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A B S T R A C T   

Cancer-associated fibroblasts paly critical roles in regulating cancer cell biological properties by intricate and 
dynamic communication networks. But the mechanism of CAFs in clear cell renal cell carcinoma (ccRCC) is not 
clear. In our study, we identified CAFs and malignant cells from the integrated scRNA-seq datasets and establish a 
CAF-derived communication signature based on the highly activated regulons ETS1 and MEF2C. We stratified the 
ccRCC TME into two molecular subtypes with distinct prognoses, immune cell infiltration landscapes, and 
immune-related characteristics. The model derived from signature demonstrated high accuracy and robustness in 
predicting prognosis and ICIs therapy responses. Subsequently, the SLC38A5 of the model was found upregulated 
in CAFs and was related to decreased survival probabilities, inflamed TME, and upregulated inhibitory check-
points. SLC38A5 inhibition could attenuate the pro-tumoral abilities of CAFs in terms of proliferation, migration, 
and invasion. Mechanically, CCL5 could restore these properties induced by SLC38A5 inhibition. In conclusion, 
our communication signature and its derived model enabled a more precise selection of ccRCC patients who were 
potential beneficiaries of ICIs. Besides, the SLC38A5-CCL5 axis may serve as a promising target for ccRCC 
treatment.   

Introduction 

Renal cell carcinoma (RCC) ranks third among all urological malig-
nancies, with an estimated 431,288 new incidences and 179,368 deaths 
globally in 2020 [1]. Clear cell RCC (ccRCC) is the most common type of 
RCC in adults, accounting for about 70 % of the newly diagnosed [2]. 
The primary management of localized ccRCC is partial or radical ne-
phrectomy, contributing to 91 % and 94 % five-year disease-free (DFS) 
and overall survival (OS) probabilities, respectively [3]. However, the 
remaining about 30 % of ccRCC patients are at an advanced stage or 
have developed metastasis when diagnosed [4]. For these patients, the 
available treatments are limited and the five-year OS decreases to less 
than 20 % [5]. 

Recently, immune checkpoint inhibitors (ICIs) therapy has revolu-
tionized cancer treatment. Motzer et al. in their CheckMate-214 trial 
investigated 1096 previously untreated ccRCC patients who were 
randomly assigned to receive ICIs or sunitinib and found that OS and 
objective response rates were significantly higher with immunotherapy 
than with target therapy [6]. However, due to tumoral heterogeneity 
and the “cold” tumor microenvironment (TME), not all candidates could 
benefit from this strategy [7]. It has been well-documented that 
cancer-associated fibroblasts (CAFs) play crucial roles in promoting 
tumor progression and metastasis. Moreover, CAFs could secret various 
chemokines like CXCL12 that recruit tumor-associated macrophage 
(TAM) infiltration [8]. Consequently, the intricate communication net-
works among CAFs, TAMs, and tumor cells could induce the formation 
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of an immunosuppressive TME that hinders the delivery of drug mole-
cules and promotes immune escape [9]. Therefore, decoding the inter-
cellular talk between CAFs and tumor cells can shed light on molecular 
mechanisms of tumor development and immunotherapeutic resistance. 

To address these concerns, we unraveled the intricate communica-
tion signature between CAFs and tumor cells. Based on the signature 
genes, we stratified the ccRCC TME into two molecular subclusters with 
distinct properties. We then applied 101 machine-learning combinations 
of 10 algorithms to establish a consensus model based on 10-fold cross- 
validation. Subsequently, the hub gene SLC38A5 was identified and was 
related to the proliferation and migration of RCC cells. Mechanically, 
CCL5 could restore these properties induced by SLC38A5 inhibition. 

Methods 

RAN-seq datasets, scRNA-seq datasets, and ICIs cohorts 

Two public ccRCC scRNA-seq datasets were procured from the GEO 
database (www.ncbi.nlm.nih.gov/gds/?term=) with accession numbers 
GSE171306 and GSE111360. TCGA-KIRC and E-MTAB-1980 RNA-seq 
datasets were downloaded from the GDC portal of TCGA (portal.gdc. 
cancer.gov/) and ArrayExpress (www.ebi.ac.uk/arrayexpress/) data-
bases, respectively. Six ICIs cohorts including Braun cohort [10], IMvi-
gor210 cohort [11], Liu cohort [12], Gide cohort [13], Rose cohort [14], 
and Van cohort [15], were obtained from either Tumor Immune 
Dysfunction and Exclusion (TIDE) online framework (tide.dfci.harvard. 
edu/) [16] or supplementary materials of the original studies. 

scRNA-seq analysis 

The scRNA-seq analytic procedures were conducted utilizing Seurat 
4.2.0 R package [17]. Default parameters were used if not specifically 
listed. In brief, we performed quality control to remove low-quality cells 
by calculating the percentage of erythrocyte and mitochondrial genes. 
After normalization by the “NormalizeData” function, the top 2000 
highly variable features of each dataset were identified by the “Find-
VariableFeatures” function. Then, we performed integration and 
generated an integrated data assay based on anchors selected by the 
“FindIntegrationAnchors” function. Subsequently, dimensionality 
reduction and visualization were conducted by principal component 
analysis (PCA) and uniform manifold approximation and projection 
(UMAP) algorithms. The “FindClusters” function and previously re-
ported markers were used to identify and annotate malignant cells and 
CAFs. 

Pseudotime analysis, cell-cell communication, and gene regulatory network 
(GRN) 

After malignant cells and CAFs identification, we presented the 
developmental trajectories by pseudotime analysis implemented in 
Monocle R package [18]. The procedures have been reported in previous 
studies [19]. Default parameters were used if not specifically listed. In 
brief, the subclusters of CAFs and malignant cells were loaded into the R 
environment. The “newCellDataSet” function was used to develop a 
CellDataSet Object. Cells were sorted in pseudo-time order based on 
genes that satisfied the thresholds (mean_expression ≥ 0.1 and dis-
persion_empirical ≥ 1 * dispersion_fit). The “plot_cell_trajectory” func-
tion was applied to visualize the trajectory in the reduced dimensional 
space. 

Based on the expressions of known ligands, receptors, and their co-
factors, we can calculate the number of interactions and the interaction 
weights between cell subpopulations. The analytic procedures were 
performed by CellChat R package [20]. NicheNet was employed to infer 
the active ligands and their targets on CAFs and malignant cells, 
respectively [21]. 

GRN analysis was performed using SCENIC R package [22]. SCENIC 

was a framework for GRNs reconstruction and identification of stable 
cell states from the scRNA-seq dataset. GRN was developed based on 
DNA motif and coexpression analysis. The GRN activity of each cell was 
calculated to infer the recurrent cellular states. 

Enrichment analysis 

Over Representation Analysis (ORA) was conducted to evaluate 
whether known biological processes or functions are enriched in marker 
genes of each subpopulation of CAFs. Gene Set Enrichment Analysis 
(GSEA) was employed to determine whether a defined gene set shows 
remarkable differences between two biological states. The clusterPro-
filer R package was employed to perform the analyses and visualize the 
results [23]. 

Gene set variation analysis (GSVA) was used to determine the 
pathway enrichment for each sample based on the gene sets by the 
sample matrix. The GSVA R package was utilized to perform the analysis 
[24]. 

Immune cell infiltration abundances were evaluated by several 
published methodologies including CIBERSORT, TIMER, xCell, 
MCPcounter, ESTIMATE, EPIC, and quanTIseq. These methodologies 
have been curated in the IOBR R package [25]. 

Unsupervised consensus clustering 

Based on communication signature genes, we performed unsuper-
vised consensus clustering of the TCGA-KIRC dataset by Consensu-
sClusterPlus R package [26]. A consensus matrix was generated and 
samples with high similarities were divided into one cluster. The optimal 
number of clustering was determined by cumulative distribution func-
tion (CDF) curves and the proportion of ambiguous clustering (PAC). 

Communication signature-based model establishment 

A total of 101 combinations of ten machine-learning algorithms, 
including survival support vector machine (survival-SVM), random 
survival forest (RSF), elastic network (Enet), generalized boosted 
regression modeling (GBM), supervised principal components 
(SuperPC), partial least squares regression for Cox (plsRcox), CoxBoost, 
stepwise Cox, Ridge, and Lasso based on 10-fold cross-validation were 
used to train and validate the model in TCGA-KIRC and E-MTAB-1980 
datasets, respectively. The optimal model was the one with the highest 
C-index. 

Immunotherapeutic response prediction 

The online TIDE framework was employed to predict immunother-
apeutic response. Besides, the SubMap module of the GenePattern online 
tool [27] was used to compare the similarities between our identified 
molecular clusters and the anti-PD-1 or anti-CTLA-4 checkpoint-treated 
melanoma cohort by Chen et al. [28]. 

Cell lines and culture 

The experiments were approved by the Ethics Committee of Peking 
Union Medical College Hospital. The RCC cell lines (786-O and ACHN) 
came from the Cancer Institute of the Chinese Academy of Medical 
Sciences (Beijing, China). Primary fibroblasts were isolated from ccRCC 
tissue and tumor-adjacent tissue as described in a previous study [29]. In 
brief, tissues were first excised and minced with scissors and forceps and 
then washed with PBS (Beyotime, Shanghai, China) containing 20 % 
antibiotics (Beyotime, Shanghai, China). Collagenase type I and IV 
(Sigma, Saint Louis, MO, USA) were subsequently used to digest the 
tissues to isolate CAFs and normal fibroblasts (NFs). All cells were 
cultured with Dulbecco’s modified eagle medium (DMEM, Gibco, Grand 
Island, NY, USA) with 10 % fetal bovine serum (FBS, Gibco, Grand 
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Island, NY, USA) and 1 % penicillin/streptomycin (Invitrogen, Carlsbad, 
CA, USA) at 37 ◦C with a humidity of 5 % CO2. 

RNA isolation, reverse transcription, and quantitative real-time PCR (qRT- 
PCR) 

Total RNAs were extracted from NFs and CAFs with Trizol (Life 
Technologies, Gaithersburg, MD, USA) following the manufacturer’s 
instructions. The concentration and quality of extracted RNA of each 
sample were evaluated by a NanoDrop 8000 spectrophotometer 
(Thermo Fisher Scientific, Waltham, MA, USA) at a ratio of A260/A280. 
One Step SYBR PrimeScript RT-PCR Kit II (Takara Biomedical Tech-
nology, Tokyo, Japan) was used to qualify the expression level of 
SLC38A5. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was 
used as the internal reference for the analysis. All qRT-PCR reactions 
were performed using the 7500 Fast RT-PCR System (Applied Bio-
systems, Waltham, MA, USA). The relative quantification 2-ΔΔCt method 
was applied to calculate the gene expression values. The primers of 
SLC38A5 were 5′-GCTACAGGCAAGAACGTGAGG- 3′ (Forward) and 5′- 
ATTCCAAACGATGTCTTCCCC- 3′ (Reverse). 

Western blotting 

Cells were harvested and lysed in RIPA buffer (Beyotime, Shanghai, 
China) to extract total protein. After protein concentration measure-
ment, equivalent amounts of lysates were separated by 10 % Sodium 
Dodecyl Sulfate – polyacrylamide gel electrophoresis (SDS-PAGE, NCM 
Biotech, Suzhou, China) and then transferred to a polyvinylidene 
difluoride (PVDF) membrane using a semi-dry Western Blot set-up. The 
membrane was incubated with primary antibody overnight at 4 ◦C 
following 20 min in blocking buffer (Beyotime, Shanghai, China). The 
membrane was washed three times with Tris-buffered saline with Triton 
X-100 (TBST) and then incubated with a secondary antibody (anti- 
Rabbit IgG) for 2 h at room temperature. The protein bands were 
detected by an Enhanced Chemiluminescent (ECL) kit (NCM Biotech, 
Suzhou, China) and normalized to the GAPDH protein expression level. 
Primary antibodies used: anti-SLC38A5, anti-αSMA, anti-CCL5, anti- 
GAPDH. All antibodies were purchased from Abcam (Cambridge, UK). 

Cell transfection, RNA-seq, and analysis 

CAFs were plated in triplicates in 6-well plates (Sigma, Saint Louis, 
MO, USA) at a seeding density of 2 × 106 cells/well. Cells were trans-
fected with si-SLC38A5 or si-NC (GenePharma, Shanghai, China) using 
Lipofectamine 3000 reagent (Life Technologies, Paisley, UK) and 
cultured for 48 h. RNA was extracted and samples were stored at a −
80 ◦C refrigerator (Haier, Qingdao, China) until analysis. 

The mRNA library preparation and RNA-seq were performed as 
described in previous studies [30]. In brief, after quality and integrity 
evaluation, the mRNA library was prepared via poly-A enrichment ac-
cording to the Illumina TruSeq RNA Sample Prep Kit instructions. 
RNA-seq was employed to detect the expression levels between 
si-SLC38A5 and si-NC samples using Illumina NovaSeq 6000 platform 
(Illumina, San Diego, CA, USA). 

Following quality control, the clean reads were mapped to the 
human genome GRCh38/ hg38 by bowtie2. DESeq2 R package was 
utilized to perform the differential expression analysis. 

Conditioned medium (CM) and enzyme-linked immunosorbent assay 
(ELISA) 

CAFs at approximately 80 % confluence were washed with PBS 
(Beyotime, Shanghai, China) and then cultured in DMEM medium 
without FBS. The CM was collected and filtered for further analysis. 

The concentrations of CCL5 of CM derived from CAFs with condi-
tioned SLC38A5 were determined by ELISA kit (Thermo Fisher 

Scientific, Waltham, MA, USA). 

Cell proliferation assay 

The cell proliferation assay was performed by Cell Counting Kit 8 
(CCK-8, Abcam, Cambridge, UK). RCC cells (1 × 104) were seeded in 96- 
well plates supplemented with CM derived from CAFs and cultured for 
48 h. Cells were then cultured with CCK-8 solution for another 4 h. All 
samples were measured at 450 nm. 

Wound-healing and transwell assays 

For the wound-healing assay, the wound of confluent RCC cells was 
created by a 200 µL pipette tip. Cells were incubated in DMEM supple-
mented with 2 % FBS and 50 % CM. Cell migration into wound areas was 
photographed every 6 h. ImageJ software was used to analyze the cell 
migration rate. 

For the Transwell assay, RCC cells (2 × 104) were suspended in 200 
μL of the CM and were plated into the upper chamber that was coated 
with an extracellular matrix (BD Biosciences, San Jose, CA, USA). 500 μL 
DMEM medium with 10 % FBS was added into the lower well. After 12 h 
incubation, the cells of the upper surface of the filter were removed and 
cells under the filter were fixed and stained with a 0.5 % crystal violet 
solution and counted under the microscope (Nikon, Tokyo, Japan). 

Statistical analysis 

All statistical analyses were performed using R (Version 4.1.3). The 
Shapiro–Wilk test was used to evaluate the normality property of two 
continuous variables. Student’s t-test or Wilcoxon test were used to 
compare the paired independent samples. The Spearman or Pearson 
correlation analysis were employed to assess the relationship between 
the two continuous variables. Chi-squared test was used to compare 
categorical variables. Survival differences between the two groups were 
determined by Kaplan–Meier curves with the log-rank test. Multivariate 
cox regression analysis was used to explore the independent risk or 
protective factors. The time-dependent receiver operating characteristic 
curve (ROC) was used to evaluate the performance of the variable in 
predicting survival. Statistical significance was set two-tail p-value <
0.05. 

Results 

scRNA-seq analysis unravels the heterogeneity of ccRCC 

Two ccRCC scRNA-seq datasets were normalized and integrated 
following the Seurat pipeline (https://satijalab.org/seurat/articles/int 
egration_introduction.html). After dimensional reduction and clus-
tering, we obtained 31 clusters (Fig. 1a). Based on previously docu-
mented cell-type specific markers (CAFs: COL1A1 and COL1A2, 
malignant cells: CDH1, MYC, and CD24, Fig. 1b), cluster 15 was anno-
tated as CAFs while clusters 7 and 19 to 21were regarded as ccRCC 
(Fig. 1c). Previous studies have reported the heterogeneity of CAFs and 
diverse properties [8]. Therefore, we re-clustered the CAFs and suc-
cessfully identified four subpopulations. Fig. 1d presented the top five 
markers of each subpopulation. GO enrichment analysis showed that 
cluster 0 was related to biological processes of the muscle system and 
extracellular matrix (Fig. 1e). Thus, we named cluster 0 “myoCAF”. GO 
terms including leukocyte migration and regulation of inflammatory 
response were enriched in cluster 1 (Fig. 1f). Thus, we referred cluster 1 
as “inflammatory CAF”. As for cluster 2, functional annotation results 
revealed several biological processes and pathways that are involved in 
immune regulation, including regulation of T cell activation and MHC 
family proteins (Fig. 1g). Thus, we named cluster 2 “immunoregulatory 
CAF”. Intriguingly, most GO-enriched terms of cluster 3 were consistent 
with those of cluster 2 (Fig. 1e), indicating the immunoregulatory 
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property of cluster 3. However, KEGG analysis demonstrated the PD-L1 
expression and PD-1 expression checkpoint pathway was related to 
cluster 3, suggesting the possible T cells exhaustion (TEX)-related 
characteristic of these cells (Fig. S1c). Therefore, cluster 3 was named 
“TEX-related CAF” (Fig. 1i). 

Pseudotime analysis was employed to verify our hypothesis. Fig. 1j 
showed that myoCAF may be the origin of three other subtypes as these 
cells were located at the beginning of the trajectory path. Interestingly, 
immunoregulatory and inflammatory CAFs were intermixed on the 
trajectory of these lineages. The similar KEGG enrichment analysis 

results further support the findings (Fig. S1a, b), indicating the intimate 
relations between these two subtypes in the TME. TEX-related CAF was 
in the terminal end, consistent with the transformation of anti-tumor 
immunity that was highly activated at the early stage of the tumor 
whereas inhibited at the late stage. 

For the trajectory of ccRCC, cluster 2 was located at the beginning of 
the trajectory path and was regarded as the tumor stem-like cells [31]. 
Clusters 3 to 5 were mixed in the terminal end, indicating the hetero-
geneity of tumor cells of ccRCC (Fig. 1k). 

Considering the critical roles of CAFs in promoting tumor 

Fig. 1. scRNA-seq analysis unravels the heterogeneity of ccRCC. (a) 31 
clusters were identified in the integrated scRNA-seq dataset. (b) Expres-
sion levels of cell type-specific markers (CAFs: COL1A1 and COL1A2, 
malignant cells: CDH1, MYC, and CD24). (c) Identification of CAFs and 
malignant cells. (d) The top five markers of each subcluster of CAFs. GO 
enrichment terms for subcluster 0 (e), 1 (f), 2 (g), and 3 (h) of CAFs. (i) 
Annotation of four subclusters of CAFs. The trajectory path of CAFs (j) and 
malignant cells (k). (l) Annotation of subclusters of CAFs and malignant 
cells.   
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development and progression, it is of great necessity of deciphering the 
reciprocal communication networks. Therefore, CAFs and malignant 
cells were extracted for the following analysis (Fig. 1l). 

Regulons ETS1 and MEF2C are exclusively activated in CAFs 

Intercellular signaling pathways among four subtypes of CAFs, tumor 
stem-like cells, and malignant cells were demonstrated in Fig. 2a. Tumor 
stem-like cells were in the dormancy-like state that had less reciprocal 
crosstalk with other cell types. Mounting evidence demonstrated the 

roles of CAFs-secreted molecules in facilitating tumor cell progression 
[32]. Our ligand-receptor (LR) networks demonstrated that the 
PTN–NCL pair was upregulated (Fig. 2b-e), indicating that targeting 
this signaling axis may have therapeutic potential. Shi and colleagues 
uncovered that upregulated PTN derived from M2 TAM promoted gli-
oma stem cells-driven tumor growth while blocking the LR signaling 
potently abated tumor growth and prolonged animal survival [33]. 

To unravel the ligand-target genes network, we employed the 
NicheNet analysis. Growth factors (e.g., NGF, PGF, and HGF), chemo-
kines (e.g., XCL1), and cytokines (e.g., INF-γ) were regarded as the top 

Fig. 2. Regulons ETS1 and MEF2C are exclusively activated in CAFs. (a) 
The intercellular in-teractions between subclusters of CAFs and malig-
nant cells. (b)The ligand-receptor pairs between CAFs and malignant 
cells. (c)Expression profiles of PTN signaling pathway in CAFs and 
malig-nant cells. (d)The importance of each subcluster of CAFs and 
malignant cells in the PTN signaling pathway. (e)The incoming/out-
going strength of each subcluster of CAFs and malignant cells in the PTN 
signaling pathway (left) and the whole signaling pathways (right). (f) 
Top ligands in the communication network. (g)Ligand-target gene ma-
trix denoting the potential regulatory rela-tionships between ligands and 
target genes among CAFs and malignant cells. The color intensity rep-
resented the regulatory potentials. (h)Heatmap demonstrated the ac-
tivity of each regulon in CAFs and malignant cells. (i)UMAP illustrated 
the activities of regulons ETS1 and MEF2C.   
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ligands in the network, suggesting the inflamed TME of ccRCC (Fig. 2f). 
A ligand-targets heatmap was illustrated in Fig. 2g. Then, GRN analysis 
was adopted to further identify the upregulated regulons within the 
targets by SCENIC framework. As demonstrated in Fig. 2h and 2i, reg-
ulons ETS1 and MEF2C were exclusively upregulated in CAFs whereas 

the tumor stem-like cells were less activated. Subsequently, target genes 
of the two regulons were obtained and regarded as the cell communi-
cation gene signature. 

Fig. 3. Signature stratifies ccRCC TME into two subclusters with distinct prog-noses and biological features. (a)The consensus score matrix of all samples when k = 2. 
A higher consensus score denotes higher similarity. (b)The CDF curves of the consensus matrix for each k (indicated by colors). (c)The PAC score for each k. (d)KM 
survival curves with log-rank test demonstrate survival discrepancies between two clusters. (e)Relative infiltration abundances of 28 immune cell subsets in two 
clusters. P values are determined by the Wilcoxon test. ns: non-significant; * p < 0.05; *** p < 0.001. The activities of IFNG (f), TMB (g), GEP (h), and CYT (i) between 
two clusters. 
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Signature stratifies ccRCC TME into two subclusters with distinct prognoses 
and biological features 

Based on the signature genes, we divided the TCGA-KIRC into two 
molecular subclusters (Fig. 3a). Both CDF curves and PAC scores 
determined the optimal clustering number of 2 (Fig. 3b, c). Survival 
analyses demonstrated that cluster 1 was related to decreased OS and 
DSS (Fig. 3d). 

Considering the inflamed TME of ccRCC (Fig. 2f), we next explored 
the immunological landscapes of two clusters. 28 immune cells were 
highly infiltrated in cluster 1 compared to those in cluster 2 (Fig. 3e). 
And the similar results were addressed by other six TME deconvolution 
methodologies (Fig. S2a). Besides, cluster 1 was related to most immune 
modulators including chemokines, immune inhibitors, immunostimu-
lators, antigen presentation, and receptors (Fig. S2b). 

To further explore the immunotherapy responses between two 
clusters, we evaluated the activities of several immunotherapy 

predictors including IFN-γ, tumor mutation burden (TMB), T cell- 
inflamed gene expression profile (GEP), and cytotoxic activity (CYT). 
Results showed that these predictors were all significantly higher in 
cluster 1 (Fig. 3f-i). In addition, seven steps of the anti-cancer immunity 
cycle (Fig. S3a) and most immunotherapy-predicted pathways were 
highly activated in cluster 1 (Fig. S3b). Together, ccRCC patients in 
cluster 1 may have an inflamed TME and benefit from immunotherapy. 

To assess the dysregulated pathways between two clusters, GSEA 
analysis was employed. As listed in Fig. S3c, several signaling pathways 
were highly activated in cluster 1. Additionally, cancer hallmarks 
including angiogenesis and epithelial-mesenchymal transition were 
related to cluster 1 (Fig. S3d). 

The signature-based model demonstrates high accuracy and robust 
performance in predicting prognosis 

Benefiting from advances in high throughput sequencing and 

Fig. 4. Signature-based model demonstrates high accuracy and robust perfor-mance in predicting prognosis. (a)C-index of 101 kinds of prediction models in TCGA- 
KIRC and E-MTAB-1980 datasets. (b)The importance of the 17 most valuable signature genes based on the RSF algorithm. (c)KM survival curves with log-rank test 
demonstrate survival discrepancies between high- and low-score groups of TCGA-KIRC (up) and E-MTAB-1980 (bottom) datasets. (d) The model is an independent 
risk factor for OS in TCGA-KIRC (left) and E-MTAB-1980 (right) datasets by multivariate cox re-gression analysis. (e) Time-dependent ROC analysis demonstrates the 
performance of the model in TCGA-KIRC (left) and E-MTAB-1980 (right) datasets at 1y-, 3y-, and 5y- time points. 
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bioinformatic methodologies, various biological processes-associated 
mRNA/lncRNA/miRNA signatures have been established to predict 
the prognosis and response to therapy [34,35]. However, these multi-
gene signatures are hardly applied to clinical practices due to inappro-
priate machine-learning methods and underutilized data information. 
Therefore, we developed an integrated machine-learning framework of 
101 combinations based on 10 machine-learning algorithms. Models 
were fitted in TCGA-KIRC and then validated in E-MTAB-1980. Our 
optimal signature-based model of seventeen genes was established 

based on the combination of backward StepCox and RSF (Fig. 4a, b). To 
assess the performance of the established model in predicting prognosis, 
both KM survival analysis and multivariate cox regression analysis were 
conducted. Results showed that a high score predicted poorer prognosis 
in both datasets (Fig. 4c). Besides, the model was an independent risk 
factor for survival (Fig. 4d). Time-dependent ROC analysis showed the 
stability and high accuracy of the model (Fig. 4e). 

Fig. 5. The signature-based model is linked to non-inflamed TME. Correlations between model and immune checkpoints (a), infiltration levels of 28 immune cell sub- 
sets (b), and TME signatures developed by Kobayashi (c) and Bagaev (d). e Dysregulated GO (left) and KEGG (right) terms in TME of ccRCC by GSEA. 
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The signature-based model is a predictive biomarker for immunotherapy 
response 

The high score of the model was negatively correlated with inhibi-
tory immune checkpoints and immune cell infiltration abundances 
(Fig. 5a, b). And a high score was associated with lower levels of various 
TME signatures (Fig. 5c, d). Additionally, GO and KEGG terms of GESA 
were less enriched in the high score group (Fig. 5e). As predicted, a high 
score predicted a less favorable response to immunotherapy in TCGA- 
KIRC (Fig. 6a, b). 

To further explore the performance of the model in ICIs therapy 
cohorts, we analyzed the survival and scores between responders and 
non-responders. Consistent with predictions, a high score was related to 
a more unfavorable prognosis compared to a low score. Moreover, scores 
were significantly higher in non-responder across three cancer types 
including RCC, urothelial carcinoma, and melanoma (Fig. 6c-h). 

Collectively, the signature-based model is a predictive biomarker for 
immunotherapy response. 

SLC38A5 dominates an inflamed and immunosuppressive TME 

As the most important variable of the model, SLC38A5 was explored 
in subsequent analysis. SLC38A5 was related to decreased OS in the 
TCGA-KIRC and E-MTAB-1980 cohorts (Fig. 7a, b). In addition, the 
expression increased gradually from stage I to IV (Fig. 7c). SLC38A5 was 
exclusively upregulated in CAFs (Fig. 7d). Analysis of immune-related 
characteristics indicated that anti-cancer immunity cycles and inhibi-
tory checkpoints were highly upregulated in high expression group 
(Fig. 7e, f). Thorsson et al. classified TME of pan-cancer into six immune 
subtypes [36]. In our study, SLC38A5 remarkably downregulated in the 
“immunologically quiet” subtype (C5) whereas upregulated in the 
“TGF-β dominant” (C6) and “IFN-γ dominant” (C2) subtypes (Fig. 7g). 
Both C2 and C6 subtypes indicated the inflamed and immunosuppres-
sive TME [37,38]. Furthermore, SLC38A5 was positively correlated with 
immune scores across TCGA-KIRP (r = 0.44), TCGA-KIPAN (r = 0.55), 
TCGA-KIRC (r = 0.38), and TCGA-KICH (r = 0.56) (Fig. S4a). 

We also evaluated the biological roles of SLC38A5 in pan-cancer. 
Correlation analysis showed that SLC38A5 was positively correlated 
with most immunoregulators and immune checkpoints (Fig. S4b, c). 
Besides, positive correlations with TMB were addressed in KIPAN, KIRC, 
and KICH (Fig. S4d). 

CAFs promote tumor cell proliferation, invasion, and migration through the 
SLC38A5-CCL5 axis 

Considering the remarkable roles of SLC38A5 in ccRCC, we per-
formed a series of phenotypic assays. SLC38A5 was upregulated in CAFs 
at both mRNA and protein levels (Fig. 8a). The efficacy of siRNA tar-
geting SLC38A5 was verified by qRT-PCR and blotting (Fig. 8b). CCK-8 
assay revealed that SLC38A5 deficiency inhibited the proliferative 
abilities of ACHN and 786-O cell lines (Fig. 8c). The similar trends were 
found in transwell invasion (Fig. 8d) and wound-healing assays (Fig. 8e). 
Collectively, these results indicated that SLC38A5 promoted the prolif-
eration and metastasis of tumor cell. 

To unveil the mechanisms of how SLC38A5 affects tumor cells, we 
performed RNA-seq on si- SLC38A5 CAFs and identified the soluble 
factor CCL5 that was decreased after SLC38A5 inhibition (Fig. 8f). 
Positive correlation between SLC38A5 and CCL5 was addressed 
(Fig. 8g). ELISA showed that the protein level of CCL5 was dramatically 
decreased after SLC38A5 inhibition (Fig. 8h). A series of subsequent 
phenotypic assays were conducted to uncover the functional relation-
ship between SLC38A5 and CCL5. The CCK-8 assay showed that rIL32 
could restore the proliferative (Fig. 8c), invasive (Fig. 8d), and migrative 
abilities (Fig. 8e) of ACHN and 786-O cell lines. In the co-culture system 
with CM derived from SLC38A5 intact CAFs, anti-IL32 could inhibit the 
tumor cell’s proliferative, migration, and invasive properties (Fig. S5). 

These findings indicated that CAFs promoted tumor cell proliferation, 
invasion, and migration through SLC38A5-CCL5 axis. 

Discussion 

TME represents an intricate and dynamic ecosystem composed of 
cellular components including malignant and stromal cells [39]. CAFs 
account for a majority of the stromal cells across all most all solid tumors 
[40]. The pro-tumorigenic biological properties of CAFs have been re-
ported in a body of researches including, but not limited to, tumoral 
migration and invasion, self-renewal of cancer stem cells, and resistance 
to chemotherapy and immunotherapy [41]. Recently, single-cell tech-
nology, well-designed databases, and sophisticated tools have promoted 
our understanding of molecular mechanisms at single-cell levels, espe-
cially in the respect of intercellular communications [42]. Therefore, an 
in-depth understanding the of communication networks of CAFs may 
pave the way for cancer management. 

CAFs originate from various cell types including normal resident fi-
broblasts, and they may be characterized by anti-tumoral functions at an 
early stage. With tumor development, CAFs, however, are educated by 
tumor cells to promote tumor growth and progression [43]. Therefore, 
uncovering the dual role of CAFs can shed light on cancer behavior and 
therapeutic perspectives. In the study, four subtypes of CAFs were 
identified and the pseudotime analysis re-constructed the trajectory 
path where myoCAF was located at the origin whereas TEX-related CAF 
was projected onto the terminal. Functional enrichment analysis showed 
that myoCAF was related to biological processes of the muscle system 
and extracellular matrix that are similar to normal resident fibroblasts 
[44]. Along with the trajectory path, myoCAF differentiated into the 
intermixed inflammatory and immunoregulatory CAFs that may domi-
nate an inflamed TME and hot tumors. Inflamed TME or hot tumors have 
been reported to be associated with sensitivity to ICIs therapy [45]. This 
evidence may suggest the tumor-suppressing role of the two subtypes of 
CAFs in ccRCC. Terminally, the phenotype of CAFs transformed into the 
TEX-related that may facilitate immune escape and benefit tumor 
development. Future studies are needed to address the cellular state 
transformation-dependent genes. 

Deciphering the communication network showed the remarkably 
activated regulons ETS1 and MEF2C. ETS1 is involved in cancer pro-
gression and linked to decreased survival in most malignancies 
including breast cancer [46], gastric carcinoma [47], and ccRCC [48]. 
For MEF2C, the dual roles depend on cancer types. In hepatocellular 
carcinoma, highly expressed MEF2C promotes tumor development via 
VEGF whereas inhibits cancer proliferation by blockade of Wnt/β-ca-
tenin signaling [49]. However, the biological roles of MEF2C remain 
largely unknown in ccRCC. 

Considering the heterogenous subtypes and dual-role regulons of 
CAFs, we performed consensus clustering to stratify the TME of ccRCC 
into two molecular clusters. It was impressive that the two clusters had 
dramatically different prognoses, infiltration levels of immune cells, 
expression patterns of immunoregulators, and dysregulated pathways 
and cancer hallmarks. Six TME-deconvolution methodologies including 
CIBERSORT, EPIC, MCP-counter, quanTIseq, TIMER, and xCell discov-
ered that cluster 1 was linked to an inflamed TME. Consistent findings 
were addressed in the upregulated expression profiles of most immu-
noregulators in this cluster. As we mentioned before, patients with an 
inflamed TME indicated favorable responses to ICIs therapy. That is to 
say, ccRCC patients in cluster 1 may have a higher response rate 
compared to those in cluster 2. The highly activated anti-cancer im-
munity cycles and four immunotherapeutic predictors in cluster 1 
verified these findings. Considering the limited ICIs efficacy in solid 
tumors, application ICIs to potential candidates with an inflamed TME 
may be promising in clinical settings. 

To translate the findings from the bench to bedside, we developed an 
integrated machine-learning framework to establish an optimal model 
with high accuracy and stable performance. Each ccRCC patient was 
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Fig. 6. The signature-based model predicts response to immunotherapy. (a) Contingency table between immunotherapy responses and model score groups based on 
the TIDE algorithm. (b) Contingency table between immunotherapy responses (an-ti-PD-1 and anti-CTLA-4) and model score groups based on submap analysis. (c) 
KM curves of OS between patients with a high score and a low score in the Braun dataset (left). Box plot displaying the model score in patients with different 
immunotherapy responses in the Braun dataset (right). (d) KM curves of OS between patients with a high score and a low score in the IMvigor210 dataset (left). Box 
plot displaying the model score in patients with different immunotherapy responses in the IMvigor210 dataset (right). (e) KM curves of OS between patients with a 
high score and a low score in the Liu dataset (left). Box plot displaying the model score in patients with different im-munotherapy responses in the Liu dataset (right). 
(f) KM curves of OS between patients with a high score and a low score in the Gide dataset (left). Box plot displaying the model score in patients with different 
immunotherapy responses in the Gide dataset (right). (g) KM curves of OS between patients with a high score and a low score in the Rose dataset (left). Box plot 
displaying the model score in patients with different im-munotherapy responses in the Rose dataset (right). (h) KM curves of OS between pa-tients with a high score 
and a low score in the Van dataset (left). Box plot displaying the model score in patients with different immunotherapy responses in the Van dataset (right). 

H. Chen et al.                                                                                                                                                                                                                                    



Translational Oncology 38 (2023) 101790

11

assigned a risk score and patients in the high-score group suffered from 
poorer survival compared to those in the low-score group. Moreover, the 
model was an independent risk factor for OS, suggesting the appealing 
application in the early selection of high-risk patients and providing 
personalized intervention to prolong survival. Immunological charac-
teristics demonstrated that a high score was negatively correlated with 
immune cell infiltration and various TME signatures, suggesting ccRCC 
patients with an inflamed TME also had high-risk scores. To explore the 
predictive values in ICIs therapy, a possible response ratio was inferred. 
As expected, a high score was linked to resistance to ICIs therapy of anti- 
PD-1 and anti-CTLA-4. This may be further explained by the negative 
correlation with inhibitory checkpoints. In addition, the analytic results 
of six ICI-treated cohorts across three cancer types verified our 

predictions. Collectively, the model had promising clinical applications 
in the selection of high-risk ccRCC and ICIs candidates. 

In the seventeen model genes, SLC38A5 was the most important gene 
as uncovered by RSF. It was overexpressed in CAFs and associated with 
poor OS, DFS, and high stages. The oncogenetic role of SLC38A5 was 
validated by a series of phenotypic assays. Experiments showed that 
SLC38A5 overexpression CAFs promoted RCC cell proliferation, migra-
tion, and invasion. Previous studies have addressed the CAFs-derived 
soluble factors in cancer development. Chen et al. found that IL32 
regulated the biological properties of bladder cancer cells induced by 
CAFs [29]. CCL5 was found to restore the RCC cells proliferation, 
migration, and invasion that were mitigated by SLC38A5 inhibiting 
CAFs. Similar results were reported in hepatocellular carcinoma that 

Fig. 7. SLC38A5 dominates an inflamed and immunosuppressive TME. (a, b) KM survival curves of OS between patients with a high expression of SLC38A5 and with 
a low expression of SLC38A5 in the TCGA-KIRC (a) and E-MTAB-1980 cohorts (b). (c) The distribution of the expression of SLC38A5 across stages I to IV. (d) The 
distribution of the expression of SLC38A5 across subclusters of CAFs and malignant cells. (e) The distribution of activi-ties of anti-cancer immunity cycles between 
patients with a high expression of SLC38A5 and with a low expression of SLC38A5. (f) The expression levels of immune checkpoints CD274, CD80, CD86, CTLA-4, 
PDCD1 (PD-1), and PDCD1LG2 (PD-L2) between patients with a high expression of SLC38A5 and with a low expression of SLC38A5. (g) The distribution of the 
expression of SLC38A5 across immune subtypes C1 to C6. C1: wound healing, C2: IFN-γ dominant, C3: inflammatory, C4: lymphocyte depleted, C5: immu-nologically 
quiet, and C6: TGF-βdominant. 
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CAFs-derived CCL5 promoted cancer cell metastasis by activating 
HIF1α/ZEB1 axis [50]. Besides, inspired by the appealing application of 
predicting therapeutic responses of the model, we found that highly 
expressed SLC38A5 also indicated an inflamed TME with simultaneously 
upregulated inhibitory checkpoints. To sum up, the SLC38A5-CCL5 axis 

can regulate ccRCC development, and targeting the axis may promote 
cancer management. 

There were some limitations in our study. First, the performance of 
our model was not further validated in our cohorts in terms of survival 
and treatment response prediction. Second, in vivo study using the 

Fig. 8. CAFs promote tumor cell proliferation, invasion, and migration through the SLC38A5-CCL5 axis. (a) The expression of SLC38A5 between NFs and CAFs at 
both mRNA (left) and protein (right) levels. (b) The efficacy of siRNA targeting SLC38A5 is validated by qRT-PCR (left) and blotting (right). (c) RCC cell lines ACHN 
(left) and 786-O (right) viability detected by a CCK-8 assay. (d) RCC cells lines ACHN (up) and 786-O (bottom) invasion when co-cultured with CAFs; detected by a 
transwell assay. (e) RCC cells lines ACHN (bottom) and 786-O (up) migration when co-cultured with CAFs; detected by a wound-healing assay. (f) Heatmap shows the 
decreased CCL5 expression in si-SLC38A5 CAFs. (g) Correlation between SLC38A5 and CCL5 (GEPIA, http://gepia.cancer-pku.cn/index.html, accessed on 19 
December 2022). (h) The de-creased protein level of CCL5 after SLC38A5 inhibition by ELISA. * p < 0.05, ** p < 0.01, *** p < 0.001. 
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SLC38A5 genetic mouse model will be more encouraging and highlight 
its therapeutic significance. 

Conclusions 

Through integrated scRNA-seq and bulk RNA-seq analyses, we 
established a CAFs-derived communication signature based on which 
the TME of ccRCC can be divided into two clusters with distinct prog-
noses, immune cell infiltration landscapes, and immune-related char-
acteristics. Based on the signature and a curated machine learning 
framework, a risk model was established with appealing applications in 
predicting prognosis and ICI-therapy response. Hug gene SLC38A5 
demonstrated its oncogenetic roles by promoting RCC cell lines prolif-
eration, migration, and invasion. Mechanically, rescue experiments 
showed that the biological functions of SLC38A5 were mediated by the 
CCL5 protein. Our findings provide the cornerstones for further eluci-
dating the mechanism of the CAFs in promoting ccRCC progression, 
contributing to unveil potential therapeutic targets and novel clinical 
treatment of ccRCC. 
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