2.08–4.98) per unit

SD increase for 5-year probability of pancreatic cancer in the

set-aside test set (Tables 3 and S4). When considering subjects

diagnosed within 0–2 years and 2–5 years of blood draw, the

combined metabolite panel had respective AUCs of 0.82 (95%

CI: 0.72–0.93) and 0.74 (95% CI: 0.60–0.86) (Table 3).

Contribution of the combined metabolite panel with
CA19-9 for pancreatic cancer risk assessment
We previously demonstrated that levels of CA19-9 were

increased in subjects with PDAC in the PLCO cohort, with an

exponential rise starting 2 years prior to diagnosis.40 We
d a combined 3-marker microbial panel + 5-marker non-microbial

e test set and the entire PLCO specimen set

value

AUC

(95% CI)

Adj ORa

(95% CI) p value

3-marker microbial panel + 5-marker non-microbial panel

.001 0.79 (0.71–0.88) 3.13 (2.08–4.98) <0.001

04 0.82 (0.72–0.93) 3.80 (2.33–6.74) <0.001

.001 0.74 (0.60–0.86) 1.90 (1.08–3.37) 0.02

.001 0.76 (0.72–0.80) 2.75 (2.25–3.38) <0.001

.001 0.81 (0.76–0.86) 3.66 (2.81–4.84) <0.001

.001 0.69 (0.63–0.75) 1.92 (1.51–2.44) 0.02

justed odd ratios.
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therefore assessed whether the combined metabolite panel (3-

marker microbial panel + the 5-marker non-microbial panel)

would be complementary with CA19-9 for risk prediction of

pancreatic cancer. In the set-aside test set, the combined

metabolite panel + CA19-9 had an AUC of 0.84 (95% CI: 0.76–

0.91) and an adj OR of 9.67 (95% CI: 4.56–23.30) per unit SD in-

crease for 5-year probability of pancreatic cancer (Table 4; Fig-

ure 2A). For subjects diagnosed within 2 years after blood

draw, the combined metabolite panel + CA19-9 yielded an

AUC of 0.86 (95% CI: 0.77–0.95), which was markedly improved

compared to CA19-9 alone (AUC: 0.70 [0.57–0.82], comparison

of AUCs p value: 0.006) (Table 4).

Performance of the combined metabolite panel +
CA19-9 for 5-year risk assessment of pancreatic cancer
in the entire PLCO specimen set
In the entire PLCO specimen set, the combined metabolite

panels + CA19-9 had an AUC of 0.80 (95% CI: 0.75–0.83) and

an adj OR of 8.44 (95% CI: 5.80–12.20) for 5-year probability of

pancreatic cancer and an AUC of 0.87 (95% CI: 0.83–0.91)

with an adj OR of 20.02 (95% CI: 11.51–36.97) per unit SD in-

crease for 2-year probability of pancreatic cancer (Tables 4

and S10; Figure 2B).

5-year absolute risk estimates adjusted for prevalence of dis-

ease based on the entire intervention arm of the PLCO popula-

tion41,42 for individuals with combined metabolite panel +

CA19-9 model scores in the 80th, 90th, 95th, and 97.5th percen-

tiles were 1.07%, 2.05%, 4.52%, and 13.33%, respectively

(Figure 3).

DISCUSSION

Meaningful reductions in pancreatic cancer-related mortality

may be realized through effective screening programs for earlier

detection of disease. The low incidence of pancreatic cancer ne-

cessitates that a screening test for the general population yields

adequate sensitivity at exceptionally high specificity. No such

tests yet exist that meet performance criteria necessary for

implementation for pancreatic cancer screening in the general

population. However, the USPSTF has recognized that high-

risk individuals, such as those with inherited risk or individuals

with a history of CP, may benefit from surveillance and

screening.6 Here, we performed ametabolite screen for reported

microbial-related metabolites in the blood and evaluated their

association with pancreatic cancer risk. We developed and

validated a 3-marker microbial-associated metabolite panel

that offers potential utility for identifying individuals at high

risk of developing pancreatic cancer within 5 years. A broader

metabolite screen resulted in a blood-based metabolite panel

consisting of microbial and non-microbial metabolites that

yielded further improvements for identifying individuals at high

risk of developing pancreatic cancer within 5 years.

Enriching for individuals who are at high risk of pancreatic

cancer increases the positive predictive value of pertinent can-

cer-detection tests while reducing the number of false positive

tests. To this end, we showed that the risk prediction model

based on circulating microbial + non-microbial metabolites is

additive to CA19-9 for identifying individuals who went on to
Cell Reports Medicine 4, 101194, September 19, 2023 5
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Figure 2. Area under the reciever operating characteristic curves for 5-year risk prediction of pancreatic cancer in the PLCO cohort

Predictive performance estimates for the metabolite (microbial + non-microbial) panel, CA19-9, and the metabolite panel + CA19-9 for 5-year risk prediction of

pancreatic cancer in the PLCO set-aside test set (A) and the entire PLCO specimen set (B).
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receive a pancreatic cancer diagnosis within 5 years of blood

draw. Specifically, our findings demonstrated that individuals

with combined metabolite panel + CA19-9 scores in the top

2.5th percentile have estimated 5-year absolute risks of >13%,

which would warrant more intensive follow-up and trigger an

imaging-based modality such as contrast-enhanced pancreas

protocol computed tomography (CT) or MRI/magnetic reso-

nance cholangiopancreatography (MRCP).

The microbial-related metabolite panel includes indoleacyrlic

acid, an indole-derivative, and TMAO. TMAO- and indolea-

crylic-acid-producing bacteria include those in the phyla of Ba-

cillota, Bacteroidota, Actinomycetota, and Pseudomonadota.

Bacillota species such as Cs and Er and Bacteriodota species

including Bt and Pd have been shown to be increased in fecal

samples of patients with PDAC compared with control sub-

jects.31–33 Relative abundances of fecal Collinsella aeofaciens,

a species of Actinomycetota, is associated with poor prognosis

in PDAC.32

Indoleandassociatedderivativesarederived through thecatab-

olism of tryptophan via the microbiome that may serve as ligands

for the aryl hydrocarbon receptor (AHR) to modulate the immune

and inflammatory response.43–45 Notably, indole and indole deriv-

atives are thought to be largely derived fromcommensalmicrobes

with reported anti-inflammatory properties.46

TMAO is a gut microbiota-derived metabolite of dietary

choline, betaine, and L-carnitine that has been reported to

be associated with increased risk of several cancer types

including pancreatic cancer.23,47–49 Prior studies have shown

that TMAO is elevated in pancreatic cystic fluid of individuals

presenting with high-risk intraductal papillary mucinous neo-

plasms or pancreatic cancer compared with those harboring

non-cancerous cysts.50 Moreover, levels of TMAO in cystic fluid

were positively correlated with bacterial clusters corresponding

to Enterobacteriacea,Granulicatella,Klebsiella,Stenotrophomo-

nas, Streptococcus, Haemophilus, and Fusobacterium,50 which
6 Cell Reports Medicine 4, 101194, September 19, 2023
have previously been reported to be associated with pancreatic

cancer.15,51 Mechanistically, studies have shown that TMAO in-

duces activation of inflammatory pathways, including the nu-

clear factor kB (NF-kB) pathway and the thioredoxin-interactive

protein (TXNIP)-NLRP3 inflammasome, resulting in increased

oxidative stress, DNA damage, and release of inflammatory cy-

tokines that may potentiate cancer development.36–39 We

observed TMAO to also be particularly elevated in patients pre-

senting with CP, further suggesting a relationship between

TMAO, inflammation of pancreas tissues, and pancreatic cancer

risk.52,53

Non-microbial metabolites in the metabolite panel included

2-hydroxyglutarate, cholesterol glucuronide, galactosamine,

glucose, and erythritol. Production of the oncometabolite

2-hydroxyglutarate is largely associated with mutations in

isocitrate dehydrogenase 1 (IDH1) and IDH2, neomorphic en-

zymes that convert a-ketoglutarate to 2-hydroxyglutarate.54

2-Hydroxyglutarate can also be produced through alternative

metabolic pathways with pro-tumoral effects. For instance,

recent data also suggest that, under hypoxic conditions, lactate

dehydrogenase produces 2-hydroxyglutarate to maintain stem-

ness and facilitate immune evasion in pancreatic cancer.55

Cholesterol glucuronide is a natural metabolite of cholesterol

generated in the liver by UDP glucuronyltransferase. Prior

studies have shown that elevated levels of cholesterol glucuro-

nide is prognostic for poor survival in patients with pancreatic

cancer.56

The onset of diabetes is often a manifestation that precedes

diagnosis of pancreatic cancer, and new-onset glucose intoler-

ance is a frequent and characteristic feature of pancreatic can-

cer.57,58 To this end, in a prior population-based case-control

study of 736 pancreatic cancer subjects and 1,875 age- and

gender-matched control subjects, 40.2% of subjects with

pancreatic cancer had diabetes.58 In another study, 50% of pa-

tients with stage I and II pancreatic cancer had diabetes.57–59



5-year absolute risk (%)

Percentiles CA19-9 Combined 
Metabolite Panel

Combined Metabolite 
Panel + CA19-9

20.0% 0.450 0.262 0.227
40.0% 0.517 0.425 0.350
60.0% 0.609 0.652 0.528
80.0% 0.870 1.245 1.066
90.0% 1.389 1.890 2.049
95.0% 2.159 2.880 4.521
97.5% 10.060 4.740 13.330

Figure 3. Absolute 5-year risk estimates for

individuals with CA19-9 + 3-marker microbi-

al panel + 5-marker non-microbial panel

scores

Vertical lines represent 20th, 40th, 60th, and 80th

percentile values. Table on the bottom provides

absolute 5-year risk estimates for individuals with

CA19-9, combined metabolite panel (3-marker

microbial metabolite panel + 5-marker non-micro-

bial metabolite panel), and the combined metab-

olite panel + CA19-9 scores.
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Thus, elevated levels of glucose and galactosamine, a hexos-

amine derived from galactose,60 likely reflect an onset of dia-

betes that temporally occurs with the development of pancreatic

cancer. Although prior studies reported that elevations in circu-

lating branched chain amino acids (BCAAs) were associated

with increased risk of PDAC,20,61 we did not observe any statis-

tically significant between BCAA levels and PDAC risk in the

PLCO cohort.

There are some considerations to our study. Given the low

incidence of PDAC in the general population, procurement of

pre-diagnostic specimens for biomarker discovery and testing

is challenging. In our study, we leveraged pre-diagnostic sera

from the multi-institutional PLCO cancer screening trial to test

the merits of microbial-associated and other non-microbial

metabolites for risk assessment of PDAC. While we acknowl-

edge the limited sample size of subjects with PDAC in the

PLCO specimen set, we emphasize rigor in our statistical

approach, adhering to the PCS framework for modeling and

evaluation of model stability and robustness,35 as well as the

use of an independent set of plasmas from patients with newly

diagnosed PDAC . Information regarding new-onset diabetes

versus long-standing diabetes as well as other clinical mea-

surements, such as HbA1C or weight loss, were not available.

Moreover, the frequency of diabetes in the PLCO cohort is
Cell Reports
also likely to be underestimated. Conse-

quently, we were unable to evaluate

the complementarity of the metabolite

panel together with other risk models

based on patient characteristics62 for

risk assessment of pancreatic cancer.

16S sequencing data to assess stool-

or tissue-level microbial diversity and

composition were not available for

analyzed samples, thus preventing direct

correlative studies between specific mi-

crobial species and the established

microbial-related metabolite panel. CP

status, fasting status, and food intake

for PLCO participants was not available.

Fasting status and food and drink uptake

were not controlled for in the PLCO

cohort, and information was not avail-

able. Time-dependent performance esti-

mates were derived based on availability

of serum samples at various time points
preceding cancer diagnosis from individual patients. Availabil-

ity of serial samples would allow for the development of longi-

tudinal algorithms for assessment of pancreatic cancer risk.

Whether the metabolite panel to inform on risk of

other cancer types warrants consideration. Specificity of the

metabolite panel for risk of pancreatic cancer can be improved

through testing of recognized high-risk populations, including

those with inherited risk63,64 or with mucinous cysts of the

pancreas65 or individuals older than 50 with new-onset

diabetes.57,58

In conclusion, themetabolite panel has the potential to identify

individuals at high risk of pancreatic cancer who may benefit

from surveillance and/or potential cancer interception strategies

such as vaccines. Integration of the panel with other risk models

of pancreatic cancer may yield further improvements for risk

assessment.
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Daugé, V., Maguin, E., Naudon, L., andRabot, S. (2018). Indole, a signaling

molecule produced by the gut microbiota, negatively impacts emotional

behaviors in rats. Front. Neurosci. 12, 216.

24. Ridlon, J.M., Kang, D.J., Hylemon, P.B., and Bajaj, J.S. (2014). Bile acids

and the gut microbiome. Curr. Opin. Gastroenterol. 30, 332–338.

25. Hylemon, P.B., Harris, S.C., and Ridlon, J.M. (2018). Metabolism of

hydrogen gases and bile acids in the gut microbiome. FEBS Lett. 592,

2070–2082.

26. Stoll, M.L., Kumar, R., Lefkowitz, E.J., Cron, R.Q., Morrow, C.D., and

Barnes, S. (2016). Fecal metabolomics in pediatric spondyloarthritis impli-

cate decreased metabolic diversity and altered tryptophan metabolism as

pathogenic factors. Gene Immun. 17, 400–405.

27. Pugin, B., Barcik, W., Westermann, P., Heider, A., Wawrzyniak, M., Hel-

lings, P., Akdis, C.A., and O’Mahony, L. (2017). A wide diversity of bacteria

from the human gut produces and degrades biogenic amines. Microb.

Ecol. Health Dis. 28, 1353881. https://doi.org/10.1080/16512235.2017.

1353881.

28. Brunt, V.E., LaRocca, T.J., Bazzoni, A.E., Sapinsley, Z.J., Miyamoto-Dit-

mon, J., Gioscia-Ryan, R.A., Neilson, A.P., Link, C.D., and Seals, D.R.

(2021). The gut microbiome–derived metabolite trimethylamine N-oxide

modulates neuroinflammation and cognitive function with aging. Gero-

Science 43, 377–394.

29. Xu, R., Wang, Q., and Li, L. (2015). A genome-wide systems analysis re-

veals strong link between colorectal cancer and trimethylamine N-oxide

(TMAO), a gut microbial metabolite of dietary meat and fat. BMC Genom.

16, S4–S9.

30. Han, S., Van Treuren, W., Fischer, C.R., Merrill, B.D., DeFelice, B.C., San-

chez, J.M., Higginbottom, S.K., Guthrie, L., Fall, L.A., Dodd, D., et al.

(2021). A metabolomics pipeline for the mechanistic interrogation of the

gut microbiome. Nature 595, 415–420.

31. Zhou, W., Zhang, D., Li, Z., Jiang, H., Li, J., Ren, R., Gao, X., Li, J., Wang,

X., Wang, W., and Yang, Y. (2021). The fecal microbiota of patients with

pancreatic ductal adenocarcinoma and autoimmune pancreatitis charac-

terized by metagenomic sequencing. J. Transl. Med. 19, 215–312.

32. Matsukawa, H., Iida, N., Kitamura, K., Terashima, T., Seishima, J., Makino,

I., Kannon, T., Hosomichi, K., Yamashita, T., Sakai, Y., et al. (2021). Dys-

biotic gut microbiota in pancreatic cancer patients form correlation net-

works with the oral microbiota and prognostic factors. Am. J. Cancer

Res. 11, 3163–3175.
33. Half, E., Keren, N., Reshef, L., Dorfman, T., Lachter, I., Kluger, Y., Reshef,

N., Knobler, H., Maor, Y., Stein, A., et al. (2019). Fecal microbiome signa-

tures of pancreatic cancer patients. Sci. Rep. 9, 16801–16812.

34. Kamiyama, S., Kuriyama, A., and Hashimoto, T. (2019). Edwardsiella tarda

Bacteremia, Okayama, Japan, 2005–2016. Emerg. Infect. Dis. 25,

1817–1823.

35. Yu, B., and Kumbier, K. (2020). Veridical data science. Proc. Natl. Acad.

Sci. USA 117, 3920–3929.

36. Sun, X., Jiao, X., Ma, Y., Liu, Y., Zhang, L., He, Y., and Chen, Y. (2016). Tri-

methylamine N-oxide induces inflammation and endothelial dysfunction in

human umbilical vein endothelial cells via activating ROS-TXNIP-NLRP3

inflammasome. Biochem. Biophys. Res. Commun. 481, 63–70. https://

doi.org/10.1016/j.bbrc.2016.11.017.

37. Seldin, M.M., Meng, Y., Qi, H., Zhu, W., Wang, Z., Hazen, S.L., Lusis, A.J.,

and Shih, D.M. (2016). Trimethylamine N-Oxide Promotes Vascular Inflam-

mation Through Signaling of Mitogen-Activated Protein Kinase and Nu-

clear Factor-kB. J. Am. Heart Assoc. 5, e002767. https://doi.org/10.

1161/jaha.115.002767.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Pre-diagnostic sera from the

Prostate Lung Colorectal and Ovarian

(PLCO) Cancer Screening Cohort

PLCO Cohort N/A

Plasmas from newly diagnosed

resectable PDAC cases, healthy

controls, and patients with chronic

pancreatitis

Dana-Farber Cancer

Institute/Brigham and

Women’s Hospital

(DFCI/BWH), Beth

Israel Deaconess

Medical Center (BIDMC),

and Columbia University

Irving Medical Center (CUIMC).

N/A

Deposited data

MetaboLights This paper https://www.ebi.ac.uk/metabolights/

editor/MTBLS7260/descriptors

Other

AcquityTM UPLC BEH amide, 100 Å, 1.7 mm

2.13

100mm column

Waters Corporation,

Milford, USA

catalog number:

176001908

AcquityTM UPLC HSS T3, 100 Å, 1.8 mm,

2.1 3 100mm column

Waters Corporation,

Milford, USA

catalog number:

176001132

Ammonium formate (optima LCMS) ThermoFisher,

Waltham, MA, USA

catalog number:

A11550

Formic Acid Honeywell Fluka,

Charlotte, NC, USA

catalog number: 60-006-17

LCMS Grade Acetonitrile ThermoFisher,

Waltham, MA, USA

catalog number:

A955-4

LCMS Grade Methanol ThermoFisher,

Waltham, MA, USA

catalog number:

A456-4

LCMS Grade Isopropanol ThermoFisher,

Waltham, MA, USA

catalog number:

A461-4

Metabolomics Data Explorer database https://sonnenburglab.github.io/

Metabolomics_Data_Explorer/#/invivo

N/A
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be direct to and will be fulfilled by the lead contact, Johannes F.

Fahrmann, Ph.D. (jffahrmann@mdanderson.org).

Materials availability
d This study did not generate new reagents.

d There are restrictions to the availability of human biospecimens due to existing MTA.

Data and code availability
d Relevant data supporting the findings of this study are available within the Article and Supplemental Materials.

d No new code was generated for this study.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
Cell Reports Medicine 4, 101194, September 19, 2023 e1

mailto:jffahrmann@mdanderson.org
https://www.ebi.ac.uk/metabolights/editor/MTBLS7260/descriptors
https://www.ebi.ac.uk/metabolights/editor/MTBLS7260/descriptors
https://sonnenburglab.github.io/Metabolomics_Data_Explorer/#/invivo
https://sonnenburglab.github.io/Metabolomics_Data_Explorer/#/invivo


Article
ll

OPEN ACCESS
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

PLCO cohort
The PLCO Cancer Screening Trial is a randomized multicenter trial in the United States that aimed to evaluate the impact of early

detection procedures for prostate, lung, colorectal and ovarian cancer on disease-specific mortality. All subjects involved in this

study were enrolled with written consent as a criterion for eligibility to participate in the PLCO trial. Detailed information regarding

the PLCO cohort is provided elsewhere.66,67

The study included 173 pancreatic cancer cases that were diagnosed within 5 years of blood draw and 863 matched non-cases

from 10 participating PLCO study centers (Table 1). Pancreatic cancer cases were identified by self-report in annual mail-in surveys,

state cancer registries, death certificates, physician referrals and reports from next of kin for deceased individuals. All medical and

pathologic records related to pancreatic cancer diagnosis and supporting documentation were obtained and confirmed by PLCO

staff. Pancreatic cancers were classified as localized, regional, distant, or unstaged using the National Cancer Institute Surveillance,

Epidemiology, and End Results (SEER) historic staging system. Non-cases, alive at the time when the index case was diagnosed,

were matched to cases at a ratio of 5:1 (non-case:case) based on the distribution of age, race, gender, and calendar date of blood

draw in 2-month blocks within the case cohort.

Newly diagnosed pancreatic cancer cohort
An independent test set consisted of plasma samples from 99 patients with resected PDAC, 50 patients with chronic pancreatitis,

and 100 healthy controls as previously described (Table S5).67 Patients with pancreatic cancer provided informed written consent

to blood collection pretreatment and to clinical data abstraction under DF/HCC (Dana-Farber/Harvard Cancer Center) protocol

12–013. Samples were collected under IRB approved local collection protocols at Dana-Farber Cancer Institute/Brigham and

Women’s Hospital (DFCI/BWH), Beth Israel Deaconess Medical Center (BIDMC), and Columbia University Irving Medical Center

(CUIMC)). Healthy controls were recruited from DFCI/BWH and CUIMC and consisted of subjects undergoing screening colonos-

copy or accompanying a non–blood-related patient to an appointment at a gastrointestinal cancer clinic. Healthy controls had no

history of cancer in the 5 years before sample collection. Patients with pancreatic cancer and healthy controls were matched on

gender and age at the time of blood collection. Patients with chronic pancreatitis (CP) were recruited from gastroenterology clinics

at DFCI/BWH, BIDMC, and CUIMC. Patients were included if clinic notes from a gastroenterologist indicated a diagnosis of CP. Pa-

tients with pancreatic cancer or CP were not gender or age matched. Clinical data abstraction was performed identically across the

sites with data uploaded to a password-protected REDCap database. All plasma samples were collected and processed according

to a uniform, standardized protocol across the sites and patient groups.

METHOD DETAILS

Metabolomic analysis
Sample extraction

Serum and plasma metabolites were extracted from pre-aliquoted biospecimen (15 mL) with 45mL of LCMS grade methanol

(ThermoFisher) in a 96-well microplate (Eppendorf). Plates were heat sealed, vortexed for 5 min at 750 rpm, and centrifuged at

2000 3 g for 10 min at room temperature. The supernatant (30mL) was carefully transferred to a 96-well plate, leaving behind the

precipitated protein. The supernatant was further diluted with 60mL of 100mM ammonium formate, pH3 (Fisher Scientific). For Hy-

drophilic Interaction Liquid Chromatography (HILIC) positive ion analysis, 15mL of the supernatant and ammonium formate mix

were diluted with 195mL of 1:3:8:144 water (GenPure ultrapure water system, Thermofisher): LCMS grade methanol

(ThermoFisher): 100mM ammonium formate, pH3 (Fisher Scientific): LCMS grade acetonitrile (ThermoFisher). For C18 analysis,

15mL of the supernatant and ammonium formate mix were diluted with 90mL water (GenPure ultrapure water system, Thermofisher)

for positive ion mode. Each sample solution was transferred to 384-well microplate (Eppendorf) for LCMS analysis.

Untargeted metabolomic analyses
Untargeted metabolomics analysis was conducted on Waters Acquity UPLC system with 2D column regeneration configuration (I-

class and H-class) coupled to a Xevo G2-XS quadrupole time-of-flight (qTOF) mass spectrometer as previously described.68–71

Chromatographic separation was performed using HILIC (Acquity UPLC BEH amide, 100 Å, 1.7 mm 2.1 3 100mm, Waters Corpo-

ration, Milford, U.S.A) and C18 (Acquity UPLC HSS T3, 100 Å, 1.8 mm, 2.1 3 100mm, Water Corporation, Milford, U.S.A) columns

at 45�C.
Quaternary solvent system mobile phases were (A) 0.1% formic acid in water, (B) 0.1% formic acid in acetonitrile and (D) 100mM

ammonium formate, pH 3. Samples were separated on the HILIC using the following gradient profile at 0.4 mL/min flow rate: (95%B,

5% D) linear change to (70% A, 25% B and 5% D) over 5 min; 100% A for 1 min; and 100% A for 1 min. For C18 separation, the

chromatography gradient was as follows at 0.4 mL/min flow rate: 100% A with a linear change to (5% A, 95% B) over 5 min;

(95% B, 5% D) for 1 min; and 1 min at (95% B, 5% D).

A binary pump was used for column regeneration and equilibration. The solvent system mobile phases were (A1) 100mM ammo-

nium formate, pH 3, (A2) 0.1% formic in 2-propanol and (B1) 0.1% formic acid in acetonitrile. The HILIC column was stripped using
e2 Cell Reports Medicine 4, 101194, September 19, 2023
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90% A2 for 5 min at 0.25 mL/min flow rate, followed by a 2 min equilibration using 100% B1 at 0.3 mL/min flow rate. Reverse phase

C18 column regeneration was performed using 95% A1, 5% B1 for 2 min followed by column equilibration using 5% A1, 95% B1 for

5 min at 0.4 mL/min flow rate.

Mass spectrometry data acquisition
Mass spectrometry data was acquired using ‘sensitivity’ mode in positive electrospray ionization mode within 50–800 Da range. For

the electrospray acquisition, the capillary voltagewas set at 1.5 kV (positive), sample cone voltage 30V, source temperature at 120�C,
cone gas flow 50 L/h and desolvation gas flow rate of 800 L/h with scan time of 0.5 s in continuum mode. Leucine Enkephalin;

556.2771 Da (positive) was used for lockspray correction and scans were performed at 0.5s. The injection volume for each sample

was 6 mL. The acquisition was carried out with instrument auto gain control to optimize instrument sensitivity over the samples acqui-

sition time.

Data processing
LC-MS and LC-MSe data were processed using Progenesis QI (Nonlinear, Waters). Peak picking and retention time alignment of

LC-MS and MSe data were performed using Progenesis QI software (Nonlinear, Waters). Data processing and peak annotations

were performed using an in-house automated pipeline as previously described.68–70,72 Annotations were determined by matching

accurate mass and retention times using customized libraries created from authentic standards and by matching experimental tan-

dem mass spectrometry data against the NIST MSMS, LipidBlast or HMDB v3 theoretical fragmentations. To correct for injection

order drift, each feature was normalized using data from repeat injections of quality control samples collected every 10 injections

throughout the run sequence.Measurement data were smoothed by LocallyWeighted Scatterplot Smoothing (LOESS) signal correc-

tion (QC-RLSC) as previously described. Values are reported as ratios relative to the median of historical quality control reference

samples run with every analytical batch for the given analyte.68–70,72

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis
Predictive performance estimates for individual microbial-relatedmetabolites identified and quantified throughmetabolomic profiling

of sera were assessed using receiver operating characteristic curve (ROC). Time-dependent ROC analyses were performed using

pROC (version 1.15.3) in the R software environment (version 3.6.1, The R Foundation, https://www.r-project.org). The 95% confi-

dence intervals (CI) for AUCs were estimated using the Delong method.73 Corresponding 95% confidence intervals for odds ratios,

adjusted odds ratios, specificity, sensitivity and the difference measurements were calculated using 1,000 bootstrap samples. Age,

gender, BMI, and smoking status were included as covariates in the adjusted odds ratio.

Throughout the statistical analysis, we adhered to the PCS (Predictability, Computability and Stability) framework for veridical

(trustworthy) data science,35 which has proven valuable inmany previous scientific discoveries including novel gene-gene interaction

for the red-hair phenotype,74 clinically-relevant subgroups in a randomized drug trial,75 and interpretable drug response prediction.76

For themodeling stage as in this paper, the PCS framework uses predictability as a reality check, and for reproducibility, it advocates

for a stability analysis across different reasonable perturbations of the data and models that pass the prediction check. Under this

framework, the entire PLCO specimen set was divided into (1) a Development Set that was used for training and tuning the models

(Training Set) and model selection (Validation Set) and (2) a set-aside Test Set for obtaining an unbiased evaluation of the selected

final model (Figure 2; Table S1). The Development Set consisted of case and non-case sera from seven of the ten PLCO study cen-

ters; the set-aside Test Set consisted of case and non-case sera from the remaining three PLCO study centers.

Seven different learning algorithms were evaluated including a deep learning model (fully-connected feedforward network),

gradient boostingmachine, auto-machine learning, iterative random forest, logistic regression with LASSO (L1) regularization, logistic

regression with ridge (L2) regularization, and logistic regression models. Deep neural network, extreme gradient boosting, and auto

machine learning algorithms were performed using the h2o package in R.77 Iterative random forest was run using the iRF package in

R.78 To further evaluate model stability in accordance with PCS framework, data perturbations (e.g., via random selection and

replacement) were introduced to the Development Set and the performance re-assessed. Based on AUC, a LASSO regressionmodel

with 3 selected microbial-associate metabolites (an indole-derivative, TMAO, and indoleacrylic acid) that showed the highest and

most stable predictive performance was selected for subsequent testing in the set-aside Test Set as well as the independent newly

diagnosed PDAC cohort.

To select the non-microbiome metabolites, the adjusted odds ratio and corresponding p value for each feature were calculated

and corrected using Benjamini-Hochberg in the training set in which 12 metabolites showed an adjusted odds ratio greater than 1

with adjusted p value less than 0.05. Five out of 12 features yielded significant p values and adjusted odds ratio greater than 1 in

the Validation Set. The prediction performance of the combined five non-microbiome features trained in the training set using logistic

regression was evaluated against the microbiome metabolite panel and CA19-9 in the testing set.

For the combination of 3-marker microbial-related metabolite panel, non-microbiome metabolite panel and CA19-9, we fit a logis-

tic regression with three separate predictors, one corresponding to each of the aforementioned features. This model was developed

in the Development Set and validated in the set-aside Test Set.
Cell Reports Medicine 4, 101194, September 19, 2023 e3
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Samples assayed via metabolomics herein reflect a nested case-control cohort that enriches for cases and, therefore, do not

reflect the true risk of pancreatic cancer in the general population. In order to determine the 0.5%, 1%, 1.5% and 2% 5-year risk

of pancreatic cancer, we thus adjust the estimates to reflect the entire PLCO study population using the approach of Prentice

et al.79 In this approach, a prospective logistic model is estimated from the case-control study that includes an offset term to the

logistic model. The offset term is the logit of the prevalence in the populationminus the logit of the prevalence in the analyzed dataset.

Briefly, absolute risk values for each biomarker were estimated by calculating coefficients of a logistic regression in the training set

and the intercept adjusted using the following equation:

Risk =
exp

�
b0
0+b1 3 ðmodelÞ�

1+exp
�
b0
0+b1 3 ðmodelÞ� ;

where

b0
0 = b0 � log

�
Pdata

1 � Pdata

�
+ log

�
PPopulation

1 � PPopulation

�
:

In this equation, b0 is the intercept derived from logistic regression in the nested case-control within a cohort,Pdata is the prevalence

of the disease in our case-enriched dataset,PPopulation is the prevalence of the disease in the general population,model represents the

predicted score derived from the selected model and b1 is the corresponding coefficient for the model score.

ADDITIONAL RESOURCES

Microbial-associated metabolite database
To evaluate the association between the microbial-associated metabolites identified in the PLCO specimen sets with distinct micro-

bial species, we used the Metabolomics Data Explorer database (https://sonnenburglab.github.io/Metabolomics_Data_Explorer/

#/invivo) developed by Shuo Han and colleagues.30 The database reports the metabolic profiles of 178 gut microorganism strains;

microbiota-dependent metabolites were established in diverse biological fluids from gnotobiotic and conventionally colonized mice

and traced back to the corresponding metabolomic profiles of cultured bacteria.30
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