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A comprehensive understanding of the complex physiological and pathological processes associated with
alveolar bones, their responses to different therapeutics strategies, and cell interactions with biomaterial
becomes necessary in precisely treating patients with severe progressive periodontitis, as a bone-related
issue in dentistry. However, existing monolayer cell culture or pre-clinical models have been unable to
mimic the complex physiological, pathological and regeneration processes in the bone microenvironment
in response to different therapeutic strategies. In this point, ‘organ-on-a-chip’ (OOAC) technology,
specifically ‘alveolar-bone-on-a-chip’, is expected to resolve the problems by better imitating infection
site microenvironment and microphysiology within the oral tissues. The OOAC technology is assessed in
this study toward better approaches in disease modeling and better therapeutics strategy for bone tissue
engineering applied in dentistry.

Plain language summary: Bone-related issues have been widely focused on in the field of dentistry due
to oral cancers, trauma, injuries and the high incidence of periodontitis (a serious gum infection which
causes bone damage and tooth loss). To overcome this condition, several strategies have been developed
involving tissue engineering approaches and drug discovery. To provide better drugs for periodontitis, it is
important to study the ways in which tissues and cells work together as well as the disease mechanisms, and
cell interactions with drugs, other therapeutics agents, or biomaterials. For this, cell studies are needed,
but the current research cannot replicate the disease environment and therefore cannot show exactly
what happens in real sick areas. In this review, a new idea is explored called organ-on-a-chip technology,
where scientists make small models that work like our organs, which could help them find better ways to
treat dental and bone problems.

Tweetable abstract: Monolayer cell cultures and animal studies cannot reflect real time microenvironment
of the diseased sites. A microfluidic organ-on-a-chip technology relevant to dental and bone tissue
engineering is a must to resolve the challenges for better therapeutics strategy.
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Bone is a dynamic tissue that is constantly capable of self-repair in order to maintain functionality throughout
life through modeling during childhood and adolescence, balancing the formation-resorption process, and bone
remodeling. Bone contains four types of cells, including osteoblast, osteoclast, bone lining cells and osteocyte. Bone
cells are responsible for several vital functions such as supporting body and soft tissue structure, performing as the
central region of hematopoiesis in adult humans, and being involved in mineral homeostasis [1–3]. However, this
tissue may undergo damages caused by either congenital, age-related, or acquired in situations such as trauma,
inflammation, infections, or surgical intervention that led to bone loss [4–7].

Nowadays, the most common bone-related issues are osteoporosis, osteosarcoma and bone metastases. As a
systemic disease, osteoporosis has become a serious public health issue because of its high risk and prevalence,
with approximately 200 million people affected worldwide [8–10]. Apart from osteoporosis, osteosarcoma is still
the most common bone malignancy found. In these regards, bone is also reported as the third most frequent
site of metastases after the lung and liver [11–13]. With respect to bone-related issue in dentistry, periodontitis is
the second most common oral problem found in world populations after caries. Periodontitis is a multifactorial
chronic inflammatory disease associated with biofilm dysbiosis. It is characterized by the progressive destruction of
periodontal tissue, including the alveolar bone, leading to tooth loss. In view of the periodontal tissue, the alveolar
bone is a part of the maxilla and mandible that forms and supports the tooth’s socket [14]. It grows simultaneously
with the process of tooth eruption and gradually disappears after tooth loss [3]. Numerous cases of periodontitis have
been reported, in which according to the Global Burden of Disease Study (GBD) in 2019, periodontitis affected
1.1 billion people worldwide and the numbers still increase from time to time [15–18]. Bone also stated as one of the
most frequently used tissues for transplantation. In the fields of orthopedic surgery, plastic surgery, maxillofacial
surgery, and neurosurgery, more than a million people are treated for skeletal issues each year [19]. These bone-related
issues are problematic for many scientists and clinicians and are, therefore, of interest to researchers.

Studying the physiological and pathological processes associated with bone and its response to different therapeu-
tic strategies is a complicated task requiring knowledge of the cellular microenvironment that affects the behavior
of cells in tissues or organs [20]. Especially when tissue engineering [21,22] is used as an approach to regenerate by
creating functioning substitutes for damaged or defective tissues and organs, the underlying principle of cellular
behavior in its microenvironment toward regeneration mechanism is important to increase the success rate of the
therapy.

Bone tissue engineering (BTE) is a promising approach to enhance bone repair and regeneration via synergis-
tic integration of biomaterials or scaffolds, cells and therapeutic factors [1,23,24]. In the context of maxillofacial

10.2144/fsoa-2023-0061 Future Sci. OA (2023) FSO902 future science group



A microfluidic organ-on-a-chip: into the next decade of bone tissue engineering applied in dentistry Review

applications, there is an extensive selection of sources and materials that can be utilized for the reconstruction of
maxillofacial bones in the form of synthetic bone extracellular matrices which are generally known as scaffolds.
These include autogenous, allogenic, xenogeneic, alloplastic, and engineered personalized grafts [25]. Within this
context, the scaffold can provide interim mechanical integrity at the defect site until the bone tissue is repaired
or regenerated and the process of tissue regeneration involved appropriate cell adhesion, proliferation and func-
tion [24–26]. Therefore, cell-based assay is the fundamental way to study and give clear information about this
phenomenon.

To date back on the importance of cell-based assay, cell culture has become a necessary tool for discovering
the fundamental mechanisms of cell assembly in tissues and organs, how these tissues function, and how that
function becomes disrupted by an agent or a disease [27]. In correlation with the complexities, the approaches have
been continuously developed and shifted gradually from two-dimensional (2D) monolayer cell culture to a three-
dimensional (3D) cell culture system using a more realistic microenvironment called scaffolds. Nevertheless, both
2D and 3D cell cultures make certain sacrifices to facilitate experimental procedures and are still unable to reflect
in vivo phenomena related to important organ features [27–29]. Although animal studies have been responsible for
advancing knowledge in many biological studies, the models have various drawbacks, such as increasing experiment
difficulty, reducing the feasibility of research, and failing to reproduce the complexity of humans [30]. Also, animal
studies involve ethical issues and contradictive results from clinical trials, which is against the principle of basic
biomedical research [31]. In today’s society, there is a growing inclination toward the exploration of humanized in
vitro alternatives as a means to replace animal research. Consequently, a pressing demand for the development of
platforms that closely mimic human physiology and characteristics is increasing.

Recently, organ-on-a-chip (OOAC) based on microfluidic technologies has been proposed as an innovative cell-
based assay tool in both basic physiological and regenerative research fields. Interest in OOAC has been intensified
because OOAC combines chemical, biological and material science disciplines and offers more integrated aspects
for a more complete understanding of tissue engineering and regenerative medicine. An OOAC approach has been
chosen as one of the top ten emerging technologies by the World Economic Forum in 2016 [32]. The field of
OOAC and micro-physiological systems has witnessed a substantial surge in interest, reflected by the publication
of several commendable reviews in recent times [33–35]. Large-scale research at the national level has been conducted
in some countries, and the application of this technology is expected in both practical and clinical use [36,37]. An
OOAC is a micro-physiological system that recapitulates a human organ or tissue’s physiology and functionality.
This technology aims for effective and accurate medical, biological and pharmacological research, such as disease
modeling and drug screening [38].

Microfluidic OOAC models have been developed over the last few years to recapitulate various organs and
systems in the human body. As previously mentioned, OOAC has been studied for several organs, e.g., intestine [39],
lung [40], blood vessel [41], liver [42], heart [43], kidney [44], bone marrow [45], brain [46], bone [47], and tooth [48] but
published articles on bone tissue engineering and/or dentistry-related OOACs are still limited, though the subject
is worth developing. This study aims to review OOAC to provide basic concepts, current applications of OOAC
innovative technology in basic research, state-of-the-art, and future perspectives of OOAC in the field of bone
tissue engineering, specifically the one relevant to regenerative dentistry.

Methods
A literature search strategy using keyword database searches was applied, continued by the specified article’s
inclusion criteria. Two readers (MHS and IDA) then elaborated and summarized the findings. Articles from the
PubMed, Science Direct, and Scopus databases were used in the study. Article investigations were conducted
according to title, abstract, or full text that appeared using the keywords “lab-on-a-chip,” “organ-on-a-chip,”
“microfluidics,” “microfluidic chip,” (“lab-on-a-chip” OR “organ-on-a-chip”), (“lab-on-a-chip” OR “organ-on-a-
chip” AND “microfluidics”), and (“lab-on-a-chip” OR “organ-on-a-chip” AND microenvironment). All articles
published in English before September 2022 that mentioned these OOAC keywords were included in this review.
If the articles were found to be not experimental, review, or systematic review, the articles were then excluded from
the study.

Overview of organ-on-a-chip
The concept of “organ-on-a-chip (OOAC)” basically comes from an idea to resolve drug development problems
that are happening these days. The increasing number of incurable diseases and the slowness or even failure of
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medicines to reach the clinic nowadays have become formidable obstacles for modern medicine. In fact, only 1 out
of 9 drugs entering phase I will reach the market [49]. Drug development is usually divided into four main steps:
discovery and advancement of potential compounds, in vitro and in vivo research, and clinical research; if the drug
candidate shows safety and effectiveness in humans, the next step is to prepare a proposal for regulatory agency
approval [50]. The entire drug development process is deemed inefficient resulting in unsustainable healthcare costs
and medications with low efficacy and safety for the population [51,52]. The absence of efficacy and unanticipated
adverse effects are the most frequent causes of drug withdrawal from the market [53]. Therefore, the entire process
has been revised and the performance of in vitro tests in the preclinical stage including 2D and 3D cell cultures
such as scaffolds [27] and organoids [54,55], as well as animal models are now highlighted and questioned [56,57]. As
mentioned before, the criticisms of 2D and 3D cell culture focus on the inadequate physiological resemblance to
healthy or diseased human tissue, lack of reproducibility, and limited to small-scale production, whereas animal
models are time-consuming, expensive, and related to ethical issues. Furthermore, preclinical results are derived
from non-human cells (cell culture and animal models), and their potentially misleading results are not replicated
in clinical trials [58,59].

There is increasing demand to improve understanding of disease and accelerate the drug development process
by finding more accurate models and alternatives to animal testing. In fact, according to the US Department of
Agriculture, the US in 2018 utilized approximately 780,070 animals for in vivo testing. However, the outcomes of
animal and human studies often fail to confirm each other [60,61]. Then, The Humane Research and Testing Act
(HR 1744) and the US FDA Modernization Act of 2021 were approved by the US Senate in 2021, allowing drug
manufacturers and sponsors to seek market approval based on the safety and effectiveness of alternative approaches
to animal testing. At the same time, the European Parliament in the European region proceeded in the same manner
with a resolution to support animal welfare and technological innovation [62,63]. Both included organ chips and
micro-physiological systems as alternatives.

Organ-on-a-chip (OOAC) refers to a biomimetic micro-engineered system that mimics the structural and func-
tional properties of humans at the organ level and even the organism level [64,65]. The basis of this emerging
technology is a microfluidic chip that combines biology, materials science, and engineering to mimic the mi-
croenvironment of native tissue and organs in vitro. The platforms basically involved a microfluidic device, seeded
with living cells, and maintained under constant fluid flow of biological fluids. The chip is also designed to work
under stimulation and with other organ-relevant elements [37,66–72]. Microfluidics is the study and manipulation
of microliter-scale fluids confined within micrometer-scale channels, chambers, or wells referred to as “chips” [73].
Microfluidic tools have attained a sophisticated level of development with the aim of comprehending in vivo
conditions [74]. Combining technologies such as microfluidics and 3D cell cultures adds a new dimension to cell
biology research, resulting in a more accurate simulation of the in vivo cell environment. It permits the examination
of biological organs using minute volumes of fluid. They contribute to cell research by being easily miniaturized,
user-friendly, sensitive, robust, and adaptable to a high throughput design [73,75,76].

The first primary objective of the earliest organ-on-a-chip models was to replicate vital physiological parameters,
primarily in response to mechanical stimuli. Huh and co-workers published the first OOAC model developed
using epithelial and endothelial cells to simulate the alveolar-capillary interface of the human lung. The device
can replicate human breathing type and lung response to pathogen stimulation [77]. The OOAC is designated as
one-chamber, multiarray, parallel, and serial organ chips [78]. Furthermore, by using various chip designs, cells can
be organized into various natural tissue structures [78].

Along with great interests and development, now OOAC as micro-physiological systems is built in different
sizes and shapes [49], and it successfully established numerous models of healthy and diseased tissues and organs.
The OOAC can be modeled to recreate a single organ-level structure and function, which is the most widely
conducted in current research. The dimension of the OOAC approach was then enhanced by connecting two or
more organ levels as a multi-organ chip, which came from an idea called “human/body-on-chip” that mimics
whole-body physiology or pathology [64,78]. Multi-organ chips could be considered as the novel accurate model
to study biodistribution, drug delivery systems, and metastases in cancer. This opened opportunities to develop
several in vivo-like in vitro models for any desired organs or systems to study, as depicted in Figure 1 .

The Potential of OOAC for Fundamental Research
The origin of OOAC comes from ideas combining microfluidics and tissue engineering. It was initiated with
miniaturized total chemical analysis systems (μTAS), invented by Manz et al. in 1990. Further, with the advancement
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Figure 1. Preclinical study platforms.

of knowledge and technology, the term “microfluidics” was applied [79,80]. In this context, microfluidics systems
generate 10 to 100s of micrometer channels using a very small amount of fluid. Additionally, in tissue engineering,
basic functional structures are formed by scaffolds, either alone or in combination with cells and/or signaling
molecules, to replace or repair damaged tissue. The expected outcomes from merging these two technologies
are to create a new and improved cell environment for cell culture mimicking in vivo physiological processes.
The rapid growth of microfluidic-based cell culture technologies has been noticed in these two past decades, and
these technologies are intended for bioscience and pharmaceutical research. With OOAC, it is possible to create
environments that predict the in vivo trials, because when compared with the conventional two-dimension method,
it accurately recapitulates the dynamic processes and 3D architecture of body tissues and organs [81,82].

Although OOAC based on microfluidic technology has advantages such as being portable and cost-effective,
reducing time and being better at mimicking tissue microenvironments, microfluidics technology needs more
equipment, e.g., pumps, incubators, microscopes, and tools for a specific experiment [83]. So far, OOAC has mainly
been used to mimic the physiological structures and functions of microenvironments and to model diseases and
cancer, as well as for drug discovery and toxicity evaluation as illustrated in Figure 2.

Modeling physiological microenvironments & functions

The development of in vivo-like in vitro models such as OOAC integrates two distinct fields, microfluidics, and
cell or tissue biology. By integrating the two, different human organ structures and functionalities can be built
into a laboratory model that mimics the functions and responses of in vivo tissues and organs. Although OOAC
technology cannot resemble a whole living tissue or organ, it is designed to organize a minimally functional unit
of tissue or organ system that can better represent the aspect of human physiology [84]. Various human organs have
been developed into OOAC platforms to recapitulate the functions of organs such as the intestine, lung, blood
vessels, liver, heart, kidney, bone marrow, brain, bone, and tooth [39,48,85–107], as shown in Table 1.

Drug discovery & toxicity evaluation

Toxicity is one of the main reasons for drugs failing in terms of either reaching the market or after it had already
become available on the market. Therefore, conducting a preclinical toxicity evaluation of a new investigational
drug (NID) is a very important step toward clinical application. Toxicity evaluation results from 2D cell culture
and animal models sometimes cannot be determined during clinical tests due to unrepresentative preclinical trials
or species differences [31]. To improve the precision of drug toxicity preclinical tests, the OOAC models have proven
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Figure 2. Current application of organ-on-a-chip in fundamental research, based on the literature search.

to be potentially novel approaches to studying drug toxicity in cells, tissues, and organs. The miniaturization and
the dynamic process within the microfluidic chip considerably reduce needed samples and significantly improve
the reliability and sensitivity of the tests [108,109]. Based on the literature search results, several OOACs have been
developed for drug and toxicity evaluation [110–115], as shown on Table 2. It was confirmed from the investigations
that OOAC is an excellent approach to studying drugs and toxicity evaluation. For example, in the study by Jang
and co-workers [115], it was found that the toxicity test results were closer to in vivo experiments and proved to
be an innovative tool for evaluating human renal toxicity. Jang et al. [115] measured the toxicity by the activity of
cisplatin, a proximal tubule nephrotoxin, and P-glycoprotein ATP-binding cassette membrane transporter (Pgp).

Disease & cancer modeling

Cancer therapeutics require preferable and reliable experimental models [116]. One of the problems that lead to
the slow development and invention of new anti-cancer therapies is the limitations of the preclinical models used
to identify molecular, cellular, and biophysical changes as the critical features of human cancer progression [68].
Conventionally, researchers test potential anti-cancer agents in tumor cell culture, but the outcomes are insufficient
without animal studies [117]. Animal studies involve tumor cells implanted subcutaneously in rodents. However, this
model has widely accepted drawbacks because the model cannot mimic native-tissue cancer growth, responses to
therapeutic agents, and the organ’s microenvironment [118]. To resolve these challenges, researchers move to another
model called in vivo orthotopic cancer models. These models are better at mimicking tumor growth and metastasis.
Nevertheless, there are challenges involved in terms of identifying the role of the microenvironment in tumor
growth and visualizing cell behavior over time, and the research is not conducted in humans [119,120]. Both 2D and
3D tumor models provide information about cancer cell interaction, migration, and invasion of the surrounding
tissue microenvironment [121–124]. However, neither model can explain the role of mechanical forces related to
fluid shear stress, hydrostatic pressure, and tissue deformation, which can affect tumor cells’ behavior [125–129].
The latest in vitro models, called organoid culture technology, lack the capacity to represent the critical factors
in cancer control and progression [130–132]. Furthermore, the difficulties involved in investigating metastases as a
dynamic process of key cancer-related oncology issues have triggered significant interest in developing biomimetic
in vitro models that can recapitulate cancer [133]. The development of cancer and disease modeling is also focused
on the effect of therapeutic cancer strategies [68,134]. Thus, the OOAC approach is expected to fill the gap between
preclinical studies and future clinical outcomes, and the models are expected to become the fundamental models
used for studying cancer progression and metastases to obtain better future clinical studies and results.

Table 3 shows the search results on the use of OOAC for cancer modeling. It was noticed that scientists also
use OOAC to study cancer growth, neovascularization, progression, migration, and metastasis [68,119,133,135–141].
The findings from the previous investigations suggested that the 3D microenvironment is crucial. As an example, a
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Table 1. Developed organ-on-a-chip to mimic various human tissues or organs.
Study (year) Chip name Research aims Cell type Ref.

Zhang et al. (2021) Epidermis-on-chip To mimic normal histological features of
the human epidermis

Normal human keratinocytes [85]

Duc et al. (2021) hNMJ on a micro structured
microfluidic device

To create a mature, functional, and reliable
human neuromuscular junction

Myoblast (muscle progenitor cells) and hiPSCs [86]

Ahn et al. (2021) MVEOC To replicate the physiology of the
endometrial environment

HUVECs, EECs and ESFs [87]

França et al. (2020) Tooth-on-a-chip To replicate the architecture and dynamics
of the dentin-pulp interface

SCAP [48]

Zhao et al. (2020) Biowire II chip To create cylindrical cardiac microtissues for
cell cultivation

Human pluripotent stem cell-derived cardiac tissues [88]

Sontheimer-Phelps et al.
(2020)

Human colon-on-a-chip To replicate mucous bilayer formations and
determine the accumulation of mucous

Primary patient-derived colonic epithelial cells [89]

Bahmaee et al. (2020) Bone microfluidic chip To create an 3D environment and
determine fluid shear stress of bone

hES-MPs [90]

Mosavati et al. (2020) Placenta on-a-chip To reproduce a placental interface between
maternal and fetal blood

Trophoblasts cells and human umbilical vein
endothelial cells

[91]

Zhang et al. (2020) 3D Liver chip To improve existing models used to mimic
the liver

The liver cancer cell line (Hep-G2) [92]

Shanti et al. (2020) LN on-a-chip To replicate the lymph node
microenvironment

Human EB1, THP-1, and Jurkat cells [93]

Rogal et al. (2020) WAT on-a-chip To mimic the structure of the human white
adipose tissue-like structure

Human primary mature adipocytes [94]

Jing et al. (2020) Gut-vessel microsystem To study the interaction between a host
and a microorganism in the gut system

Human intestinal epithelial cells (Caco2) and
HUVECs

[95]

Jalili-Firoozinezhad et al.
(2019)

Microfluidic
intestine-on-a-chip

To replicate human intestinal epithelium
host–microbiome interactions

HIMECs and human intestinal epithelial cells (Caco2
BBE human colorectal carcinoma cell)

[39]

Petrosyan et al. (2019) Glomerulus-on-a-chip To recapitulate the functions and structure
of the glomerulus

Human podocytes and human glomerular
endothelial cells

[96]

Theobald et al. (2019) Multi compartment
microfluidic liver kidney
organ on a chip

To recapitulate hepatic metabolism and
renal bio-activation

HepG2 and RPTEC cells [97]

Dai et al. (2019) Disc-on-a-chip To simulate and investigate disc
metabolism and the in vivo disc
microenvironment

Not explained but used a lumbar disc from a mouse [98]

Albers et al. (2019) Platelet aggregation
on-a-chip

To quantify the aggregation of platelet
patterns

HUVECs [99]

Zhang et al. (2018) 3D human lung-on-a-chip To recreate the human lung structure and
functions and evaluate the toxicity of
nanoparticles

Lung alveolar epithelial cells and human vascular
endothelial cells

[100]

Wevers et al. (2018) Human blood-brain barrier
(BBB) on-a-chip

To replicate future therapeutic strategies Human cell lines of brain endothelial cells,
astrocytes, and pericytes

[101]

Jain et al. (2018) Lung alveolus-on-a-chip To recapitulate response in vivo, to
recapitulate platelet-endothelial dynamics,
and to analyze the inhibition of
endothelial activation and thrombosis due
to a PAR-1 agonist

HUVECs and primary human alveolar (type I and II
combined) epithelial cells

[102]

Wang et al. (2017) BBBoC To mimic in vivo BBB characteristics in the
brain

BMECs from hiPSCs and rat primary astrocyte [103]

Banaeiyan et al. (2017) VLSLL-on-a-chip device To mimic the central vein of a liver lobule Human hepatocellular carcinoma cells (HepG2) and
hiPSC-derived hepatocytes

[104]

Musah et al. (2017) Kidney
glomerular-capillary-wall on a
chip

To recapitulate the natural tissue or tissue
interface of the glomerulus

hiPS cell-derived podocytes and primary human
glomerular endothelial cells

[105]

Skardal et al. (2017) Integrated three-tissue
organ-on-a-chip (liver, heart,
and lung)

To create a tissue organoid and tissue
construct that integrates lung, liver, and
heart in one chip

Human primary cells, including HSCs, iPSC CMs,
vascular endothelial cells, lung epithelial cells, and
fibroblasts

[106]

Lee et al. (2016) Placenta on-a-chip To reproduce the placental barrier Human trophoblasts (JEG-3) and HUVECs [107]

BBBoC: BBB-on-a-chip system; BMEC: Brain microvascular endothelial cells; EEC: Endometrial epithelial cells; ESF: Endometrial stromal fibroblasts; hNMJ: Human neuromuscular junction;
HSC: Hepatic stellate cells; hES-MP: Human embryonic stem cell-derived mesenchymal progenitor cell; HIMEC: Human intestinal microvascular endothelial cell; hiPS: Human-induced
pluripotent stem; HUVEC: Human umbilical vein endothelial cell; hiPSC: Human-induced pluripotent stem cell; iPSC CM: Induced pluripotent stem cell-derived cardiomyocytes; LM: Lymph
node; MVEOC: Micro-engineered vascularized endometrium on a chip; SCAP: Stem cells from apical papilla; VLSLL: Very large-scale liver-lobule; WAT: White adipose tissue.
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Table 2. Search results on the use of organ-on-a-chips for drug development and toxicity evaluation.
Study (year) Type of developed OOAC Study overview Ref.

Li et al. (2020) A 3D human blood-brain barrier chip The OOAC was used to study the neurotoxicity of INPM. It was shown that the
platform effectively mimics the microenvironment and response of the human
blood-brain barrier to INPM exposure. An INPM disrupts Keap1-Nrf2-ARE pathways
in the blood–brain barrier.

[110]

Bovard et al. (2020) Connected lung/liver-on-a-chip using
cocultured normal human bronchial
epithelial cells and HepaRG™ liver
spheroids

It shows that acute and chronic toxicity of aerosol exposure from aflatoxin B1
(AFB1), as one of anti-tuberculosis agent, was reduced because of the presence of
HepaRG™.

[111]

Kamei et al. (2017) Integrated Heart/Cancer on a chip The OOAC was used to study side effect of Doxorubicin as an anti-cancer drug on
human healthy heart cells and liver cancer cells (HepG2) cocultured in a chip. The
chip successfully demonstrated how Doxorubicinol, a toxic metabolite from HepG2
cells, is delivered and how it affects the heart cells

[112]

Nierode et al. (2016) A microarray chip platform The OOAC was used to compare the toxicity of 24 compounds in an
undifferentiated and differentiated human neural progenitor cell line. The OOAC
platform showed that the acute toxicity of five compounds, acetaminophen,
5-fluorouracil, retinoic acid, Doxorubicin, and pitavastatin, were different from two
neural progenitor cell culture conditions.

[113]

Kwon et al. (2014) Transfected enzyme and metabolism chip
(Team Chip)

Team Chip was used to predict metabolism-induced drug toxicity or drug-candidate
toxicity by manipulating the expression of human metabolizing-enzyme genes
using THLE-2 cells and to reveal the specific enzymes related to the drug
toxification process.

[114]

Jang et al. (2013) Kidney proximal tubule-on-a-chip with
human primary renal tubular cells

The OOAC was used to study nephrotoxicity. It was shown that the toxicity test
results were closer to in vivo experiments and proved to be an innovative tool for
evaluating human renal toxicity. It was measured by the activity of cisplatin, a
proximal tubule nephrotoxin, and P-glycoprotein ATP-binding cassette membrane
transporter (Pgp).

[115]

All investigations prove that OOAC is an excellent approach to studying drugs and toxicity evaluation.
INPM: Indoor nanoscale particulate matter; OOAC: Organ-on-a-chip.

Table 3. Studies on cancer growth, neovascularization, progression, migration and metastasis using organ-on-a-chips.
Authors Overview of the Study Ref.

Chramiec et al. (2020) To develop an integrated OOAC to reproduce bone Ewing Sarcoma and cardiac muscle to study the efficacy of anti-cancer
drugs and cardiotoxicity and then compared the result from OOAC studies with the clinical trial results. The OOAC allowed
the monitoring of cancer cell growth and assessment of anti-cancer efficacy and cardiotoxicity.

[135]

Liu et al. (2020) To develop a micro-tumor using a microfluidic device to study anti-cancer drugs. [136]

Weng et al. (2020) To fabricate an integrate chip to analyse the effect of the potential toxicity of chemotherapeutics. [137]

Oliver et al. (2020) To prepare a microfluidic blood brain niche (μm-BBN) platform and study the tumor microenvironment and brain
micro-metastasis.

[138]

Mamani et al. (2020); Xiao
et al. (2019)

To use OOAC for cancer studies to recapitulate glioblastoma tumors and evaluate drugs for therapy. [133,139]

Miller et al. (2018) To develop a 3D human renal cell carcinoma-on-chip using primary human clear cell renal cell carcinoma and examine the
ability of cells to stimulate tumor angiogenesis as a basis for pharmaceutical blockade studies.

[140]

Hassel et al. (2017) To develop human orthotopic lung cancer-on-a-chip. The lung cancer-on-a-chip can be used to study lung cancer
behaviours, rampant growth in a microenvironment, and tumor responses to therapy.

[119]

Montanez-Sauri et al. (2013) To develop 3D microenvironment in a microfluidic chip and compare between 2D and 3D influences for the growth of
human T47D cells. The microfluidic chip 3D microenvironment significantly influences the development of the cells more
when compared with 2D culture.

[141]

OOAC: Organ-on-a-chip.

study by Montanez-Sauri [141] showed that the microfluidic chip 3D microenvironment significantly influences the
development of the cells more when compared with 2D culture. Furthermore, all the previous research shows that
the OOAC platform and approach can better model cancer in many aspects, depending on the research objectives.
In fact, studies focusing on the application of organ-on-a-chip for bone cancer are limited because bone-on-a-chip
systems are relatively new and have only been introduced recently in reviews, unlike other OOAC systems [142].

Fabrication & assembly

Microfluidics involves fluid behavior, precise control, and manipulation within small channel dimensions [72]. The
OOAC system based on microfluidics consists of a microfluidic chip with chambers and channels where cells
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are cultured into an appropriate matrix or scaffold [20]. An OOAC based on microfluidics technology has some
advantages, such as cost-effectiveness, easy accessibility and experiment flexibility. By using OOAC, experiments
can be conducted by culturing or coculturing a small number of cells, with real-time on-chip analysis, using
automation, and reducing reagent consumption and contamination [83,143]. Though it is cost-effective, the cost
itself is a disadvantage of OOAC because of the need for specialized microengineering capabilities, cleanrooms,
or pumps, which can be expensive [144]. Other disadvantages of OOAC are the design complexity, non-standard
culture protocols, and complex operational procedure because it involves a small volume of reagent or liquid [83,145].
The way to conduct experiment using OOAC is sequentially from designing the chip, molding, seeding the cells,
managing cellular growth, establishing functions, and calibration using imaging or several tests which include
physical, chemical, and mechanical tests [144,145].

The OOAC system designs mentioned above share similar characteristics but depend on the objectives. The
body of the chip houses all the channels, chambers, or other elements such as sensors, electrodes, or valves.
The body part can use polymeric materials such as poly-dimethylsiloxane (PDMS), poly-methylmethacrylate
(PMMA), polycarbonate (PC), polystyrene (PS), polyimide (PI), and polyvinyl chloride (PVC) and silicone [67,146].
A frequently used material in OOAC systems is PDMS, because it is cell friendly, inexpensive in a laboratory setting,
biologically inert, gas-permeable, and has a non-toxic surface with low adhesion and qualities that support the
systems [143,147–153]. However, PDMS has some drawbacks, so it opens opportunities to construct OOAC systems
from the other potential materials mentioned above. Most microfluidic device fabrication uses different techniques,
such as etching, nanofabrication, replica modeling, injection molding, lithography microcontact printing, and the
emerging method of using 3D printing [83,147,148,154–161].

Several materials, such as natural or synthetic polymer substances, are used as membranes or scaffolds. These
membrane and scaffold manufacturing techniques include electrospinning [162], 3D printing [163], stereolithogra-
phy [164], fused deposition modeling (FDM) [165,166], selective laser sintering (SLS) [167,168], bio plotting [169], salt
leaching [170,171], and freeze drying [172,173]. Other potential materials for OOAC can also be utilized, such as silk-
worm (Bombyx mori), agarose hydrogel, Teflon, acrylonitrile butadiene styrene (ABS), polyurethane methacrylate
(PUMA), polyethylene glycol (PEG), polyhydroxyalkanoates (PHA), gelatin methacrylate (gel-MA), poly(polyol
sebacate) (PPS), and styrene ethylene butylene styrene (SEBS) [83].

Although there have been several fabrication methods available for the development of OOAC, there are still
engineering limitations to reaching the full complexity of human physiology. For example, numbers and sizes of
vessels, tubes, and ducts in human tissues and organs are still too complex to be fully recreated in engineered
systems. Even the development of relatively simple channel networks can be challenging to operate vigorously and
efficiently. Different fabrication materials and methods will result different quantity or amount of raw material
processed within a given time, which is required to cover variabilities that arise from biological heterogeneity.

The OOAC based on microfluidics uses flow mechanisms and various types of cells derived from humans and
animals, e.g., mice used as single or multiple cells within the system. Flow mechanisms are differentiated into two
types, active and passive [155]. The active flow mechanism uses a syringe and peristaltic pumps, whereas the passive
flow mechanism depends on gravity-driven flow [174–180]. The type of cells used is based on the organ that is targeted
for replication. Nowadays, developments have led to the use of stem cells, including multipotent mesenchymal stem
cells (MSCs), pluripotent embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs) [180–182]. Stem
cells have potential because they can differentiate into cellular subtypes [183,184]. Finally, since the behavior of cells
changes depending on triggers within the human body, to achieve complete functionality, stimuli is given to the
microfluidic chip. Researchers involve a specific condition for organs/tissues, including chemical and mechanical
stimuli to observe the responses of living cells, e.g., pressure, flow rate, pH, osmotic pressure, toxins presence,
nutrient content, drugs including chemotherapy, and radiation [83,185,186]. Figure 3 provides an overview on the
generic considerations to design, assembly, and fabricate microfluidics based OOAC.

State-of-the-art in OOAC for dentistry & bone tissue engineering
Humans have more than 200 bones, and these organs may undergo damage or losses caused by accidents, extreme
sports, aging, and/or bone-related conditions and disorders [187]. On the other hand, bone also has excellent
capacity to regenerate and spontaneously repair damage [188,189]. Despite its excellent regenerative capacity, when
there is a large critical defect in bone, its self-repair capability needs to be enhanced. In this point, TE rises as a
well-proven technique in regenerative medicine [187] to help bone to regenerate using scaffold as synthetic ECM,
signaling molecules, and cells, either alone or in combination. As the branch of TE, BTE specifically focuses
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Figure 3. General considerations to design, fabricate, and assembly microfluidics based organ-on-a-chips.
ECM: Extracellular matrix; PDMS: Poly-dimethylsiloxane.

on bone regeneration by combining multiple aspects of biology, engineering, material science, clinical medicine,
and genetics to construct biological substitutes, i.e., scaffold, to promote bone regeneration [190]. The scaffold
must mechanically, biologically, and physically mimic the dynamics and functionality of the extracellular matrix
(ECM) of a specific tissue [191]. However, bioengineered scaffold is still massively developed under static cell culture
condition, with its restriction in cell to cell and cell to ECM interactions.

The static condition affected cellular morphology as a consequence of insufficient physiological environment
replication [191,192]. This is contradictory with the situation wherein ECM dynamics should play important roles in
regulating tissue-specific cellular responses, thus affecting regeneration process, tissue formation, wound healing,
and disease progression. In such a way, it is inadequate to depend solely on static conventional cell culture for accurate
assessment of drug disposition, efficacy, and toxicity within the human body [64,193,194]. Therefore, fundamental
research on cellular behavior should be conducted within better platforms that can mimic the dynamics of the
bone as the primary interest tissue. Along with that, a microfluidic OOAC is expected to resolve the challenges. By
integrating the principles of microfluidics, tissue engineering, and lab-on-a-chip (LOC) technologies, microfluidic-
based OOAC incorporates miniaturized cell-culturing microenvironments with microchannels and compartments
that replicate the natural environment of human cells [195].

Dentistry-related OOAC

Regardless of the progression of severe and high periodontitis prevalence, there are still few published works
on OOAC in relation to the TE model for dentistry, particularly for alveolar bone tissue engineering. Figure 4
summarizes the search results from this study regarding OOAC for dentistry that have been developed and
investigated by several research groups. With respect to dentistry, it was found that OOAC has been used to
study biofilm and saliva [195–211], dentin and pulp complex [212–216], oral mucosa [213–220], periodontal tissue [221–

224], and oral malignancies [225–229]. Some other groups developed OOAC to study digestion mechanism [230],
innervation [231], tooth germs and oral cell differentiation [232].

The oral cavity is home to a highly varied microbial community [196]. Oral microorganisms can colonize both on
biotic and abiotic surfaces [197,198]. The colonization and growth are initiated by the adsorption of salivary pellicle
proteins, which are present in saliva, on all available oral surfaces [199,200]. Following that, then accumulates, and
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Figure 4. Recent developments and applications of dentistry- and bone tissue engineering related organ-on-a-chips
based on the search results in this study. To this date, the OOAC was used to study biofilm and saliva [187–211], dentin
and pulp complex [212–216], oral mucosa [213–220], periodontal tissue [221–224,233], and oral malignancies [225–229].
Some other groups developed OOAC to study digestion mechanism [230], innervation [231], tooth germs and oral cell
differentiation [212,232]. It is also noticed various applications of OOACs in BTE not only to study diseases in the cell
levels, but also in real time tissues environments [234–268].
BTE: Bone tissue engineering; OOAC: Organ-on-a-chip.

forms structures called biofilms. Oral biofilms are the primary cause of a wide range of oral conditions, including
dental caries, periodontal disease, implant-related infections, and candidiasis [201,202]. Oral biofilms are strongly
related to saliva because saliva plays significant roles in maintaining oral soft and hard tissue health such as cleansing
activity and remineralization [202,203].

To study complex mechanism of oral biofilm and saliva, different research groups developed OOAC. For example,
Rath et al. developed a flow chamber model for dental implant materials assessment. The study proved that biofilm
from bacteria such as Streptococcus gordonii, Streptococcus oralis, Streptococcus salivarius, Porphyromonas gingivalis,
and Aggregatibacter actinomycetemcomitans can be formed on the surface of titanium implant placed within the
model. Rath et al. concluded that flow chamber model is a promising approach to replicate biofilm formation and
antibacterial effect of dental materials [204]. Kristensen et al. designed a 3D printed resin flow-cell for in situ-grown
biofilm analysis under shear-controlled flow. The study observed the impact of stimulated salivary flow (5 mm/min)
to pH changes in biofilm. The model proved the importance of flow on pH changes and targeted to be an in
vitro model to measure pH of biofilm [205]. Two studies by Kolderman et al. [206] and Luo et al. [207] involved
microfluidics technology to quantify the structure of oral biofilms after being exposed with a reagent for biofilm
interventions. For this purpose, Luo et al. [207] combined a novel in-house developed image analysis program called
Biofilm Architecture Inference Tool (BAIT). In another study, Gasthi et al. used one-chamber microfluidic platform
to investigate the chemical and hydrodynamic influences on biofilm pH variations [208]. To study the dynamic
interaction between bacterial species, Jalali et al. [209] utilized a microfluidic-based co-culture system combined
with time-lapse imaging to investigate biofilm dynamic interactions. Another model by Lam et al. [210] has also
been developed to observe the effect of microenvironmental factors on long-term dental bacteria growth and
biofilm development using high-throughput microfluidic devices which allows quantitative analysis. Furthermore,
Thita et al. introduced a systematic and automated design of a microfluidic compact disc (CD) to investigate
the electrochemical property changes of saliva after mixing with various types of mouthwashes using electrical
impedance analysis. The developed model has demonstrated the potential of salivary theragnostic research [211].

Microfluidic based OOAC also developed to study dentin-pulp complexity after exposure to materials. Franca
et al. developed a tooth-on-a-chip which replicated the dental pulp interface. The study involved clinically standard
materials used in dentistry, and the model was found suitable as a novel platform to study dental cells after material
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exposure [212]. Another study by Hu et al. involved dentin disc within tooth-on-a-chip to evaluate the influence of
the dentin barrier and permeated silver diamine fluoride on cell viability [213]. Rodrigues et al. developed tooth-on-
a-chip to mimic the biomaterial-biofilm-dentin-pulp interface. They observed the interaction of bioactive dental
materials with the dentin-pulp complex on a model of restored tooth and real time assessment to antimicrobial
effect of calcium silicate cements as material for vital pulp therapy at the interface [214].

In addition, for the case of dentin hypersensitivity, as a part of the pulp, odontoblast plays a crucial role in it.
Anyhow, none of the in vitro models has ever created to mimic the growth of odontoblast in dentinal tubules. In
response to this, Niu et al. then developed a parallel microfluidic platform consisting of various sized microchannels.
They aimed to determine the optimal size to induce odontoblast processes [215]. Another model was also developed
by Qi et al. to study angiogenesis sprout for pulp regeneration purpose. They used microfluidic system with tapered
microchannels seeded with endothelial and stem cells to explore optimal conditions to enhance angiogenesis [216].
In another experiment, Zhang et al. utilized angiogenesis microfluidic chip to study the significance of Sema4D–
plexin-B1 signaling in the recruitment of dental-derived stem cells during angiogenic sprouting and the formation
of blood vessels [217].

Soft tissue responses to materials used in dentistry are critical point for the development of a novel dental
material. Standards for biocompatibility and cytotoxicity have been developed but the conventional cell cultures are
not capable in mimicking multi-layered cell configuration [218]. Accordingly, Ly et al. developed oral mucosa-on-a-
chip as an approach to resolve this problem. They evaluated the oral mucosal reaction to various 2-hydroxylethyl
methacrylate (HEMA) concentrations and compared the platform with conventional cell culture [218]. With the
same mucosal platform, Rahimi and co-workers studied the effect of dental monomer HEMA and Streptococcus
mutans exposure to mucosal construct [219]. Regarding dental material exposure to oral mucosa, Koning et al.
developed a multi-organ-on-chip which connects gingiva and skin, to examine metal exposures to oral mucosa.
They observed from the chip that metal exposure can result skin inflammation from activation of the immune
system [220].

Inside an oral cavity, periodontium gains specific attention to both oral health clinicians and researchers. A
healthy periodontium provides good support to help maintain the tooth’s position and normal function. The
periodontium is composed of four principal components, i.e., gingiva, cementum, periodontal ligament (PDL),
and alveolar bone. These components are different in some respects, such as location, biological composition,
chemical composition, and tissue architecture, but all these components are integrated [233]. The integrity of these
components represents the key success to all conservative, endodontic, and prosthetic therapies and becomes initial
requirement for clinical success evaluation [221].

Several periodontium related OOACs have been developed to study periodontal tissues. A group of Vurat et al.
developed a 3D-bioprinted microtissue model to mimic the interface between periodontal ligament and alveolar
bone. The developed model was used to assess drug uptake and toxicity and proved to be potential as an in vitro
platform to study PDL [222]. Meanwhile, regarding maintenance of periodontal homeostasis and prevention for
subepithelial tissue against harmful agents, gingival epithelium-capillary interface is crucial. For this, Jin et al.
developed a microfluidic epithelium-capillary barrier that closely mimics gingival epithelial barrier. The model was
constituted to be suitable for periodontal soft tissue and drug delivery study [223]. Makkar et al. also developed
microfluidic platform called gingival crevice-on-chip and aimed to simulate the gingival crevicular features, both
in healthy and diseased condition. The model was observed to be a potential device to assess complex interaction
within periodontal diseases [224].

Malignancies such as head and neck cancers can arise from cells within the mucosal surface of oral cavity [225].
Head and neck cancer has become problematic for our population. This type of cancer ranked sixth among the
most common solid tumors worldwide, with head and neck squamous cell carcinomas (HNSCC) as the most
common type [226,227]. The HNSCC has poor treatment outcome, and the overall survival was low. To get better
understanding of HNSCC as a tissue derived cancer, Bower et al. developed a miniaturized tumor culture system.
They detected that microfluidic system can maintain HNSCC for 48 hours [228]. Furthermore, Jin et al. developed a
microfluidic-based perivascular tumor model to assess tumor drug sensitivity and in parallel investigate the toxicity
within the endothelium. They found that the model had potential for personalized tumor medicine application in
clinical settings [229].

In addition, some models have also been developed to study digestion process, innervation, and oral cells
differentiation. De Haan et al., for example, developed miniaturized enzymatic digestive system to replicate
digestive functions within three-compartment enzymatic digestion consist of mouth, stomach, and small intestine.
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They applied some compounds and monitored the enzyme kinetics from the first reaction inside the microfluidic
system. They discovered positive results on the enzyme kinetics monitoring system inside the developed microfluidic
device [230]. Regarding tooth development, Pagella et al. has conducted an experiment to appraise the utility of a
microfluidics device for co-culturing mouse trigeminal ganglia and tooth germs at various developmental phases.
The study proved that microfluidics system is a useful instrument to investigate how neurons behave as orofacial
tissues and organs were developed [231]. In another study, Kang et al. developed a microfluidic device system to
explore oral epithelial-mesenchymal interactions as a key role in human tooth development [232].

Bone tissue engineering related OOAC

The field of BTE enables us to resolve the structural issue by combining two crucial components: osteoprogenitor
cell culture and scaffolding materials. This combination serves as a template for cell proliferation, production of
bone-like extracellular matrix, and specific required chemical cues for bone development [234–236]. Some microfluidic
organ-on-a-chip technologies have been created to understand the biology of bones as well as bone-related diseases
and treatments [142].

Related to bone cell functions, Babaliari et al. developed a flow-controlled system to determine the bone cells
responses, such as orientation, proliferation, and osteogenic differentiation, after the application of various flow
rates. The system was found to be beneficial for the tunable control of the cell microenvironment, which guided
cellular activity involved in bone repair [237]. Meanwhile, Sheyn et al. also developed bone-on-a-chip system with
constant flow in comparison with static culture. The study involved an optical imaging technique for cell survival,
osteogenic differentiation, gene expression analysis, and immunostaining for osteogenic markers [46]. Another study
by Middleton et al. has successfully cultured osteocytes and osteoclast precursors within a microfluidic co-culture
system. By the construct, they aimed to examine osteoclast precursor responses to mechanically stimulated or
unstimulated signals produced by osteocytes, as well as osteoclast modulation by osteocyte mechanical sensitivity.
This platform helps mechanical transduction studies be more relevant [238].

By involving hydrogel technology, Nasello et al. developed a system to mimic osteoblast development into osteo-
cytes using primary human osteoblast seeded in type I collagen hydrogel with modified cell densities. Nasello and
teammates observed that cell densities applied within bone-on-a-chip affect the proliferation, alkaline phosphatase
(ALP) activity, and production of osteocyte or osteoblast specific marker [239]. With the same approach as Nasello
et al., Bahmee et al. developed osteogenesis-on-a-chip with physiologically relevant flow conditions which incorpo-
rates 3D polymer scaffold. The flow on this approach provided human embryonic stem cell-derived mesenchymal
progenitor cells (hES-MPs) to proliferate, differentiate, and produce extracellular matrix [240].

In relation to BTE, different approaches can be made to study bone vascularization and innervation. Jeon et al.
developed a human 3D microfluidic model to investigate organ-specific human breast cancer cell extravasation into
bone and muscle microenvironments. The bone microvasculature was reproduced using a tri-culture of human
bone marrow mesenchymal stem cells (hBM-MSCs), osteogenically differentiated (OD) hBM-MSCs, and human
umbilical vein endothelial cells (HUVECs) embedded in fibrin gel. The results showed functional microvascular
network was developed along with vasculature specific markers such as vascular endothelial (VE) cadherin and
zonula occludens (ZO)-1. Additionally, mature bone tissue formation was confirmed along with secretion of bone
protein such as osteocalcin (OCN) and bone ALP [218]. In this regard, bone is well-innervated by peripheral nerves,
which cooperate with the central nervous system. The factors released by nerve fibers have been found to be
directly linked to bone cell functions [241,242]. Moreover, to study the role of innervation in skeletal development,
Silva et al. developed a microfluidic device to examine the impact of dorsal root ganglion (DRG) neurons on the
capacity of MSCs to differentiate into osteoblasts. Using a bone-like microenvironment approach, direct interaction
between DRG neurons and MSCs increased the osteogenic differentiation of MSCs into osteoblast via regulating
the production of Cx43 and N-cadherin and activating the canonical/-catenin Wnt signaling pathway [243].

Microfluidic-based systems have also been utilized to accelerate bone regenerative materials development as well
as develop miniaturized bioreactors with high accuracy [119,244,245]. Lee et al. [132] prepared a microfluidic 3D bone
tissue model for testing the performance of designated biomaterials fabricated by inkjet-printed micropatterned
containing antibiotic and biphasic calcium phosphate (BCP) nanoparticles as a filler, dispersed in a polymer matrix
to accelerate wound healing and prevent bacterial infection. The experiment showed the biomaterials can kill
bacteria and at the same time enhance osteoblast production. The model developed has the potential to reduce
the number of samples and culture experiments, while providing in situ monitoring for biomaterials-bacteria
interactions [246].
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In the context of bone regeneration, cell migration is a crucial phase in numerous regenerative processes [247]. For
this, Movilla et al. has assembled a bone fracture model intended to analyze the impact of ECM properties and growth
factor gradients, as well as quantitatively examine the migration characteristics of human osteoblasts (HOB) on
collagen-based matrices. The platform was revealed as a promising tool to mimic bone healing microenvironment.
The platform was also capable for an in vitro assessment and quantification of various biophysical and chemical
parameters that affect osteoblastic cells migration [248].

This study also resulted in a considerable number of studies concentrate on cancer and its metastasis as a
complex and multistage process [225]. In fact, bone metastases occurrence still rises and became the third most
common location for cancer metastases after the lung and liver [249–252]. Bone cancer metastases can significantly
decrease patients’ quality of life due to skeletal-related complications [253]. Various models of OOAC grown into
effective instruments for modeling cancer metastasis and understanding unique interactions between cancer cells
and vital regulators of cancer niche [254]. Therefore, a set of studies using microfluidic OOAC have been focused
on cancer metastases to bone. Conceição et al. established a metastasis-on-a-chip that replicates neuro-breast
cancer interaction in a bone metastatic context, permitting both selective and dynamic multicellular paracrine
communication between sympathetic neurons, bone tropic breast cancer cells, and osteoclasts. Experimental results
showed synergistic paracrine signaling between sympathetic neurons and osteoclasts induced pro-inflammatory
cytokines, which indicated increased aggressiveness of breast cancer [254]. Meanwhile, Mei et al. developed the first
bone metastasis microfluidic tissue model consisting of a simulated blood vascular environment in which cancer
cells can extravasate and a bone environment model that can deliver mechanical forces to cells. The study aimed to
explore the function of osteocytes in the mechanical regulation of breast cancer bone metastases. The device allowed
integrated stimulatory bone fluid flow and proved that mechanical stimulation of osteocytes reduced extravasation
of breast cancer [255]. Both chips developed by the group of Conceição and Mei can be used to observe some
processes at the bone metastatic microenvironment.

Nowadays, apart from bone cancer, osteoarthritis (OA) and osteonecrosis are also problematic. It was reported
that OA is a degenerative cartilage disease and a major contributor to disability that affects millions of people
worldwide [256,257]. In recent years, there has been some fascinating progress in understanding the basis of OA, as
accumulating data reveals that OA is a whole-joint disease affecting all joint components, i.e., cartilage, synovium,
subchondral bone, and related muscles [258–261]. In view of this, a model that accurately captures the whole-joint
disease aspect of OA in humans is required. Makarczyk et al. developed an OOAC called “miniJoint”, consisting
of an osteochondral unit (OC), adipose tissue, and inflammation-inducted synovial fibroblast-like tissue (SFT), to
investigate its potential to develop novel OA therapeutics intervention. Therapeutics intervention has been proved
to be effective in reducing inflammation and showed an increased production of glycosaminoglycan. The model
by Makarczyk et al. was concluded to be potential and can be used to develop novel OA drugs [262].

Osteonecrosis, which predominantly affects young adults (under 50 years of age), is a progressive condition
characterized by cell death, fracture, and collapse of the affected area due to inadequate blood supply. The
prevalence of osteoarthritis, osteonecrosis, and the necessity of total hip arthroplasty (THA) have been rapidly
increasing [263,264]. Some drugs can induce this condition, such as corticosteroids, the second most common cause
of osteonecrosis of the femoral head (ONFH) [265,266], and specifically related to dentistry is bisphosphonates in
medication-related to osteonecrosis of the jaw (MRONJ) [267]. An OOAC technology has been now applicable
to assess osteonecrosis. In the study by Li et al., a microfluidic OOAC was assembled to investigate the effects of
various therapies on bone microvascular endothelial cells (BMECs) and the pathophysiology of steroid-induced
osteonecrosis. The microfluidic system successfully proved glucocorticoids damage BMECs through the production
of cleaved caspase 3/7 [268].

Based on this study, it can be acknowledged that numerous review articles on the developments of generic organ-
on-a-chips have been published, as well as some platforms directed for specific to various organ systems. However,
for bone tissue engineering the developments of OOACs, either the ones purposively designed and fabricated for
general BTE, or the ones specifically directed for dentistry, deserves more attentions because of the high complexity
of the bone tissue and because this field is worth developing. When the high prevalence of periodontitis with its
progressiveness is also taken into considerations, the shifting approach to resolve challenges for bone-related diseases
in dentistry using alveolar-bone-on-a-chip has been in the hands of bone tissue engineers, researchers, and dental
clinicians.
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Figure 5. Future directions on the use of organ-on-a-chip in dentistry.
BTE: Bone tissue engineering; OOAC: Organ-on-a-chip.

Conclusion
The OOAC systems related to BTE in dentistry are worth developing. The OOAC approaches are expected
to fill the gap between preclinical studies and future clinical outcomes. Microfluidic OOAC models have been
developed over the last decade to mimic tissues, organs, and systems in the human body to solve problems related
to monolayer cell cultures and animal laboratory methods. Although research and development on OOAC in
dentistry- and bone-specific are still limited, soon, OOAC approaches is predicted to be extensively used and direct
trends in dentistry. It is because OOAC can better recapitulate physiological structures and functions, model disease
and cancer, and provide more accurate data to support drug discoveries and other therapeutics strategies.

Future perspective
Organ-on-a-chip is categorized as a cutting-edge research tool in biomedical areas, especially in dentistry. Recent
OOAC developments have been proven to be successful in mimicking real time physiological and pathological
microenvironments. Designing in vivo-like in vitro models as shown in OOAC for both healthy and diseased
conditions is a strategic option to assess and accelerate novel therapeutics discoveries. Since OOACs can also be
designed to recapitulate either a single- or multi-organ system in only one small integrated device, the development
of OOACs will significantly impact research, development, and valorization process in the field of biomedicine,
or to be more specific, in tissue engineering and its applications in dentistry. Recent advances in OOAC have also
shown that it may be possible to imitate wound healing or remodeling process after graft or plate implantations and
augmentations, dental implant placement, as well as other bone-related surgeries in dentistry. In the next decade,
the use of OOAC in dentistry is expected to provide more accurate, precise, faster, and more personalized solutions
for unpredictable diseases or infections, as shown in Figure 5.

Nowadays, by applying microfluidic OOAC approach, the possibility to develop various organs in oral cavity is
widely open. By OOAC, organs and tissues in oral cavity such as tooth, oral mucosa, temporomandibular joint,
maxilla and mandibula, as well as periodontium which includes cementum, PDL, gingiva, and alveolar bone can
be actualized for regenerative dentistry. The possibility for this has been on lab bench following the use of stem cells
to control cell differentiation into desired cell types which have been proven. In addition to that, because the use
of primary cells from a specific human organ to recapitulate desired organs is relatively difficult to retrieve, it has
become an open area for us to shift into the use of oral-derived MSCs for OOAC studies, due to their easiness to
isolate and manage, without altering their native behavior in vitro. In view of this, extensive research in combining

future science group 10.2144/fsoa-2023-0061



Review Syahruddin, Anggraeni & Ana

OOACs technology with stem cell technology should be accelerated with respect to oral MSCs. As it has been
reported previously [269–273], differentiation capacity of oral MSCs covers the ability to differentiate into nerve
cells, odontoblasts, cementoblasts, myoblasts, hepatocytes, adipose tissue, melanocytes, osteoblasts, chondrocytes,
and endothelial cells. For tissue regeneration, these stem cells have the potential to regenerate some organs such as
brain tissue, eyes, liver, heart, spine, bone, cartilage, skin, muscle, and teeth [271–274]. This breakthrough is useful to
recapitulate organs in the oral cavity, as well as bone as the key factor in bone tissue engineering.

Application of 3D cultures such as hydrogels, organoids, spheroid, and 3D bioprinted object into OOAC
devices is essential to better mimicking ECM and directing cell behavior and communication [76,250]. Thus, it
is approximated that the use of OOAC in dentistry will increase significantly to overcome disease complexity in
the oral cavity. Moreover, OOAC technology will be growing toward multi-organ chips. A multi-organ chip is
an integrated microfluidic chip with more than one organ structure and functions. These synchronous chips can
be adjusted to observe the possibility of oral mucosal vaccines, drugs, or biomaterials side effects, study cancer
metastasis, and understand the pathophysiology of systemic diseases with oral manifestations. A broader idea of
multi-organ-on-chip may also lead to human-on-a-chip, replicating integration of all tissues and organs in the
human body.

The future development of OOAC technology will also focus on the fabrication and assembly methods. It is
anticipated that soon, the advancement of OOACs may lead to standardized microfluidic chips and protocols
for their laboratory applications, which require standardized materials, flows, chip size and types, tools, reagents,
sensors for monitoring, and methods of analysis. These standardized protocols are expected to ensure better
research reliability and reproducibility. Consequently, to achieve the objectives of OOAC technology, inter and
transdisciplinary approaches are needed by integrating various fields of study, such as biomedicine, bioengineering
and biotechnology, dentistry, engineering, medical sciences, molecular biology, material sciences, and data analysis.

Standardized protocols are also relevant to challenges in OOAC commercialization. So far commercial use
of OOAC systems has been focused on drug development, to estimate both efficacy and toxicity for humans
in preclinical trials. The commercial use of OOAC has been a huge advantage in allowing a company to choose
therapeutics candidates that have a higher chance of becoming approved drugs, thus it has shifted and revolutionized
preclinical stages [275]. A lot of laboratories have also initiated start-ups for OOAC commercialization. However,
how to create OOAC to become compatible with various imaging system, analytical instruments, robotics, and
mass production, as well as to make OOAC user-friendly so that it can be widely adopted by non-specialist end
users have been challenges for OOAC commercialization.

Finally in the future, organ-on-a-chip technology carries expectations that could revolutionize preclinical, clinical,
and market stages of drugs and medical devices development, in TE and dentistry. In preclinical stage, OOACs can
be a complementary technology to previous tools which provides more ethical options to facilitate 3R principle
(reduction, refinement, and replacement) in animal studies with statistically insignificant results [276–279]. In the
clinical stage, the most risky and expensive process, OOACs with continuous research and development will adapt
as a supportive assessment for clinical trials before it can totally change or replace the current clinical trial phases.
Further, using patient-specific cells allows identification of significant variances related to genetic diversity, race,
gender, and age, rather than treating future patients as a homogeneous group. This unique approach also opens
the opportunity in conducting a clinical study for patients suffering from unusual or specific illnesses [64]. In this
point, OOAC becomes an urgent approach for personalized and precision medicine and dentistry in the framework
of regenerative therapy. Since OOAC often involves sensors within its device, this cultivates huge potential for
personalized medicine in a chairside setting by creating patient-specific drug regimens [64], patient-derived cells
engagement [64], or by developing a one-size-fits-all chip for real-time clinical assessment for periodontal disease and
caries risk assessment, immunoassay, or oral cancer detection. Especially in relation to alveolar bone damage caused
by high prevalence of severe and progressive periodontitis, precise therapeutics strategies are awaiting, and it needs
shifting approach from conventional monolayer cell cultures and animal studies into microfluidic alveolar-bone-on-
a-chip. The challenges for the next generation of OOAC, including microfluidic alveolar-bone-on-a-chip, include
recapitulation of more physiological metabolic phenotypes and patient microbiota to experimentally investigate
various gut microbiome dysbiosis, which have been correlated to various chronic diseases in periodontal tissues
and, to large extent, oral cavities.
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Executive summary

Bone related issues are problematic worldwide
• Bone-related issues are still problematic worldwide and in dentistry, for example, the issues are reflected by

alveolar bone damage and infections found in patients with periodontitis, with high prevalence in numbers and
severe progressive conditions. The challenges can be resolved through comprehensive understanding of the
complex physiological and pathological processes associated with bones, their responses to different therapeutics
strategy, and cell interactions with biomaterials.

Lack in mimicking physiological, pathological, & regeneration mechanism
• So far, either existing cell culture model nor pre-clinical animal study have been inadequately mimicking the

complex physiological and pathological processes associated with bone microenvironment, functions, and
regeneration process in responses to different therapeutic strategies. It brings the consequences for the low
success rate of therapeutics strategies in clinical settings.

Lab-on-chip is crucial for future development
• The development of microfluidic organ-on-a-chip (OOAC) is crucial to better recapitulate infection site

microenvironment and microphysiology within the healthy or diseased tissues and organs, thus OOACs have been
applied in various experiments in both fundamental and applied biomedical research, such as in drug discovery,
toxicity evaluation, as well as in disease and cancer modeling.

Advancement in OOAC research
• Although the numbers are limited, but it was found from this study that OOACs have been used in dentistry and

bone tissue engineering to observe various biological processes both in healthy and diseased environments. The
results showed that microfluidic OOACs provide better outcomes to resolve complexities during development and
translation of a new therapeutics strategy due to the capacity of the OOACs in representing real time
microenvironments in the human body.

Addressing OOAC in dentistry & bone tissue engineering
• It is expected that dentistry and bone tissue engineering will provide more accurate, precise, faster, and more

personalized therapeutics strategies to encounter unpredictable diseases and infections in the future by applying
microfluidic OOACs technology, either alone or in combination with other advanced technologies such as stem
cells, tissue engineering, or organoids and spheroids technology.
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